FAULT-PRONE FILTERING:

DETECTION OF FAULT-PRONE MODULES
USING SPAM FILTERING TECHNIQUE

Osamu Mizuno,
Shiro Tkami, Shuya Nakaichi, and Tohru Kikuno

Graduate School of Information Science and Technology

Osaka University, JAPAN

ESEM 2007 presentation

Osaka Univ.

THIS WORK: AT A GLANCE

Objective: Fault-prone filtering

Development of simple and easy approach to detect fault-
prone modules using generic text discriminator.

Experiment
SPAM filter: CRM114 (generic text discriminator)
Data of fault-proneness from an OSS project (Eclipse)

10-fold cross validation

Result

Achieved good accuracy

ESEM2007 @Madrid, Spain

OVERVIEW

Preliminary

Fault-Prone Filtering

Experiments
10-fold cross validation

Results

Conclusions

ESEM2007 @Madrid, Spain

PRELIMINARY:
FAULT-PRONE MODULES

Fault-prone modules are:

Software modules (a certain unit of source code) which may
include faults.

In this study:
A software module:
Source code of a Java method
Fault-prone module:

Source code of a Java method which seems to include faults
from the information of a bug tracking system.

ESEM2007 @Madrid, Spain

PRELIMINARY:
SPAM E-MAIL FILTERING (1)

Spam e-mail increases year by year.

About 94% of entire e-mail messages are Spam.

Various spam filters have been developed. —_—

Pattern matching based approach causes a rat race between
spammers and developers.

Bayesian classification based approach has been recognized

effective[1].

[1] P. Graham, Hackers and Painters: Big Ideas from the Computer
Age, chapter 8, pp. 121-129, 2004.

ESEM2007 @Madrid, Spain

PRELIMINARY:
SPAM E-MAIL FILTERING (2)

All e-mail messages can be classified into
Spam: undesired e-mail
Ham: desired e-mail

Tokenize and learn both spam and ham e-mail messages as
text data and construct corpuses.

l'L.M Learnlng : 3 Incoming e-mail
| tl:\lVl - 79 i messages are
: i classified into
i spam or ham by
i spam filter.

Probability
to be Spam

ESEM2007 @Madrid, Spain

OVERVIEW

Preliminary

Fault-Prone Filtering

Experiments
10-fold cross validation

Results

Conclusions

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING

All software modules can be classified into
bug-detected (fault-prone: FP)
not-bug-detected (not-fault-prone: NFP)
Tokenize and learn both FP and NFP modules as text data

and construct corpuses

3 Newly developed

i modules are
: i classified into FP
va BERET : i or NFP by the FP

filter.

r. - m— g

.]
g B
.

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
SPAM FILTER: CRMI114

Spam filter: CRM114 (http://crm114.sourceforge.net/)

Generic text discriminator for various purpose
Generation of tokens

A token is a combination of words

3 tokenization approaches: complex, simple, trivial
Classification techniques

Bayesian and Hyper-space distance

4 classifiers with different tokenization and classification
SBPH: Complex tokenization, Bayesian
OSB: Simple tokenization, Bayesian
BAYES: Trivial tokenization, Bayesian
HYPER: Simple tokenization, Hyper-space distance

ESEM2007 @Madrid, Spain

http://crm114.sourceforge.net
http://crm114.sourceforge.net

FAULT-PRONE FILTERING:
TOKENIZATION: TRIVIAL

Trivial tokenization
A token 1s generated from single word.

Conventional approach.

®

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
TOKENIZATION: COMPLEX

Complex tokenization

Tokens are generated from combinations of at most 5 words

@

return x return 2

X
<

x
+
~N
X
+
N

return + return x + 2

~N

return return x + *

return return x 2 *

3 B BY Y
< * *
< I

return x + return + 2 *

return x return x + 2 *

return x

*
*
X x X
+
N
*
N
*
+ I+ f+ 0+ 0+ 0>
N N+
* | * * N
< < *
<

X X x
o
N N
* %

< <

N

return +

Es
*

return

ESEM2007 @Madrid, Spain,

—
—

FAULT-PRONE FILTERING:
TOKENIZATION: SIMPLE

Simple tokenization

Tokens consisted of 2 words are selected from combinations

of 5 words.

¥

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
CLASSIFICATION: BAYESIAN

Calculate probability that a new module(Thew) is in FP

corpus by Bayesian manner

P N 0
FP Corpus (Tre) | [NFP Corpus (Tnee) Tokens (Tnew)

* fact * fact

:
X ++ + sigma
fact ++ fact -- :
s
* 4+ fact x X
B =
EEE— e Jeex |
\ + X ++

++ X

P(TneWITFP)P(TFP)

P(Twp|Thew)
new P(Tyew|Trp)P(Tkp) + P(Thew|Tnep) P(TNEP)

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
CLASSIFICATION: DISTANCE

Calculate distances to both tokens, and choose nearest one

sigma x

Tokens (Thew)

ESEM2007 @Madrid, Spain

OVERVIEW

Preliminary

Fault-Prone Filtering

Experiments
10-fold cross validation
Results

Conclusions

ESEM2007 @Madrid, Spain

EXPERIMENT:
PROCEDURE

Collect FP and NFP modules from
target project.

Sample randomly FP and NFP modules
for 10-fold cross validation from all

collected FP and NFP modules.

To adjust balance of data between FP
and NFP.

Apply 4 classifiers to sampled modules
using 10-fold cross validation.

To see which classifier is appropriate for
Fault-Prone Filtering.

Repository

Cross
validation

ESEM2007 @Madrid, Spain

EXPERIMENT:
COLLECTING FP & NFP MODULES

Track FP modules from CVS log based on an algorithm by
Shiwerski, et. al[2].

[2] J. Sliwerski, et. al., When do changes induce fixes? (on fridays.). In Proc. of
MSR2005, pp. 24-28, 2005.

Search terms such as
“issue”, “problem”, or “#”, and bug id (numbers)
“fixed”, “resolved”, or “removed”
1. e. “Issue #100 is fixed.”
from CVS log, then identify a revision the bug is removed.

Get difference from the previous revision and identify
modified modules.

Track back repository and identify modules that have not
been modified since the bug is reported.

They are FP modules.

ESEM2007 @Madrid, Spain

EXPERIMENT:

MODULE COLLECTION

Extracted bugs from Bugzilla database of Eclipse

Conditions:
Type of faults: Bugs
Status of faults: Resolved, Verified, or Closed
Resolution of faults: Fixed

Severity: Blocker, Critical, Major, or Normal
Total # of faults: 40,627
Result of collection
of faults found in CVSlog: 21,761 (62% of total)
of fault-prone (FP) modules: 65,782
of not-fault-prone (NFP) modules: 1,113,063

For experiments, we randomly chose about 20,000 modules

from both FP and NFP modules.

ESEM2007 @Madrid, Spain

EXPERIMENT:
10-FOLD CROSS VALIDATION

Divide all modules into 10 subsets randomly

Each subset Classiﬁed once.

NFB- FP\- FP NFMFR‘ Training j

va | java
FP Corpus [NFP Corpus Iterate this

procedure
for 10 times

- - . Probabi]ity
Classification FP Filter

—

ESEM2007 @Madrid, Spain

EXPERIMENT:
EVALUATION MEASUREMENTS

Accuracy Result of Predicted
Overall accuracy of prediction | prediction N =P
(N1+NN4) / (N1+N2+N3+N4) NFP | NI N2

Actual

Recall IRiE N3 N4
How much actual FP modules are predicted as FP.

N4 / (N3+N4)

Precision

How much predicted FP modules include actual FP
modules

N4 / (N2+N4)
Type-I error: N2
Type-11 error: N3 (Should be avoided)

ESEM2007 @Madrid, Spain

EXPERIMENT:

RESULT OF CROSS VALIDATION

SBPH

Predicted

NFP

FP

OSB

Predicted

NFP

FP

NFP
Actual

11,073

8,269

Actual

IRT®

27

16,236

NFP

12,249

7,093

FP

2372

16,243

Precision: 0.663 Recall: 0.844

Precision: 0.696 Recall: 0.845

Accuracy: 0.739

Accuracy: 0.708

Predicted Predicted

BAYES HYPER

NFP

FP

NFP

FP

Actual

NFP

10,5614

8,828

R

1,956

17,260

Actual

NFP

14,995

4,347

FP

6,354

12,861

Precision: 0.662 Recall: 0.898
Accuracy: 0.720

Precision: 0.747 Recall: 0.669
Accuracy: 0.722

ESEM2007 @Madrid, Spain

EXPERIMENT:

DISCUSSION

OSB classifier is appropriate for fault-prone filtering.
Both high accuracy and high recall

Others are also good.
Bayesian approaches tend to have high recall.

Distance based approach has high precision.

High recall implies high coverage of faults.

High precision implies high cost-effectiveness of testing.

Balance of recall and precision is required.

Changing threshold of determining FP and NFP enables to

control cost-effectiveness of testing.

ESEM2007 @Madrid, Spain

OVERVIEW

Preliminary

Fault-Prone Filtering

Experiments
10-fold cross validation

Results

Conclusions

ESEM2007 @Madrid, Spain

THREATS TO VALIDITY

Construction validity
Collection of fault-prone modules from OSS projects.

We could not cover all faults in bugzilla database.

Internal validity
10-fold cross validation cannot deal with important
information on fault-prone detection:
Order of creation or modification of modules

Application to time series data is effective

External validity
Generalizability of the results

ESEM2007 @Madrid, Spain

CONCLUSIONS

Summary

We proposed the new approach to detect fault prone
modules
using spam filter.

The case study showed that our approach can predict fault
prone modules with high accuracy.

Future works

Using differences between revisions as an input of Fault-
prone filtering
Seems more reasonable...

Application to industrial data

ESEM2007 @Madrid, Spain

THE END

FAULT-PRONE FILTERING:

DETECTION OF FAULT-PRONE MODULES
USING SPAM FILTERING TECHNIQUE

Thank you!

Any questions?

CONTACT: 0-mizuno@ist.osaka-u.ac.jp

ESEM2007 @Madrid, Spain

mailto:o-mizuno@ist.osaka-u.ac.jp
mailto:o-mizuno@ist.osaka-u.ac.jp

RESULT OF EXPERIMENT
(TRANSITION OF RATES)

All extracted
modules are sorted

by date, and applied

FP filter one by one §0-5

from the oldest one.

Observation

The prediction resuli

become stable after
50,000 modules

classification.

1

0.9

0.8

0.7
0.6

0.4

0.3

0.2

0.1

E
L

Megative

0

—

pqsiq@f

N

;
S O &
S
EMRON

SN
LSS
P FE AP

N

N

old

Methods sorted by date

ESEM2007 @Madrid, Spain

EXPERIMENT:
CHANGING THRESHOLD

Threshold of probability (¢)
A threshold to determine FP or NFP from given probability.

Usually set as 0.5. -@‘}' | W’E’_

0(. {0

Predicted

Changing threshold

contributes accuracy

of the model. NFP FP
] 14,436 4,906

OSB Predicted 4,802 14,413
t=0.5 NFP FP

— NFP 12,249 Precision: 0.746
T 2,979 Recall: 0.750
Accuracy: 0.748

ESEM2007 @Madrid, Spain

RELATED WORKS

Much research has been done so far.
Logistic regression
CART
Bayesian classification

and more.

Most of them use software metrics
McCabe, Halstead, Object-oriented, and so on.

Intuitively speaking, our approach uses a new metric,
“frequency of tokens”.

ESEM2007 @Madrid, Spain

EXPERIMENT:
CHANGING THRESHOLD

Predicted

NFP

191P

Actual

732

1n1P 297

Precision: 0.691
Recall: 0.691
Accuracy: 0.702

ESEM2007 @Madrid, Spain

EXPERIMENT:
TARGET PROJECT

Target: argoUML project
Written in Java

“Methods” in Java classes are considered as modules

Large CVS repository (about 900MB)

Faults are recorded precisely

ESEM2007 @Madrid, Spain

EXPERIMENT:
COLLECTING FP & NFP MODULES

Track FP modules from CVS log based on an algorithm by
Shiwerski, et. al[2].

[2] J. Sliwerski, et. al., When do changes induce fixes? (on fridays.). In Proc. of
MSR2005, pp. 24-28, 2005.

Search terms such as “issue”, “problem”, “#”, and bug id as
well as “fixed”, “resolved”, or “removed” from CVS log, then
identify a revision the bug is removed.

Get difference from the previous revision and identify
modified modules.

Track back repository and identify modules that have not
been modified since the bug is reported.

They are FP modules.

ESEM2007 @Madrid, Spain

EXPERIMENT:

MODULE COLLECTION

Extracted bugs from bugziﬂa database of argoUML

Conditions:

Type of faults: Bugs
Status of faults: Resolved, Verified, or Closed

Resolution of faults: Fixed

Severity: Blocker, Critical, Major, or Normal

Total # of faults: 1,058
Result of collection
of faults found in CVSlog: 396 (37% of total)
of fault-prone(FP) modules: 962
of not-fault-prone(NFP) modules: 331,488

For experiments, we randomly chose 1,029 modules from

331,488 modules.

ESEM2007 @Madrid, Spain

EXPERIMENT:
EVALUATION MEASUREMENTS

Result of Predicted
prediction NFP FP

Accuracy NFP N1 N2

Overall accuracy of prediction Actual FP N3 N4

(N1+N4) / (N1+N2+N3+N4)
Recall

How much actual FP modules are predicted as FP.
N3 / (N3+N4)

Precision

How much predicted FP modules include actual FP

modules

N2 / (N2+N4)

ESEM2007 @Madrid, Spain

EXPERIMENT:

RESULT OF CROSS VALIDATION

Predicted

NFP

J0]P

Predicted

NFP IR

Actual

601

428

R

189

773

Actual

546

483

1P

156

806

Precision: 0.643 Recall: 0.803

Accuracy: 0.690

Precision: 0.625 Recall: 0.838
Accuracy: 0.674

Predicted

NFP

FP

Predicted

NFP

HR

Actual

236

793

1D

29

933

Actual

786

243

5

352

610

Precision: 0.540 Recall: 0.970
Accuracy: 0.687

Precision: 0.715 Recall: 0.634
Accuracy: 0.701

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
FAULT-PRONE TRAINING

Source code (mrp)

public int fact(int x) {
return (x<=1?1:x*fact(++x));

}
Tokens (Tre)

public int
public fact
public x
int fact

int int Training

++

FP Corpus

X
fact

Source code (mnep)

public int fact(int x) {
return (x<=1?1:x*fact(--x));

}
Tokens (Tnep)

public int
public fact
public x
int fact

Training int int

NFP Corpus

ESEM2007 @Madrid, Spain

FAULT-PRONE FILTERING:
FAULT-PRONE CALCULATION

Source code (Mnew)

public int sigma(int x) {
return (x<=070:x+sigma(++x));

}
Tokens (Trp) Tokens (Tnew) Tokens (Tnrep)

public int Myew 18 predicted as FP
hlic % because Trp has more
e similarity than Txrp.
int int
. i E.E
Probability:
FP 0.52
i Predicted:
FP

sigma ++
sigma x

ESEM2007 @Madrid, Spain

TRAINING ONLY ERRORS
PROCEDURE

s 1 memasgn, |

In Spam filtering: EE T &

Apply e-mail messages to
spam filter in order of arrival.

o

Only misclassified e-mail

L e i Py trarie e s M

messages are trained in I —
corpuses.

You may do this procedure
in daily e-mail assorting.
In Fault-prone filtering:

Apply software modules to fault-prone filter in order of
construction and modification.

Only misclassified modules are trained in corpuses.

ESEM2007 @Madrid, Spain

RESULT OF CROSS
VALIDATION

Result for Eclipse BIRT plugin

10-fold cross validation

Cross Validation Predicted $
OSE NFP FP

NEP | 70369] 16011} & Recall: 0786
FP 2,039| 7,501 ¢

Actual

Recall is important for quality assurance.

¢ Precision implies the cost for finding FP
modules.
Recall is rather high, and is rather low.

39 ESEM2007 @Madrid, Spain

TRAINING ONLY ERRORS
PROCEDURE

ESEM2007 @Madrid, Spain

TRAINING ONLY ERRORS
PROCEDURE

Training

Predicted:
N

ESEM2007 @Madrid, Spain

PROCEDURE OF EXPERIMENT

Two experiments with different thresholds of probability
(trp) to determine FP and NFP.

Changing trp may achieve higher recall

Experiment 1:
TOE with OSB classifier, tpp=0.5

Experiment 2:
TOE with OSB classifier, trp=0.25

Predict more modules as FP than Experiment 1

ESEM2007 @Madrid, Spain

RESULT OF EXPERIMENT (0SB, Trr
- 0.25)

Comparison with

threshold = 0.50

Precision becomes

lower.

Only 1/4 of FP _
predicted modules . ioh

hits actual faulty ; AR

fratsernegative
A I |
———— i

modules. i
|

& O O ®
\) \) QQ 00

|
Recall becomes much & L
. S &L S
hlgher. NPT WG
Methods sorted by date

83% of actual faulty .
TOE - final Predicted

modules can be OSB NEP P

Recall: 0.83
detected. NFP | 930218] 182,845

FP 10,592| 55,190 Accuracy: 0 8:
43 ESEM2007 @Madrid, Spain

Actual

