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1.　論文題目
Commit-based Class-level Defect Prediction for Python Projects

2.　論文内容の要旨（400字程度）
Defect prediction approaches have been greatly contributing to software quality assurance

activities such as code review or unit testing. Just-in-time defect prediction approaches are

developed to predict whether a commit is a defect-inducing commit or not. Prior research has

shown that commit-level prediction is not enough in terms of effort, and a defective commit

may contain both defective and non-defective files. As the defect prediction community is

promoting fine-grained granularity prediction approaches, we proposed our novel class-level

prediction, which is more fine-grained than the file-level prediction, based on the files of the

commits in this research. We designed our model for python projects and tested it with nine

open-source python projects. We performed our experiment with two settings: setting with

product metrics only and setting with product metrics plus commit information. We proved

that applying commit information to the class-level prediction model can improve 30% of the

performance in terms of AUC-ROC. Finally, we developed a commit-based file-level defect

prediction model and compared it with the commit-based class-level defect prediction. Our

findings reveal that the latter approach not only contributes to the fine-grained granularity

but is also better in performance than the former one.
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Abstract

Defect prediction approaches have been greatly contributing to software

quality assurance activities such as code review or unit testing. Just-in-time

defect prediction approaches are developed to predict whether a commit is a

defect-inducing commit or not. Prior research has shown that commit-level

prediction is not enough in terms of effort, and a defective commit may contain

both defective and non-defective files. As the defect prediction community is

promoting fine-grained granularity prediction approaches, we proposed our

novel class-level prediction, which is more fine-grained than the file-level pre-

diction, based on the files of the commits in this research. We designed our

model for python projects and tested it with nine open-source python projects.

We performed our experiment with two settings: setting with product metrics

only and setting with product metrics plus commit information. We proved

that applying commit information to the class-level prediction model can im-

prove 30% of the performance in terms of AUC-ROC. Finally, we developed

a commit-based file-level defect prediction model and compared it with the

commit-based class-level defect prediction. Our findings reveal that the latter

approach not only contributes to the fine-grained granularity but is also better

in performance than the former one.
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1. Introduction

Software developers continually modify the source code to fix the existing software de-

fects and add new features. However, these modifications usually lead to the introduction

of new defects, which can decrease the quality of the software [1]. Software quality assur-

ance activities (SQA) are necessary to guarantee the achievement of premium software

products. Nevertheless, these kinds of activities are challenging due to the balance be-

tween limited resources and time-to-market requirements [2]. Defect prediction technology

arises to assist SQA in predicting the software’s risky parts. Therefore, the practitioners

can allocate their quality assurance efforts, e.g., testing and code reviews [3].

Defect prediction models predict the defect-prone parts of the software, and the size

of these parts can be varied according to their prediction granularity. The defect predic-

tion granularity exists from the finest token-level to the coarsest sub-system [4]. Many

defect prediction approaches take the information from the past releases of the software

and make predictions for future releases. These approaches are referred to as long-term

prediction models [5]. The limitation of the long-term models is that they cannot provide

immediate feedback to the developers. Hence, Kamei et al. introduced a Just-in-time de-

fect prediction approach that can predict whether a commit can be a defect-introducing

commit or not [3].

Pascarella et al. reported that the commit-level defect prediction is coarse because a

commit can contain multiple files, and all the files within a defective commit might not be

defect-prone [5]. Consequently, the file-level defect prediction, which is exploited by the

commit information, is conducted. However, file-level defect prediction is still too coarse

since the developers have to take a considerable amount of time to inspect all the codes

in the entire file [6]. The more fine-grained level such as class-level and function-level

than the file-level should be oriented for this approach. Moreover, our ultimate goal is to

develop a more fine-grained defect prediction approach that uses the commit information.

To this aim, we first examine which granularity, i.e., which level defect prediction, is

appropriate for our approach. We survey the popularity among fine-grained models, and

our survey result led to choosing the class-level granularity to build our intended model.
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Subsequently, we propose our novel commit-based class-level defect prediction approach

and experiment with two settings: product metrics only approach and product metrics

plus commit information approach. The comparison results of the two settings describe

that the class-level defect prediction approach can improve by adding commit information.

Finally, we build a commit-based file-level defect prediction approach and compare the

results with the class-level approach. The results reveal that the class-level approach not

only contributes to the fine-grained granularity but is also better in performance than the

file-level one.
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2. Related work

2.1 Defect prediction

Defect prediction approaches can be divided into two categories: long-term prediction

approaches and short-term prediction approaches. Long-term prediction approaches an-

alyze the information of previous releases and predict the defectiveness of future releases.

One of the significant limitations of the long-term prediction approach is that predictions

are made very late in the software development cycle [3]. Meanwhile, short-term pre-

diction approaches exploit the commit information’s characteristics to predict the future

defect-prone commits. The short-term prediction approaches predict at the change level

and provide immediate feedback for the defect [5].

2.2 Defect prediction granularity

Widespread studies of defect prediction approaches are proposed based on machine

learning techniques. The general process of machine learning-based defect prediction ap-

proaches includes generating instances from software archives, labeling these instances,

preprocessing (optional), training these instances to become a model, and finally predict-

ing for new instances by the trained model [4]. The mentioned instances are extracted

from software archives such as version control systems, issue tracking systems, e-mail

archives, etc. The size of these instances may vary according to their granularity [4]. The

granularity can be described as a pyramid shape as mentioned in Figure 2.1 as a soft-

ware system is constituted layer by layer. Therefore, each extracted or predicted instance

can be a sub-system, component/ package, file, class, function, method, line, or token.

Recently, the fine-grained granularity approaches, such as class-level, method-level, and

line-level, have been promoted because some studies proved that the fine-grained defect

prediction approaches are more cost-effective than the coarse-grained ones [6], [7].
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Figure 2.1 The granularity of defect prediction models

4



2.3 Defect prediction metrics

Product metrics and process metrics are commonly used for statistical defect prediction

models. The product metrics (also known as code metrics) are collected directly from the

source code. The popular product metrics are LOC [8], Halstead [9], McCabe [10], CK

[11] and OO [12]. The process metrics are extracted from historical information archived

in software repositories such as version control and issue tracking systems [4]. Relative

code change churn [13], Change Entropy [14], and Popularity [15] are examples of process

metrics. Besides product and process metrics, there are also other metrics such as anti-

pattern metrics.

2.4 Commit

Modern software development relies on version control systems such as Git, CVS, SVN,

etc. The version control systems allow every record of specific changes to the source code

file. A commit or“ revision”describes changes to a file or a set of files.（*1）

（*1）：https://docs.github.com/
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3. Methodology

This section presents our research questions, studied datasets, and outlines of our

method.

3.1 Research questions

Our ultimate goal was to build a fine-grained defect prediction model which uses the

commit information. Our proposed model design was a two-phase prediction model. In

the first phase, we separated defective and non-defective commits. We identified and

predicted the fine-grained defective artifacts in the second phase. However, choosing

a reasonable fine-grained granularity was a challenge. For that reason, we decided to

survey the popular granularity of fine-grained defect prediction models, and we set our

first question as follows:

• RQ 1: Which granularity level of fine-grained defect prediction does the

research community of the defect prediction orient the most?

Based on the answer to research question 1, we built our prediction model. Finally, we

measured our model’s performance and represented the results as the answer to research

question 2.

• RQ 2: How well can our two-phase proposed model predict for a class of

a commit?

Prior research has already proved that the cost-effectiveness of the fine-grained defect

prediction models overcomes that of the coarse-grained ones [6]. In this research, we de-

veloped a more coarse-grained granularity model than the granularity of class-level model

and compared their performance results. Section 6 reveals the performance comparison

results of two granularity levels.

• RQ 3: How is the performance of commit-based class-level defect predic-

tion when comparing to that of commit-based file-level defect prediction?
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3.2 Subject systems

We conducted our prediction model with open-source software systems. After applying

multiple criteria, we removed many unwanted projects, and finally, nine projects which

satisfied all criteria were randomly selected. Our criteria include that the projects :(1)

must be publicly available, (2) must be available both in Commit Guru and GitHub,

(3) should be mainly conducted with python or jupyter notebook language, (4) should

have over 1000 commits, and (5) should include over 10% of defect-prone commits. The

selected projects are listed in Table 3.1.

Table 3.1 Characteristics of the subject software systems.

Systems # of Commits % of Defect-prone Commits # of Classes

ADSM 3493 24% 1516

Axelrod 5539 24% 6693

Bitmask client 3055 18% 1241

Galicaster 1786 20% 360

Lisa 3876 18% 3511

Parsl 3724 32% 948

PyBitmessage 2595 30% 282

PythonRobotics 1700 20% 451

TADbit 2503 42% 66

3.3 Independent variables

Product metrics: We adopted LOC, Halstead, and Cyclomatic Complexity for our

prediction models in this study. Table 3.2 reports the information of these adopted met-

rics. （*2）

Commit information Throughout this thesis, we mention the commit information

used to build our proposed model. Just-in-time defect prediction models use the com-

（*2）：https://radon.readthedocs.io/
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mit information, and we used the following listed Kamei’s Just-in-time defect prediction

metrics [3] for this study. NS, ND, NF, Entropy, FIX, NDEV, AGE, NUC, EXP, and

REXP. Although the original metrics include 13 variables, we exclude LT, LA, and LD

as these three variables were not relevant to our current prediction model. The commit

information adopted by this study is listed in Table 3.3.

3.4 Commit-based class-level defect prediction approach

According to research question 1, we built our proposed model as a commit-based class-

level defect prediction model. Figure 3.1 illustrates the process flow of our approach. The

overall steps of the process are listed below.

• We collected all the defective and non-defective commits.

• All the classes of the modified files of the commits were extracted, and these classes’

product metrics were calculated.

• We made a dataset that contains both commit information and product metrics.

• Our model was trained and tested with the gained dataset.

(1) Data extaction

Our goal was to create a dataset that contains both commit information and product

metrics of the classes. We gained the commit information (i. e., the calculated features

of the commits) from Commit Guru. Moreover, the source code of the project’s files and

each file’s revision history were obtained from GitHub repositories. The mutual commit

hashes in the GitHub repository and Commit Guru were collected, and PyDriller took out

the modified files of these commits. We extracted all modified files’ classes using python’s

ast tool and calculated LOC, Halstead, and Cyclomatic Complexity metrics. Finally, a

new dataset was acquired by concatenating the calculated metrics with the commit infor-

mation. The dependent variable of our dataset is the availability of bugs in the classes,

and independent variables are reported in Table 3.2 and Table 3.3.
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Figure 3.1 The process flow of our commit-based class-level defect

prediction approach.
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Tools for data extraction

Radon: Radon assists defect prediction by calculating the metrics such as LOC, Hal-

stead, and Cyclomatic Complexity metrics. It is used as a python library or command-line

tool. （*3）

PyDriller: PyDriller is a python frame that allows developers to mine the Git repos-

itories with automated tools. With the help of PyDriller, the developers can extract Git

repository ’s information such as commits, modified files, diffs, and source code, and

export as CSV files easily. （*4）

(2) Model building and validation strategy

We trained our model with two different settings in the model building section. Our

overall independent variables were 31 variables. 11 variables belonged to commit informa-

tion obtained from Commit Guru data. The last 20 variables were the calculated product

metrics. We trained our model by 31-attribut (commit information + product metrics)

and 20-attribute (only product metrics) settings. There is no class-level defect prediction

that exploits the commit information yet to the best of our knowledge. We assumed that

the commit information would be enormously significant to the respective classes as we

extracted the classes from the modified files of the commits. Once preparation of our

data settings was done, we selected the best classier that supports predicted defective

classes by our independent variables. For this purpose, we used Logistic Regression, J-

48, Naive Bayes, and Random Forest as the same classifiers in the prior researches [3]

[5]. We exploited the Weka toolkit for training our model. 10-fold cross-validation was

applied as the validation strategy. 10-fold cross-validation strategy divides the dataset

into ten folds. Nine folds are used as the training data, and the last fold is for testing.

This procedure is receptive ten times, but a random 10-fold data partition is made for

each time. Afterward, the accuracy result is taken as the mean value of the ten times

validation.

（*3）：https://radon.readthedocs.io/

（*4）：https://pydriller.readthedocs.io
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3.5 Commit-based file-level defect prediction approach

To answer research question 3, we built our file-level defect prediction first. For the sake

of fairness, we performed our file-level prediction model with the same datasets, indepen-

dent and dependent variables, model training, and validation methodology approaches.

(1) Data extraction

We first dumped the Commit Guru data and GitHub repositories to build our file-

level prediction model. Using PyDriller, we extracted the modified files, available in the

dumped GitHub repository, with their source code and calculated the LOC, Halstead, and

Cyclomatic Complexity metrics. Afterward, these metrics were combined with commit

information from Commit Guru data and created as a new dataset.

(2) Model building and validation strategy

With the same model training method and validation strategy in the above section, we

used the Random forest algorithm and 10-fold cross-validation. Finally, we resulted our

output in precision, recall, F-measure, and AUC-ROC.
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Table 3.2 List of the product metrics.

Acronym Name

loc The number of lines of code (total)

lloc The number of logical lines of code

sloc The number of source lines of code (not necessarily corresponding

to the LLOC)

comments The number of Python comment lines

multi The number of lines which represent multiline strings

single comments The number of lines which are just comments with no code

blank The number of blank lines (or whitespace-only ones)

h1 the number of distinct operators

h2 the number of distinct operands

N1 the total number of operators

N2 the total number of operands

h the vocabulary, i.e. h1 + h2

N the length, i.e. N1 + N2

calculated length h1 * log2(h1) + h2 * log2(h2)

volume V = N * log2(h)

difficulty D = h1 / 2 * N2 / h2

effort E = D * V

time T = E / 18 seconds

bugs B = V / 3000 - an estimate of the errors in the implementation

real complexity Cyclomatic Complexity value of a piece of code

12



Table 3.3 List of the commit information variables.

Acronym Name

NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across each file

FIX Whether or not the change is a defect fix

NDEV The number of developers that changed the modified files

AUE The average time interval between the last and the current change

NUC Number of unique changes to the modified files

EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem
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4. RQ 1: Which granularity level of fine-grained defect

prediction does the research community of the defect pre-

diction orient the most?

4.1 Motivation

To gain insight knowledge about defect prediction granularity and find out the most

popular granularity in the defect prediction community, we performed a literature review

using the following method.

4.2 Approach

We defined the area scope of our literature review according to research question 1.

Since this study was not intended to become a systematic literature review for a wide

area of defect prediction research field, we only focused on surveying the granularity

occurrence of the fine-grained defect prediction models. In Pascarella et al. ’s approach
[5], they set file-level as the fine-grained granularity, and we aimed to improve their

approach by developing a more fine-grained prediction model than the one of their model.

Therefore, we counted for class, function, method, line, and token levels, that arefiner than

the file-level. We searched the papers in the following six venues, the premier publication

venues in the software engineering research community, from 2015 to 2020. Among these

venues, the two venues are for journals, and the rest are for conferences.

• ASE - IEEE/ACM International Conference on Automated Software Engineering

• ESEC/FSE - ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering

• ICSE - ACM/IEEE International Conference on Software Engineering

• SANER - IEEE International Conference on Software Analysis, Evolution and

Reengineering

• TOSEM - ACM Transactions on Software Engineering and Methodology

• TSE - IEEE Transactions on Software Engineering

14



We used the keywords“ defect,”“ bug,”“ fault,” and“ prediction” to search

in IEEE/ ACM digital libraries and collected the titles of all resulting papers. Then we

filtered the relevant papers by reading the titles, abstract, and keywords. Since our goal is

to build a prediction model for within project setting by the Machine Learning technique,

we excluded some papers such as papers which are using cross-project settings [16], [17],

[18], [19], and deep learning techniques. Finally, we downloaded the full text of the rest

papers and found out the granularity of the predicted part.

4.3 Result

We observed ten class-level papers, two function-level papers, two method-level papers,

and one line-level paper. As we discovered the most contributed granularity of defect

prediction models, we recognized class-level granularity as the answer to our first research

question. Furthermore, we built our proposed model for class-level defect prediction

granularity. Figure 4.1 shows the result of research question 1. Among the empirical

literature studies, 66.7% are class-level, 13.3 % are function-level, 13.3 % are method-

level, and 6.7% are line-level. Therefore the class-level becomes the result of research

question 1.

15



Figure 4.1 66.7% belong to class, 13.3% belong to function, 13.3%

belong to method, and 6.7% belong to line levels.
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5. RQ 2: How well can our two-phase proposed model

predict for a class of a commit?

5.1 Motivation

In 2019, Pascarella et al. proposed a fine-grained just-in-time defect prediction model

[5]. Their model classifies and predicts the non-defective and defective files based on

the defective commits. Although their model is orienting to the fine-grained granularity,

the file-level prediction might be too coarse as a file may contain numerous classes. For

this reason, we proposed a commit-based class-level defect prediction approach, in which

defect-prone classes are generated from the commits.

5.2 Approach

To answer our research question 2, we conducted a commit-based class-level defection

prediction approach. We generated independent and dependent variables metrics from the

Commit Guru dumped data and GitHub repositories. Our approach was tested by two

settings: (1) product metrics only (20-attribute setting) and (2) product metrics plus com-

mit information (31-attribute setting). The product metrics contained LOC, Halstead,

and Cyclomatic Complexity metrics. The commit information refer to the number of mod-

ified subsystems (NS), the number of modified directories (ND), number of modified files

(NF), Entropy & Distribution of modified code across each file (Entropy), whether or not

the change is a defect fix (FIX), the number of developers that changed the modified files

(NDEV), the average the time interval between the last and the current change (AUE),

number of unique changes to the modified files (NUC), developer experience (EXP), re-

cent developer experience (REXP), and developer experience on a subsystem (SEXP).

We trained and tested our model with various classifier and validation strategies. Among

these, the Random Forrest classifier and 10-fold cross-validation gave our approach the

best performance.

17



5.3 Result

We evaluated the performance measures of our prediction model, which was trained

and tested by the Random Forest classier and 10-fold cross-validation, as described in

section 3. Table 5.1 and Table 5.2 provide precision, recall, F-measures, and AUC-ROC

percentage of our results. For the sake of clarity, we present the results of two settings

with separate tables that have a similar structure.

We performed our predictions only with the product metrics (20-attribute setting) and

presented the results in Table 5.1. The precision ranged from 0.544 to 0.695 (average =

60%), indicating our model could give 60 % reliability for predicting actual defects. The

recall ranged from 0.559 to 0.697 (average = 62%). According to its recall value, our

model could predict more than 60% of the actual defects. The average F-measure was

60%, achieving an AUC-ROC range of 54-83% (average = 62%). Although the results

fluctuated significantly, our model still gave the average performance for various projects.

Table 5.2 describes our predictor’s performance result, which uses the combined features

for commit information and product metrics (31-attribute setting). We observed that the

ranges of precision and recall were between 82% to 97% (average = 91%) while F-measure

ranged from 73% to 96% (average = 73%). The AUC-ROC was between 95% to 99%,

and the average was 95%. This is proof that commit information can contribute greatly

to the class-level defect prediction model.

5.3.1 Comparison for 20-attribute and 31-attribute settings for the class-level de-

fect prediction approach

The precision and recall of the 31-attribute setting were 11% higher than that of the

20-attribute setting. The F-measure and AUC-ROC values were 9% and 8% greater

in the 31-attribute setting, respectively. Therefore, we concluded that adding commit

information to the product metrics for our class-level defect prediction approach can

improve its performance, and commit information significantly contributes to the commit-

based class-level defect prediction approach.

18



Table 5.1 Performance result of the class-level prediction model (20-

attribute setting).

Systems Precision Recall F-measure AUC-ROC

ADSM 0.695 0.697 0.693 83%

Axelrod 0.567 0.585 0.558 57%

Bitmask client 0.544 0.559 0.543 54%

Galicaster 0.557 0.560 0.557 59%

Lisa 0.668 0.674 0.642 66%

Parsl 0.586 0.595 0.587 60%

PyBitmessage 0.822 0.837 0.824 82%

PythonRobotics 0.567 0.574 0.565 61%

TADbit 0.637 0.658 0.644 66%

Table 5.2 Performance result of the class-level prediction model (31-

attribute setting).

Systems Precision Recall F-measure AUC-ROC

ADSM 0.960 0.960 0.960 99%

Axelrod 0.967 0.967 0.932 99%

Bitmask client 0.954 0.953 0.953 90%

Galicaster 0.853 0.853 0.852 91%

Lisa 0.954 0.952 0.899 99%

Parsl 0.870 0.870 0.730 95%

PyBitmessage 0.969 0.969 0.969 99%

PythonRobotics 0.854 0.854 0.854 93%

TADbit 0.820 0.824 0.817 89%
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6. RQ 3: How is the performance of commit-based class-

level defect prediction when comparing to that of commit-

based file-level defect prediction?

6.1 Motivation

One of the current trends in the defect prediction research area is developing more fine-

grained models because of the advantages of performing predictions at a finer granularity

[20]. In this study, we conducted two fine-grained granularity prediction models - the

class-level and the file-level - and compared their performance results.

6.2 Approach

To answer our research question 3, we need to present the performance result of the

file-level defect prediction model first. For both of the class-level and file-level models,

we extracted the metrics from Commit Guru dumped data and Github repositories. Al-

though the calculation of the metrics was slightly different due to their granularity, we

used the same machine learning classifier, validation strategy, and performance measures.

Similar to the setting of the class-level defect prediction model, we tested the file-level

defect prediction in two settings: (1) product metrics only (20-attribute setting) and (2)

product metrics plus commit information (31-attribute setting). The number of the uti-

lized product metrics was 20, and they were LOC, Halstead, and Cyclomatic Complexity

metrics. The metrics of commit information included number of modified subsystems

(NS), number of modified directories (ND), number of modified files (NF), Entropy &

Distribution of modified code across each file (Entropy), whether or not the change is a

defect fix (FIX), the number of developers that changed the modified files (NDEV), the

average time interval between the last and the current change (AUE), number of unique

changes to the modified files (NUC), developer experience (EXP), recent developer experi-

ence (REXP), and developer experience on a subsystem (SEXP). The commit information
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was the metrics applied in the state-of-art Just-in-time defect prediction study by Kamei.

et al. [3]. Although the original study stated 13 metrics for commits, we excluded the

size metrics, which are lines of code added (LA), lines of code deleted (LD), and lines of

code in a file before the change (LT) as they are not relevant to our approaches.

6.3 Result

Table 6.1 and Table 6.2 describe the performance results of the commit-based file-

level defect prediction model trained by the Random Forest classifier with 10-Fold cross-

validation. We present the results in terms of precision, recall, F-measure, and AUC-ROC

score. The results involved in Table 6.1 were gained by training the model using only

product metrics (20-attribute setting). The precision value ranged from 0.546 to 0.651

(average = 0.57), the recall value was from 0.547 to 0.653 (average = 0.58). The range of

the F-measure was from 0.546 to 0.652, and its average was 0.58. We achieved AUC-ROC

score values between 0.56 and 0.729, and the average AUC-ROC value was 0.6 for the

20-attribute setting.

Table 6.2 presents the precision, recall, F-measure, and AUC-ROC values obtained

by the product metrics plus the commit information (31-attribute setting). When we

used the 11 features of commit information for our product metrics only file-level defect

prediction model, we obtained the precision ranging from 0.75 to 0.838 (average = 0.801),

the recall ranging from 0.752 to 0.837 (average = 0.801), the F-measure ranging from 0.75

to 0.837 (average = 0.799), and AUC-ROC ranging from 0.816 to 0.92 (average = 0.873).

6.3.1 Comparison for 20-attribute and 31-attribute settings for the file-level defect

prediction approach

When we used the 11 features of commit information for our product metrics only

file-level defect prediction model, the precision and the recall increased for 23% and 22%

respectively. F-measure of 31-attribute setting became 21% greater than that of 20-

attribute setting, and AUC-ROC score improved for 27%. Since our file-level defect
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Table 6.1 Performance result of the file-level prediction model (20-

attribute setting).

Systems Precision Recall F-measure AUC-ROC

ADSM 0.651 0.653 0.652 73%

Axelrod 0.548 0.551 0.549 56%

Bitmask client 0.547 0.550 0.548 56%

Galicaster 0.548 0.549 0.548 59%

Lisa 0.646 0.647 0.646 70%

Parsl 0.591 0.595 0.593 60%

PyBitmessage 0.561 0.562 0.561 57%

PythonRobotics 0.546 0.547 0.546 60%

TADBit 0.578 0.581 0.580 61%

prediction was gained from the modified files of the commits, we successfully proved our

hypothesis that commit information greatly contributes to the commit-based file-level

defect prediction.

6.3.2 Comparison result for the commit-based class-level and file-level defect pre-

diction models

For the 31-attribute setting, we present the performance comparison with Figure 6.1,

Figure 6.2, Figure 6.3, and Figure 6.4. The performance of the class-level model is 8-9%

better than that of the file-level model in terms of F-measure and AUC-ROC. The class-

level model ’s precision and recall values were 11% greater than the file-level model ’s
ones.

According to the testing results with nine python projects, we concluded that the perfor-

mance of the commit-based class-level prediction is up to 8% better than the commit-based

file-level prediction model in terms of F-measure and AUC-ROC.
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Figure 6.1 Comparison of precision boxplots for the commit-based

class-level and file-level defect prediction models.

Figure 6.2 Comparison of recall boxplots for the commit-based class-

level and file-level defect prediction models.
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Figure 6.3 Comparison of F-measure boxplots for the commit-based

class-level and file-level defect prediction models.

Figure 6.4 Comparison of AUC-ROC boxplots for the commit-based

class-level and file-level defect prediction models.
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Table 6.2 Performance result of the file-level prediction model (31-

attribute setting).

Systems Precision Recall F-measure AUC-ROC

ADSM 0.750 0.752 0.750 84%

Axelrod 0.838 0.837 0.837 92%

Bitmask client 0.823 0.822 0.821 88%

Galicaster 0.838 0.836 0.836 91%

Lisa 0.833 0.827 0.825 87%

Parsl 0.793 0.794 0.793 87%

PyBitmessage 0.772 0.773 0.772 86%

PythonRobotics 0.802 0.799 0.800 89%

TADBit 0.761 0.769 0.761 82%

25



7. Thread to validity

7.1 External validity

We experimented with our approaches with nine open-source python projects with

different ratios of defect-prone commits, number of commits, and scope. Nevertheless,

the results may differ when our approach is applied to commercial projects, larger or

smaller systems. Future studies need to investigate whether our results generalize to

other different projects. In addition, the results gained by using the automated tools for

this experiment may vary according to their versions. Future work is necessary to analyze

whether the same effect can be obtained on this research ’s approaches.

7.2 Internal validity

The data for the independent and dependent variables that we used in this research

relied on the dumped data of Commit Guru and the processed results of the automated

tools such as Radon and PyDriller. Although our results were concluded with several

repeated experiments, the verification of the scripts of the tools and data was not per-

formed in this research. Furthermore, we concluded our performance results in precision,

recall, F-measure, and AUC-ROC. Future studies, which have different objectives, should

analyze our approaches’ performance on other performance measures.
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8. Conclusion

Just-in-time defect prediction approaches are practical and useful because of their abil-

ity to predict defects in the short-term and provide feedback immediately. However, a

commit may contain multiple files, and a file may include many classes. For this reason,

we proposed a commit-based class-level defect prediction approach for python projects

and analyzed our approach with two different settings. The main contributions of this

research are:

1. A literature survey for the granularity of fine-grained defect prediction approaches.

2. A commit-based class-level defect prediction model with two settings and perfor-

mance comparison for these settings.

3. A commit-based file-level defect prediction model with two settings and performance

comparison for these settings.

4. Performance comparison for the commit-based class-level and file-level defect pre-

diction models.

5. Our concluded results state that commit information significantly contributes to

our commit-based class-level prediction approach, and the commit-based class-level

model is up to 8% better than the commit-based file-level prediction model in terms

of F-measure and AUC-ROC.
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