
A Straightforward Approach to Effort Estimation for Updating Programs
in Object-Oriented Prototyping Development

Satoru Uehara, Osamu Mizuno and Tohru Kikuno
Department of Informatics and Mathematical Science,

Graduate School of Engineering Science, Osaka University, Japan
fs-uehara, o-mizuno, kikuno g@ics.es.osaka-u.ac.jp

Abstract

In this paper we discuss estimation of efforts needed to
update programs according to a given requirement change.
In the Object-Oriented prototyping development(shortly the
OO prototyping), the requirement changes occur frequently
and regularly. Thus a simple and fast estimation of efforts is
strongly required by both developers and managers. How-
ever, existing estimation methods cannot be applied to the
OO prototyping.

Therefore we will try to propose a straightforward ap-
proach to effort estimation, which reflects the specific prop-
erties of the OO prototyping. First, we analyze the following
characteristics of the OO prototyping: (1) updating activ-
ities consist of creation, deletion and modification, (2) the
target to be updated has four kinds of types(void type, basic
type, library type and custom type) and (3) the degree of
information hiding is classified into private, protected and
public.

Then, we present a new formulaE(P; �) to calculate the
efforts needed to update a programP according to a set
of requirement changes�. The formulaE(P; �) includes
weighting parameters:wupd, wtype andwinf-h according
to the characteristics (1), (2) and (3), respectively. Finally,
we conduct experimental evaluations by applying the for-
mulaE(P; �) to actual project data in a certain company.
The evaluation results prove statistically to some extent the
validity of the proposed approach.

1 Introduction

For the software development, a lot of development
paradigm has been proposed. Among them, the Object-
Oriented(OO) development, shortly the OO development,
has such high capability that transforms the real complex
things into software products using the concept of object.
The environments of development of software products in

the OO language such as Smalltalk, C++ and JAVA have
been provided, and various techniques for the OO devel-
opment have been proposed[3, 12]. As a result, the OO
development has been widely used in industries.

It is also said that the OO development is reasonable and
natural to be combined with rapid prototyping[10, 13]. Be-
cause the OO paradigm makes it easy to understand the
system structure and to reuse the previous components of
other systems. We call the rapid prototyping combined with
the OO development as the Object-Oriented prototyping de-
velopment(shortly, the OO prototyping).

In the OO prototyping, it is very important from the man-
agement point of view to estimate the cost for updating
needed by each requirement change. Since the requirement
changes are issued frequently from the customers, the de-
velopers have to update or revise so often their design or
program code to prepare a new version for new requirement.

Based on an accurate estimation of successive updating
activity, the developers can achieve not only high produc-
tivity but also high quality of the program code[11]. So
managers have to know how much their updating activities
are needed. In this paper we try to estimate the cost for
updating activities using the only data that can be obtained
before coding activities start.

Although there are many models and methods for cost
estimation in software development, such as COCOMO
model[2] and the function point method[1], there are lit-
tle methods which take the property of the OO development
into account. Furthermore, since the existing methods need
a lot of preparation with respect to customization of meth-
ods to the environments, it is difficult to apply in such a
small development that must be done under the restrictive
cost limitations.

Our objective is to propose a straightforward approach to
estimate efforts for updating programs in the OO prototyping
development. In other words, we aim to develop an intuitive
estimation method which is easily and cheaply applicable
to the real development environment. In the method, we

present a formulaE(P; �) for the effort estimation whereP
is a certain version of program to be updated and� is a set of
requirement changes. TheE(P; �) is calculated as the sum
of scores for all activities included in updating.

In order to define the effortsE(P; �), we have analyzed
the activities for updating a program. First, we clarify the
following three viewpoints: (1) the kind of updating activi-
ties, (2) the types of targets to be updated, and (3) the degree
of information hiding. Then we define the formulaE(P; �)
using three weighting parameters:wupd, wtype andwinf-h
introduced to consider (1), (2) and (3), respectively.

Finally we perform experimental evaluation of our pro-
posed method. We apply the formulaE(P; �) to two actual
project data in a certain company. The statistical analysis on
the results of these experiments shows to a certain extent the
validity of our proposed method.

The rest of this paper is organized as follows: Section 2
shows an outline of our work. The key idea of our study
is explained in Section 3. The proposed cost estimating
method is shown in Section 4, and sample values for weight-
ing parameters are given in Section 5. Section 6 shows two
experiments for evaluation. Finally Section 7 concludes this
paper.

2 Effort Estimation for Prototyping

2.1 Prototyping Development

Figure 1 shows an outline of typical prototyping
process[10]. Generally speaking, the prototyping devel-
opment process consists of the rapid interactions between
customers and developers. One of specific characteristics of
the prototyping is that any complete or fixed specifications
do not exist during the development. The developers design
and implement the product based on the customers’ require-
ments, and deliver the prototype of program to the customers.
Then the customers try to test the prototype, and return the
changes of requirements to the developers. The development
is iterated until the customers satisfy the program.

Generally speaking, it is very reasonable and natural
to combine the prototyping development and the object-
oriented development. Since the object-oriented paradigm
makes it easy to understand the system structure and reuse the
previous components of other systems, the developers can
deliver the product rapidly using the advantages of object-
oriented development. This kind of speed-up provides a
good advantage to prototyping development.

In the afterwards, we call the prototyping development
combined with the Object-Oriented development as the
Object-Oriented prototyping development(shortly, the OO
prototyping).

V1

Initial

Requirements

1st

Development

Design &

Implementation

Test

2nd

Development

Changes in

Requirements

Test

Design &

Implementation

TestTest
V2

n th

Development

Changes in

Requirements

Design &

Implementation

TestTest
Vn

Customer Developer

Final Program Vn

Figure 1. Development process

2.2 Our Objective

Our objective is to estimate the efforts for updating pro-
grams in the OO prototyping development. Since the re-
quirement changes occur frequently and regularly, the cost
estimation for updating activities should also be done very
fast and be easy to apply. Although the accurate cost estima-
tion helps increasing quality and productivity, the developers
in the industry really want to use such an estimating method
that is intuitively constructed and is easy to apply.

We aim to develop an estimation method considering the
following properties from the practical point of view: (1)
intuitive calculation: the way of estimation is intuitive for
developers or managers, (2) quick calculation: the developer
and manager can obtain the result of estimation immediately,
and (3) easy calculation: the estimation method is easy to
apply in the actual development environment.

2.3 Related Works

The traditional model such as COCOMO[2] is one of
good solutions for cost estimation in general software de-
velopment. However, our objective mentioned in subsection
2.2 is slightly different from that of the COCOMO. Since
the COCOMO is a regression curve based model and aims
to accurate estimate, it is difficult for general developers to
understand and apply it.

On the other hand, Kusumoto et al. developed a simulator
to estimate the efforts and faults of the software project[7].

However, their simulator was targeted to the standard wa-
terfall model, so it is hard to apply the simulator to the
prototyping development.

Our proposed method(to be defined in Section 4) is based
on the score given to each fundamental component according
to analysis of some characteristics of the OO programs. So it
is very similar to the function point method[1] in that sense.
However, the function point method is not easy to apply the
OO development directly, since the function point method
must deal with the number of inputs/outputs or the number
of screens.

Therefore we have to establish a new straightforward(that
is, intuitive, quick and easy) method to estimate the efforts
for the object-oriented prototyping development.

3 Three Essential Characteristics

3.1 Updating Activities

In the OO prototyping development, the target to be up-
dated could be classes, attributes in classes, or methods in
classes. On the other hand, the activities for updating them
are classified into three fundamental operations:

1) Creation: new creation of the target(that is, a class, an
attribute in a class and method in a class).

2) Deletion: deletion of the existing target(that is, the
existing class, the existing attribute or the existing
method).

3) Modification: modification to the existing target.

Any modification can be expressed by one of three operations
or the combination of them. Forexample, consider a case that
an attribute of a class is newly created. Then the operation is
expressed as creation. Next, consider a case that a parameter
of a method is added. Then a sequence of the operations
can be considered: an existing method is deleted and a new
method with a new parameter is created. Thus it is expressed
as combination of creation and deletion.

In the formulas for efforts estimation in Section 4, we
distinguish them, and assign distinct score to each operation.

3.2 Types of Target to be Updated

Generally, the target(that is, the attribute or the method
in a class in this subsection) to be updated has a type, and
the effort to update it varies with its type. The types are
categorized as follows:

1) Void type: Void type is a type which has no return value.
In C++ and JAVA,void is an example.

2) Basic type: Basic type is a type which is originally
installed in the OO language. In C++ and JAVA,int
andchar are examples.

3) Library type: Library type is a type which is defined in
the class library. The classes in Microsoft Foundation
Classes(MFC) are examples.

4) Custom type: Custom type is a type which is defined in
the developing program.

In the formulas for efforts estimation, we distinguish these
types and assign distinct score to each type.

3.3 Degree of Information Hiding

The Object-Oriented paradigm has several useful proper-
ties for a large scale software development. Among them,
encapsulation is one of the most important properties in the
OO paradigm. The degree of information hiding clearly af-
fects the updating efforts, since the scope of variables varies
according to it. The following summarizes information hid-
ing in C++ and JAVA:

1) private: the attribute/method in a class cannot be re-
ferred by any other classes.

2) protected: the attribute/method in a class cannot be
referred by any other classes except for its child class.

3) public: the attribute/method in a class can be referred
and used by other classes.

4 New Formula for Effort Estimation

4.1 A New Formula

Based on the classification in Section 3, we introduce new
formula to calculate the effort needed for updating of the OO
programs.

Assume thatP is a program to be updated according to
requirement changes�. In more precise,� is a set ofn
requirement changesR1; � � � ; Rn. ThenP 0 is a resultant
program that is obtained fromP by executing necessary
operations specified inRi(1 � i � n). In this paper, we
propose the following formula to estimate the efforts for
updating programP :

E(P; �) =

nX

i=1

Erequirement(Ri)

=

nX

i=1

mX

j=1

Eclass(Cj)

=

nX

i=1

mX

j=1

(

pX

k=1

Eattribute(Ak) +

qX

l=1

Emethod(Ml))

Intuitively speaking, according to requirement changeRi,
a classCj is updated. In more detail, an attributeAk in the
classCj andMl in the classCj are updated. We will explain
the definition ofE’s in the successive sections.

4.2 Efforts for Updating

1) Efforts to meet a requirement changeR

Assume thatm classesC1; � � � ; Cm are updated for the
requirement changeR. The formula to estimate the
efforts for requirement changeR is defined as follows:

Erequirement(R) =

mX

j=1

Eclass(Cj) (1)

2) Efforts to update a classC

Assume that updating activity of a classC consists
of updating p attributesA1; � � � ; Ap and q methods
M1; � � � ;Mq. The formula to estimate the efforts for
updating the classC is defined as follows:

Eclass(C)

=

pX

k=1

Eattribute(Ak) +

qX

l=1

Emethod(Ml) (2)

3) Effort to update a methodM

Assume that a methodM is updated. The formula to
estimate the efforts for this update is defined as follows:

Emethod(M)

= �� wupd � wtype � winf-h
�(1+WCC(M) +WCM(M) +WPM(M))

(3)

where variables�, wupd, wtype, winf-h are constants
to represent characteristics in Section 3 andWCC,
WCM , WPM are fundamental OO metrics to be de-
fined in the next subsection. The semantics of these
variables are summarized as follows:

a) �: a basic score for updating a method.

b) wupd: a weight representing the difference in the
difficulty caused by the kinds of updating activi-
ties(see subsection 3.1).

c) wtype: a weight representing the difference in the
difficulty caused by the type of return value(see
subsection 3.2).

d) winf-h: a weight representing the difference in
the difficulty caused by the degree of information
hiding(see subsection 3.3).

4) Efforts to update an attributeA

Assume that an attributeA is updated. The formula
to estimate the efforts for this updating is defined as
follows:

Eattribute(A)

= � � wupd � wtype � winf-h (4)

The semantics of variables are summarized as follows:

a) �: a basic score for updating an attribute.

b) wupd: a weight representing the difference in the
difficulty caused by the kind of updating activi-
ties(see subsection 3.1).

c) wtype: a weight representing the difference in
the difficulty caused by the type of attribute(see
subsection 3.2).

d) winf-h: a weight representing the difference in
the difficulty caused by the degree of information
hiding(see subsection 3.3).

When we apply proposed formula to actual development,
we have to determine the values of�,wupd,wtype,winf-h in
formula (3) and�, wupd, wtype, winf-h in formula (4). The
sample values of these variables will be shown in subsection
5.2.

4.3 Fundamental Metrics

Until now, although various OO metrics have been
suggested[4, 5, 6, 8, 9], most of them are for a class, not
for a method. So, we suggest simple new metricsWCC,
WCM ,WPM which indicate complexity of a method.

1) WCC(Weighted Coupling Classes)

Assume that a methodM includes n classes
C1; C2; � � � ; Cn which are referred inM . We intro-
duce the weightwCi for a classCi, and then define
WCC as follows:

WCC(M) =

nX

i=1

wCi

In fact, the formula ofWCC is a part of the definition
of existing OO metricsCBO[5].

2) WCM (Weighted Coupling Members)

Assume that a methodM refers n attributes
A1; A2; � � � ; An which are defined in a classC. We
introduce the weightwAi for an attributeAi, and then
defineWCM as follows:

WCM (M) =

nX

i=1

wAi

3) WPM (Weighted Parameters of Method)

Assume that a methodM includes n parameters
P1; P2; � � � ; Pn. We introduce the weightwPi for a
parameterPi, and then defineWPM as follows:

WPM(M) =

nX

i=1

wPi

5 Case Study

5.1 Parameters to be Calculated

When a requirement change occurs, the developers in the
first place decide which parts of the existing program are to
be updated. The decision is performed based on the anal-
ysis results of various Object-Oriented design documents.
Although they never know how many lines of codes are to
be updated, they can get the following data (1)-(3) from
the analysis. The data give the basis for the evaluation of
E(P; �).

(1) Classes to be updated (that is, classesC1; � � � ; Cm in
formula (1))

(2) Attributes to be updated in each classCi(that is, at-
tributesA1; � � � ; Ap in formula (2))

2-1) The kind of updating activity

2-2) The type of the attribute

2-3) The degree of information hiding

(3) Methods to be updated in each classCi(that is, methods
M1; � � � ;Mq in formula (2))

3-1) The kind of updating activity

3-2) The type of the method

3-3) The degree of information hiding

3-4) Concerning the metricsWCC, WCM , WPM ,
the followings are defined with respect to the ex-
ternal reference:

3-4-1) The number of parameters and their types

3-4-2) The number of references to external classes
and their types

3-4-3) The number of references to attributes in the
classCi and their types

By collecting above information, we can apply the pro-
posed effort estimation to the project.

5.2 Sample Values for Weight

Here, we determine the values of weights explained in
subsection 4.2. The values are shown in Table 1. These
values of weights are obtained by means of questionnaires
to the developers in a certain company. Since these weights
are not determined by formal way, we have to evaluate the
validity of values by some experiments in Section 6.

Table 1(a) shows values ofwupd, wtype, winf-h for at-
tributeAi. In this case we set basic score� = 1:0. Next
Table 1(b) shows values ofwupd, wtype, winf-h for method
Mi. In this case we set basic score� = 1:0. Then Table 1(c)
shows values ofwC, wA, wP for software metrics.

Table 1. Sample weight

Creation Deletion Modifi.
1.0 0.2 N/A

Basic Library Custom
1.0 1.1 1.2

Private Protected Public
1.0 1.0 1.0

Creation Deletion Modifi.
1.0 0.2 0.8

Void Basic Library Custom
1.0 1.0 1.2 1.5

Private Protected Public
0.8 0.8 1.0

Basic Library Custom
wC 0.01 0.01 0.01
wA 0.01 0.01 0.01
wP 0.02 0.03 0.03

wupd

wtype

winf-h

(c) Metrics WCC, WCM, WPM

(b) Method (Basic score β = 2.0)

(a) Attribute (Basic score α = 1.0)

wupd

wtype

winf-h

6 Experimental Evaluation

In order to evaluate the validity of proposed method from
two distinct aspects, we have two experiments based on dif-
ferent data sets. In Experiment 1, we use a set of JAVA
programs. We evaluate the correlation between the effort
obtained by proposed method and actual one for each up-
dating activity. Next, in Experiment 2, we use a set of C++
programs. Then we evaluate whether the effort obtained
by proposed method for each class reflects the difficulty of
class, or not.

6.1 Experiment 1

6.1.1 Collected JAVA Programs

In the first experiment, the target project is a development
of application that shows graphical images stored in Object-
Oriented database. The program is written in JAVA, and it
can run on WWW browser. The development was performed
according to the OMT[12], and 10 versions of programs were
successively developed.

Table 2 shows data which are collected from the project.
In the tableVi(i = 1; 2; � � � ;10) denotes theith version,
of classes denotes the number of classes included inVi.
The value ofLOC implies the lines of code excluding the
comments, and the value ofPerson-Daysindicates the efforts
needed to develop each version.

Table 2. Data from JAVA project
Version # of classes LOC Person-Days

V1 157 9197 445
V2 169 25603 98
V3 170 27845 90
V4 187 28677 40
V5 190 28916 76
V6 188 28324 56
V7 188 28524 54
V8 189 28713 42
V9 188 28722 42
V10 189 28737 60

6.1.2 Effort Estimation usingE(P; �)

In this experiment, we will investigate the correlation be-
tween efforts obtained by proposed method and actual ef-
forts. Thus we calculate the updating effortE(P; �) for all
versionsV1; � � � ; V10. The result is summarized in Table 3.

6.1.3 Statistical Analysis

Here we perform the correlation analysis between estimated
effortsE(P; �) in Table 3 and actualPerson-Daysin Table
2. Note that we exclude the data ofV1 from the correlation
analysis. Since our objective is to estimate the efforts for
updating activity, we have to excludeV1 because it is a new
development of programs in the project.

The correlation coefficient is calculated as 0.68. Figure 2
shows the relationship between them.

From the result of analysis, we can say that there is high
correlation between efforts calculated by proposed formula
and actual ones.

Table 3. Efforts estimation for version
Version E(P, σ)

V1 3523.7
V2 1084.7
V3 632.9
V4 528.1
V5 375.5
V6 715.5
V7 209.3
V8 90.0
V9 31.6
V10 22.1

R2 = 0.4579

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Estimated efforts E(P,σ)

A
ct

ua
l E

ffo
rt

s
(P

er
so

n-
D

ay
s)

Figure 2. Actual efforts and E(P; �)

6.2 Experiment 2

6.2.1 Collected C++ Programs

In the second experiment, the target project is a development
of application for a banking related system[14]. The program
was written in C++ on Microsoft Windows 95/98/NT. The
development was also performed according to the OMT, and
has three versionsV1; V2; V3 of program. Table 4 shows data
which are collected from the project.

6.2.2 Effort Estimation for Eclass(C)

In this case, the number of versions is only 3, and is so
small. Thus we take notice of classes rather than versions
and investigate, for each class, the correlation between the
amounts of efforts obtained by proposed method and the
difficulty assigned by interview with the developers.

Thus we select 20 classes, each of which is included in
the first versionV1 and is actually updated inV2 andV3 (We
should note that, by this selection, we delete from the analysis

Table 4. Data from C++ project
Version # of classes LOC Person-Days

V1 43 6295 60
V2 53 7765 39
V3 63 8925 30

all classes that are inV1 but are not updated afterwards). Then
we calculate the updating effortEclass(Ci) (See formula (2))
for classesC1; � � � ; C20. The calculated result is shown in
Table 5.

Table 5. Efforts estimation for class
Class E class (C) Class E class (C)

C1 23.5 C11 8.3
C2 41.7 C12 11.0
C3 16.6 C13 8.6
C4 31.7 C14 5.7
C5 9.6 C15 3.3
C6 12.4 C16 5.9
C7 8.6 C17 9.5
C8 5.8 C18 3.0
C9 7.6 C19 4.9
C10 8.4 C20 13.7

6.2.3 Statistical Analysis

First, we had an interview with developers of target project
in Experiment 2, and asked them to rank all the classes in
V1 according to the difficulty to modify. Table 6 shows the
ranking of difficulty for each modified class.

From this table,C1 is the most difficult class to update and
C2 is second.C5 andC6 are the same level. Finally,C20 is
the easiest class.

Then we perform the rank correlation analysis for the data
in Table 5 and Table 6. First, we make a null hypothesisH0:
there is no correlation between the rank of difficulty and the
calculated efforts. As the result of analysis, the Spearman’s
rank correlation coefficient between them was 0.63. This
result indicates that we can reject the null hypothesisH0(The
level of significance was chosen as 0.5%). Hence, we can
say that the proposed weighting formulas can represent the
difficulty of each class with respect to updating at a certain
extent.

Table 6. Rank of difficulty
Class Rank Class Rank

C1 1 C11 11
C2 2 C12 12
C3 3 C13 12
C4 4 C14 14
C5 5 C15 15
C6 5 C16 16
C7 7 C17 17
C8 8 C18 18
C9 9 C19 19
C10 10 C20 20

7 Conclusion

We have proposed a new cost estimation method which
tries to implement intuitive, quick and easy calculation. The
proposed method is designed based on the characteristics
of the OO prototype development. The two experimental
evaluations show that the proposed formulas and the sample
weights have a certain extent of validity.

Our future works include the following:

(1) More considerations on the weight assignment are
needed. Especially, theoretical basement for weight
must be established or at least some empirical data are
needed to validate it.

(2) We have to apply the proposed method to much more
software development projects. If possible, we should
collect practical project data and apply to the collected
data.

References

[1] A. J. Albrecht and J. E. Gaffney: “Software Func-
tion, Source Lines of Code, and Development Effort
Prediction: A Software Science Validation,” IEEE
Transactions of Software Engineering, Vol.9, No.6,
pp.639–648, 1983.

[2] B. W. Boehm: Software Engineering Economics,
Prentice-Hall, 1981.

[3] G. Booch:Object Oriented Analysis and Design With
Applications, The Benjamin/Cummings, 1994.

[4] L. C. Briand, J. W. Daly and J. K. W¨ust: “A Unified
Framework for Coupling Measurement in Object-
Oriented Systems,” IEEE Transactions on Software
Engineering, Vol.25, No.1, pp.91–121, 1999.

[5] S. R. Chidamber and C. F. Kemerer: “A Metrics
Suite for Object Oriented Design”, IEEE Transactions
on Software Engineering, Vol.20, No.6, pp.476–493,
1994.

[6] E. M. Kim: “Program Complexity Metric and Safety
VerificationMethod for Object-oriented Software De-
velopment,” PhD. Dissertation, Osaka University,
January, 1997.

[7] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,
Y. Takagi and K. Sakamoto: “A New Project Simula-
tor Based on Generalized Stochastic Petri-Net,” Proc.
19th International Conference on Software Engineer-
ing, pp.293–303, 1997.

[8] W. Li and S. Henry: “Object-oriented Metrics That
Predict Maintainability,” Journal of Systems and Soft-
ware, Vol.23, pp.111–122, 1993.

[9] M. Lorenz and J. Kidd:Object Oriented Software
Metrics, Prentice Hall, 1994.

[10] J. Martin: Rapid Application Development, Macmil-
lan Publishing Company, 1991.

[11] O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi and K.
Sakamoto : “Analyzing Effects of Cost Estimation
Accuracy on Quality and Productivity,” Proc. of 20th
International Conference on Software Engineering,
pp.410–419, 1998.

[12] J. Rumbaugh:Object-Oriented Modeling and De-
sign, Prentice Hall, 1991.

[13] I. Sommerville: Software Engineering, Addison-
Wesley, 1992.

[14] S. Uehara, O. Mizuno, Y. Itou and T. Kikuno: “An
MVC-based analysis of object-oriented system proto-
typing for banking related GUI applications – Corre-
lationship between OO metrics and efforts for require-
ment change –,” Proc. of 4th International Workshop
on Object-Oriented Real-time Dependable Systems,
pp.91–104, 1999.

