
Identifying Key Attributes of Projects that Affect the Field Quality of
Communication Software

Nahomi Kikuchiyz, Osamu Mizunozand Tohru Kikunoz
kikuchi386@oki.co.jp, fo-mizuno, kikuno g@ics.es.osaka-u.ac.jp

yOki Electric Industry Co., Ltd., Japan
zGraduate School of Engineering Science, Osaka University, Japan

Abstract

In this paper we identify key attributes of projects in which
the number of problem reports after release is remarkable
in the communication software. After several interviews to
software project managers, we derived candidate attributes
of importance to the projects. To find out the most influential
attributes of the projects, we conducted statistical analysis
using a set of metrics data related to the candidate attributes
and the number of problem reports after release. As a re-
sult, we successfully found that two metrics concerning the
origin’s quality and the changes in specification are useful
to estimate the field quality.

1 Objective and Approach

The quality of communication software is usually mea-
sured by the problem reports after release in the field. That
is, the quality is only assessed by the resultant product. Ac-
tually there exist many studies on the quality of software
products[1, 2, 3]. Generally, review and test activities are ef-
fective to acquire better quality. Some of them discussed the
methodologies of review and test[1, 2], and others proposed
statistical models[3] to analyze how the quality of software
increases. They, however, focused on the development of
general software(rather than specific domain software), and
they did not consider explicitly the deadlines of projects.

The aim of this paper is to investigate the common at-
tributes of projects whose field quality was not good. In this
paper, we don’t consider projects that did not finish within
predetermined dates. The reason is that for such projects,
no reliable data are collected during development. It is thus
impossible to analyze those projects statistically.

Satisfaction of customers is then evaluated by field quality
after release. In addition, quality after the release is reflected
on problem reports after the release in the field. Thus, we
judge success of a project using the number of problem
reports originated by customers after release for one year
(called problem reports for short).

We chose twenty-four projects in a company that have
commonly the following characteristics:

(1) Each project was completed within the schedule.

(2) Each project used similar programming languages (for
instance C, C++, etc.).

In order to find characteristics of projects, we classified
these projects into two groups: Good and Fair. To find
characteristics of the Fair projects, we hold several interviews
with a number of project managers from both groups. Then,
we examined and presented a list of candidate attributes of
importance to the projects’ post-release quality. To identify
influential attributes of the projects, we conducted statistical
analysis using a set of metrics data related to the candidate
attributes and the numbers of problem reports.

2 Communication Software Development

In the development of communication software, there ex-
ist several types of software development such as reusing or
adapting from existing software, a previous version of the
current product, commercial off-the-shelf software (COTS),
and commercial or reuse libraries. The pre-existing software,
which is used as development basis, is generally called the
origin[6]. We then call a software product that was devel-
oped using pre-existing origins Prior work. Other type of a
software product is newly developed software without using
pre-existing one, and is called New work.

Prior work is further divided into Modified, Adopted and
Reuse according to development activities. “Modified” part
of software is developed based on pre-existing software with
many changes on design and codes. On the other hand,
"Adapted" and “Reuse” part of software are developed with
almost no design and code change. In “Adapted” part of
software, the design is reviewed and program is tested to a
limited extent. In "Reuse" part of software, the design is
neither reviewed nor tested at all.

The development process is a sequential software engi-
neering life-cycle model according to the waterfall model.
Software requirement is determined in the analysis phase and
development plan is constructed in the planning phase. Then
implementation is performed in the design phases(basic,
functional and detail), the programming phase and the test
phases(unit, module and system). In each phase, software
work products and documents are created and reviewed to
remove defects. For the purpose of project management,
development reports are written at the end of each phase.



A software project manager describes development reports
and evaluates the progress and status to see if the project may
proceed to the next phase.

While other related systems such as hardware and
firmware are developed at the same time, the software part
is sometimes asked for the change of interface specifica-
tion in certain timing(for example, during the design phase).
When a specification is changed, some modules may also be
changed. Such changes of specification are likely to happen
frequently according to the stability of related systems.

Since the software development process is usually per-
formed concurrently with the related systems’ development,
it is also difficult to verify performance specifications, such
as peak performance at real operational situation, in design
phases. Thus, insufficient specifications suddenly appear in
the test phase, and they often require changes in the design
specifications.

3 Interview

3.1 Categorization of projects

In order to distinguish projects whose quality is not con-
sidered as satisfactory, we adopted the metricsFt1. (We
introduce other related metrics for statistical analysis in Sec-
tion 4.)
Ft1 : the number of problem reports for twelve months

after release
We call projects with unsatisfactory value forFt1 Fair

project. Furthermore, we classified Fair projects into two
subgroups Poor and Average based on the degree of their
post-release quality. Classification rules are summarized as
follows:(

Good project ;Ft1 < n1

Fair project

n
Average project ;n1 � Ft1 < n2

Poor project ;n2 � Ft1

These numbers n1 and n2 were determined by having
discussion with the quality assurance group.

For the twenty-four target project, we applied the rule to
classify them. Fourteen projects are then in Good group and
ten in Fair. In more precise, four projects are in Average and
six projects are in Poor.

3.2 Qualitative results of interview

After the classification of projects in subsection 3.1, we
checked common attributes of both Good group and Fair
group using the documents of the development plan and
report written by an individual project. However, we failed
to find common attributes in each group Good and Fair. In
order to know the projects’ detailed activities and trends that
are not described in the reports, we thus hold interviews
with software projects managers of both projects of Fair and
Good.

The following (a)–(d) were confirmed as the candidates of
common attributes that make a project Fair.

(a) A problem concerning quality of the origin (Prior work)

a-1) A fairly number of problems are found in the ori-
gin itself after release.

a-2) The development activity which aims to improve
quality of the origin is not enough.

a-3) The development activity to check the quality of
the origin is not enough.

(b) A problem concerning test and review activity

b-1) Review and test are done with little consideration
to the technical matter specific to communication
software.

b-2) Activity of source code review and a unit test is
scarce in some projects.

(c) A problem concerning project management and plan-
ning

c-1) There is much delay before development plan and
report are constructed. Moreover, reporting to the
quality assurance department is given a rather low
priority.

c-2) The development plan is not detailed enough to
be applied actually.

c-3) The development activity is emphasized and
project management tends to become scanty.

(d) A problem concerning specification change

d-1) Changes of design specification occur even in pro-
gramming phase and test phases. Software part is
sometimes asked for change of interface specifi-
cation by other related systems.

d-2) Oversights appear in the operational condition
and/or environment, which should be included in
the design specification.

4 Statistical Analysis using Logistic Model

4.1 Metrics for Process Quality

We established the detailed evaluation items by which
individual project activities are evaluated. The items are se-
lected to express the qualitative attributes discussed in sub-
section 3.2.

FQtotal (the number of problem reports of the product)

Ft1: the number of problem reports for twelve months
after release

FQorg (the number of problem reports of the origin’s prod-
uct)

Fo1: the number of origin’s problem reports for twelve
months after release per origin’s software size



Qorg (evaluation of activity for improving the origin’s qual-
ity)

O1: quality of the origin part of software

O2: level of examining the origin’s quality in design
phase

O3: level of improving activity for the origin’s quality
in design and test phases

Qrev (evaluation of review activity)

R1: level of consideration to exceptional cases in de-
sign review

R2: timeliness of design review performed

Qtest (evaluation of test activity)

T1: level of consideration to exceptional cases and
operational conditions in test activity

T2: contents of source code review and unit test

Qmng (evaluation of management)

M1: adequateness of creating and revising plan

M2: adequateness of information included in plan

Qspec (evaluation of specification change)

S1: the timing that the specification is fixed

S2: preciseness of the specification fixed

S3: understandability of requirements and feasibility
of design specification

4.2 Logistic Regression Analysis

We evaluated twenty-four projects by the above Q-metrics
data. For each project data, we summed up each sub-item
in the metric group and got a value of each metric. We then
used logistic regression model to analyze the relationships
among the metrics and field quality.

The response variable we use to validate the metrics is
binary, i.e. was a project’s field quality Good or Fair. The
value of this response variable is evaluated by the logistic
regression model to be described. We took six metrics,
FQorg, Qspec, Qrev, Qtest, Qorg andQmng as candidates
of explanatory variables. For each explanatory variable, the
value was obtained by summing up the sub-items’ score in
each item. Table 1 represents a part of measured metrics data.
In Table 1, classification shows the actual result evaluated
by the rule in subsection 3.1 using the value ofFQtotal. As
mentioned before, out of the twenty-four projects, fourteen
projects are Good and ten projects are Fair.

A multivariate logistic regression model is given in the
following formula:

E(Y jx1; � � � ; xn) =
eb0+b1x1+���+bnxn

1+ eb0+b1x1+���+bnxn

In this formula, response variableY represents whether
a project is Good or Fair, and explanatory variablesxi are

Table 1. Metrics data
Project Qspec Qrev Qtest Qorg Qmng Class

1 4 4 5 2 17 Good
2 4 4 5 2 17 Good
3 4 2 5 2 16 Good
4 4 2 6 2 16 Good
5 2 2 5 2 16 Good
6 6 8 15 7 14 Fair
7 6 7 16 7 7 Fair
8 6 4 14 7 15 Fair
9 6 6 14 9 16 Fair
10 4 2 9 6 3 Good
� � � � � � � � � � � � � � � � � � � � �

24 1 15 24 11 25 Good

supposed to be selected appropriately. Thus, the value of
conditional probabilityE(Y jx1; � � � ; xn) is found.

Based on the 24 projects’ data, we estimated coefficients
bi by means of step-wise selection and created a logistic
reduction model. As a result, two variablesQspec andQorg

were selected as significant.
Deviance was shown to be 19.978 and the degree of free-

dom was 13. Therefore, the goodness of fit for the model was
shown to be good. Moreover, we checked the significance of
the model by likelihood ratio test. As a result, it was shown
to be somewhat significantp � value = 0:0095(< 0:01).
Thus, the model was shown to be significant with signifi-
cance level 1%.

Using the model for classification and the 24 project data,
whenE > 0:5, the project is classified as Fair and, otherwise,
as Good. Twenty projects out of 24 were predicted correctly
by the model. If we take into account individual project
predicted incorrectly, three projects out of four were Average
projects. Although the proposed model did not completely
predicted, predictions using ourQorg and Qspec metrics
appear to be useful for the field quality of communication
software.

References

[1] L. J. Arthur, Improving Software Quality - An Insider’s Guide to
TQM -, John Wiley & Sons, 1993.

[2] R. G. Ebenau and S. H. Strauss, Software Inspection Process,
McGraw-Hill, 1993.

[3] J. D. Musa, A. Iannino and K. Okumoto, Software Reliability: Mea-
surement, Prediction, Application, McGraw-Hill, 1987.

[4] O. Mizuno, T. Kikuno, Y. Takagi and K. Sakamoto, “Characteri-
zation of Risky Projects based on Project Managers’ Evaluation,”
Accepted to ICSE2000.

[5] V. R. Basili, L. C. Briand and W. L. Melo, “A Validation of Object-
Oriented Metrics as Quality Indicators,” IEEE Trans. on Software
Eng., vol. 22, no.10, pp.751-761, 1996.

[6] R. E. Park, “Software Size Measurement: A Framework for Count-
ing Source Statements”, CMU/SEI-92-TR-20, 1992.


