Academic Journal
article
Causal-Effect Analysis using Bayesian LiNGAM Comparing with Correlation Analysis in Function Point Metrics and Effort
Abstract

Software effort estimation is a critical task for successful software development, which is necessary for appropriately managing software task assignment and schedule and consequently producing high-quality software. Function point (FP) metrics are commonly used for software effort estimation. To build a good effort estimation model, independent explanatory variables corresponding to FP metrics are required to avoid a multicollinearity problem. For this reason, previous studies have tackled analyzing correlation relationships between FP metrics. However, previous results on the relationships have some inconsistencies. To obtain evidence for such inconsistent results and achieve more effective effort estimation, we propose a novel analysis, which investigates causal-effect relationships between FP metrics and effort. We use an advanced linear non-Gaussian acyclic model called BayesLiNGAM for our causal-effect analysis, and compare the correlation relationships with the causal-effect relationships between FP metrics. In this paper, we report several new findings including the most effective FP metric for effort estimation investigated by our analysis using two datasets.
Files

published
BibTeX

Copyright © 2025 omzn.aquatan.net a.k.a. Osamu Mizuno All rights reserved.

The publications displayed in this list is related to SEL@KIT members only.