Tweet | |
O. Mizuno and H. Hata, "A Metric to Detect Fault-Prone Software Modules Using Text Classifier," International Journal of Reliability and Safety, 7(1), pp. 17-31, February 2013. | |
ID | 602 |
分類 | 学術論文誌(査読付) |
タグ | classifier detect fault-prone metric modules software text |
表題 (title) |
A Metric to Detect Fault-Prone Software Modules Using Text Classifier |
表題 (英文) |
|
著者名 (author) |
Osamu Mizuno,Hideaki Hata |
英文著者名 (author) |
Osamu Mizuno,Hideaki Hata |
キー (key) |
Osamu Mizuno,Hideaki Hata |
定期刊行物名 (journal) |
International Journal of Reliability and Safety |
定期刊行物名 (英文) |
|
巻数 (volume) |
7 |
号数 (number) |
1 |
ページ範囲 (pages) |
17-31 |
刊行月 (month) |
2 |
出版年 (year) |
2013 |
Impact Factor (JCR) |
|
URL |
|
付加情報 (note) |
|
注釈 (annote) |
|
内容梗概 (abstract) |
Machine learning approaches have been widely used for fault-prone module detection. Introduction of machine learning approaches induces development of new software metrics for fault-prone module detection. We have proposed an approach to detect fault-prone modules using the spam- filtering technique. To use our approach in the conventional fault-prone module prediction approaches, we construct a metric from the output of spam-filtering based approach. Using our new metric, we conducted an experiment to show the effect of new metric. The result suggested that use of new metric as well as conventional metrics is effective for accuracy of fault-prone module prediction. |
論文電子ファイル | 利用できません. |
BiBTeXエントリ |
@article{id602, title = {A Metric to Detect Fault-Prone Software Modules Using Text Classifier}, author = {Osamu Mizuno and Hideaki Hata}, journal = {International Journal of Reliability and Safety}, volume = {7}, number = {1}, pages = {17-31}, month = {2}, year = {2013}, } |