SEL@KIT: 近藤, RBMを用いたソフトウェアメトリクスの特徴抽出手法の提案, 2017年2月.
  • リスト
  •  表 
  • LaTeX
  • BibTeX
  • 統計情報
Detail view
Tweet
近藤, "RBMを用いたソフトウェアメトリクスの特徴抽出手法の提案," 卒業研究報告書, 京都工芸繊維大学, 2017年2月.
ID 755
分類 学位論文
タグ boltzmann defect machine prediction restricted unsupervised ソフトウェアメトリクス 手法 抽出 提案 特徴 卒論
表題 (title) RBMを用いたソフトウェアメトリクスの特徴抽出手法の提案
表題 (英文) Unsupervised Defect Prediction with Restricted Boltzmann Machine
著者名 (author) 近藤 将成
英文著者名 (author) Masanari Kondo
キー (key) Masanari Kondo
号数 (number)
技術報告書の種別 (type)
発行元組織 (organization) 卒業研究報告書, 京都工芸繊維大学
出版社住所 (address)
刊行月 (month) 2
出版年 (year) 2017
URL
付加情報 (note)
注釈 (annote)
内容梗概 (abstract) The defect prediction is one of the important tasks to preserve an assurance of software quality in the software engineering. In previous works of the defect predicion, two issues are identified. First, there is an issue of a heterogeneous metrics set. Many researchers use a su- pervised learning approach as to generate a defect prediction model. Then, they have to collect a training dataset that has same metrics with an objective dataset. This reduces the amount of available data, and thus should be improved. Second, it is difficult to choose the fittest model since there is an issue of differences with accuracy of a model between datasets. Various so- lutions have been reported regarding the issue of a heterogeneous metrics set. For instance, Some researchers apply an unsupervised learning method to an object dataset since unsuper- vised learning methods have an advantage that they do not need a training dataset. However, less research has focused the second issue. In this paper, we propose an unsupervised learning approach using Restricted Boltzmann Machine as preprocessing of metrics to solve the second issue. We conduct experiments on three empirical datasets. These results show that differences between five unsupervised learning methods are reduced, and all of them belong to the group which has the best AUC values. Furthermore, we confirm that unsupervised learning methods with Restricted Boltzmann Machine as preprocessing of metrics are effective on the source code complexity metrics.
論文電子ファイル Final (application/pdf) [一般閲覧可]
BiBTeXエントリ
@techreport{id755,
         title = {RBMを用いたソフトウェアメトリクスの特徴抽出手法の提案},
        author = {近藤 将成},
    institution = {卒業研究報告書, 京都工芸繊維大学},
         month = {2},
          year = {2017},
}
  

Search

Tags

1 件の該当がありました. : このページのURL : HTML : RSS : XML

Language: 英語 | 日本語 || ログイン |

This site is maintained by o-mizuno.
PMAN 3.2.10 build 20181029 - Paper MANagement system / (C) 2002-2016, Osamu Mizuno
Time to show this page: 0.280509 seconds.