
Empirical Evaluation of Review Process Improvement Activities
with respect to Post-Release Failure

Osamu Mizuno and Tohru Kikuno
Graduate School of Engineering Science, Osaka University

o-mizuno@ics.es.osaka-u.ac.jp

Abstract
In this paper, we analyze empirically software quality
changes caused by long-term improvement activities for soft-
ware review process in a certain company.

The objective of our position paper is to present following
three points: (1) the review process improvement activity in-
troduced in a company, (2) confirmation that review improve-
ment is fixed in the company (3) evaluation of the effects with
respect to the software quality changes caused by the review
improvement.

Generally, the effectiveness of review process is evaluated
from the viewpoint of high productivity of the software pro-
cess. But truely speaking, customers really concern about
the quality of final software product rather than productivity.
Thus we analyze the quality of the final product(post-release
failure), and show that the effectiveness of review process
improvement acticities based on the analysis result.

1 Process Improvement
1.1 Overview
In the company to be investigated in this paper, the soft-
ware engineering process group(SEPG) was established in
1992. Since then the SEPG has conducted two main process
improvement activities as follows: establishment and intro-
duction of the standards for managing the software process,
and improvement of the review process using the software
metrics toward high quality.

At first, the SEPG tried to establish several standards for
managing software project, and to put it into practice from
1993. The main purposes of the standards include guiding
developers in each project to create the well-formed plan and
managers to conduct the project successfully according to a
well-formed plan. It is believed (without any proof) in the
company that the well-formed plan will derive the accurate
estimation for the project cost. Furthermore, it is also be-
lieved that the accurate cost estimation will lead the project
to the high quality of the product and high productivity of
development team. We have already applied the statistical
analysis to this improvement activity and shown the correct-
ness of these facts by the test of statistical hypothesis(t-test)
with a level of significance 5% in [5].

Next, the SEPG has extensively engaged in the improvement

of review process. Generally, the cost of removing faults in
the later development phases, such as debug or test phase
becomes higher than that in the earlier phase such as design
review or coding review phase. So it is strongly recommend-
ed to remove faults in the earlier phase. Concerning this
fact, the number of faults detected in the review activity is
believed to be greater by increasing the amount of review
activity. Based on the similar experience and knowledge as
mentioned above, the SEPG started the improvement of re-
view process in 1995. The key point of the improvement
is implementing effective review process by increasing the
amount of efforts for review(especially, code review) and by
introducing good guidelines. We will discuss only the second
review process improvement in this paper.

1.2 Review process improvement
As mentioned before, reviews include the document review
in the design activity and the code review in the coding ac-
tivity. Generally, it is difficult to derive concrete guidelines
or numerical target values for the document review[2, 4]. On
the other hand, it is relatively easy to derive them for the code
review. The situation is also true for the SEPG’s activities,
as shown in the past analysis result of the review’s effect[7].

Based on the analysis result of the past project data, the SEPG
has derived the following guidelinesG1–G6 for the review
activities:

G1 At least the 15% of the total efforts for design and coding
activities should be assigned to reviews(the document
review and the code review).

G2 Reviewers must report the progress using the standard
review form at regular intervals.

G3 In the design review, the documents should be distribut-
ed to all the experts in the company, and then review re-
sults should be returned to developers via manager(This
design review is called peer review[6]).

G4 The coding review should be performed by two or three
people, including one person who wrote the code.

G5 The review coverage rate for the code review should be
about 200 lines of code per hour.

G6 All new codes and changed codes should be reviewed.
(Concerning reuse of old codes, reviews are not neces-
sary required.)

Among the guidelines above,G1 andG2 are general re-
quirements for reviews(including both the document review
and the code review),G3 is specific for the design review,
andG4,G5 andG6 are only for the code review. As for the
G1, it is difficult to determine the criteria for controlling the
review activity.

For example, the number of residual faults estimated by the
capture-recapture model is used in [1] as a criteria. However,
taking our previous work[7] into consideration, we adopt the
numerical value of the review effort as a criteria. The criteria
15% of total effort is also shown in [3].

Before the review process improvement began, the same ac-
tivities as the guidelineG2,G3 andG4 were required to be
performed in the review. However, since the guidelines were
not yet established, the review did not work effectively in the
practical developments. Actually the average review effort
was less than 10% of the total design efforts. This value 10%
is not sufficient according to the experience in the company.

Then, the SEPG started the improvement of review process
in 1995 according to these guidelines. Intuitively speaking,
recently these guidelines have been followed in the company
and no serious failure reports reach to the SEPG. However
any formal or statistical discussions on the efforts by the
review process improvement are not yet done. So, we try to
analyze empirically its effectiveness using actual 23 project
data.

2 Fixing Process Improvement
2.1 Software metrics and assertion
Figure 1 shows a simplified process model and a part of
fundamental data set collected at each phase of development.

Debug & Test Phase Monitoring Phase

- Efforts needed for
 debug & test phase

- No. of faults detected
 by debug & test

- No. of faults detected
 after shipping

- Seriousness
 of failures detected

Design Phase

- Efforts needed
 for design phase

- No. of faults detected
 by review

Figure 1: Fundamental data set

As for the efforts spent in the development process, the SEPG
collects data of several fundamental metrics. The metrics
Edesign andEreview represent the total efforts spent for all
activities in design phase and all review activities in design
phase, respectively. From the debug & test phase, the SEPG
collects data of fundamental metricEtest . The metricEtest

represents the total efforts spent for all activities in the debug
& test phase.

In order to evaluate the amount of efforts, we define a metric

 as follows:

review=design =
Ereview

Edesign +Ereview

� 100

The metric
review=design stands for the ratio of all review
effort to design and coding efforts.

We confirm that the review improvement activities are accept-
ed in the development teams. In other words, we investigate
the direct changes in the software development process. In
more detail, we analyze the changes in the amounts of the
effort for review activities. As mentioned in subsection 1.2,
the guidelineG1 requires at least 15% of the total efforts on
design and coding activities should be spent on review. Thus,
we can expect that the effort of review activity is increased
in the projects guided by the SEPG as the direct effect by
the guidelineG1. Based on these considerations, we try to
prove the following assertionA1 by statistical analysis:

A1 The ratio of effort for review on the total efforts for
design and coding activities increases in the projects
guided by the SEPG.

2.2 Ratio of review effort

First, concerning the assertionA1, we try to investigate how
the review improvement activities by the SEPG are accepted
by the organizations. Here in order to evaluate the process
improvement activities, we focus on the project groups rather
than individual projects. There exist three project groups:
Vending System, Checking System and Retail System.

As mentioned in Section 1, the guidelineG1 recommends
that
review=design (the ratio of review effort to effort in de-
sign phase) should be greater than 15%. According to this
guideline, we define a project with
review=design � 15%
to be a faithful project. Table 1 shows the mean values of
software metric
review=design for three project groups.

Table 1: Comparison of ratio of review effort

Vending systemVending system
(1992-1994)(1992-1994)

8.9%8.9%ggreview/designreview/design

Retail systemRetail system
(1995-1996)(1995-1996)

20.6%20.6%

Checking systemChecking system
(1992-1996)(1992-1996)

11.8%11.8%

In Table 1, the project group Retail System seems to suc-
ceed in following the guidelineG1 faithfully. However,
the project group Checking System seems to fail to fol-
low the guidelineG1. Thus, we execute the test of sta-
tistical hypothesis(t-test) with 5% level of significance to

review=design ’s of Retail System and Checking System. As
a result, we can prove that there exists a significant difference
between them.

We discuss the characteristics of organizations to show the
reason why there exists a distinct difference between Retail
System and Checking System. The project group Checking
System started in 1992 and the members of the organiza-
tion for Checking System had already established their own
ways for software development when the SEPG started the
review process improvement. Thus it is hard for most of them
to change the process instantly according to the guidelines

specified by the SEPG group. On the contrary, the project
group Retail System started after the SEPG had determined
the guidelines. Thus the members of the organization for Re-
tail System tend to accept the guideline without difficulties.

As mentioned above, we should discuss the properties of
organizations rather than that of individual projects. Thus for
convenience we define a set of faithful projects as a faithful
project group. According to this definition, we refer

Retail System (1995–1996): faithful project group

Checking System (1992–1996): unfaithful project group

in the following. To tell the truth, Checking System includes
four faithful projects. But, it is also clear the organization that
developed Checking System failed to follow the guideline
G1. Thus we interpret that the organization happened to
have the result
 � 15% for some projects in Checking
System, and assume that Checking System is an unfaithful
project group. For convenience, we also refer

Vending System (1992–1994): unfaithful project group

since this project group contains only unfaithful projects.

3 Effectiveness Analysis
3.1 Software metrics and assertion
At first, we explain the fundamental metrics related to the
quality collected in the development process shown in Fig-
ure 1. The metricFreview represents the total number of
faults detected by all review activities in design phase. The
metricFtest represents the total number of faults detected in
the debug & test phase. During six months after the code
shipping, the SEPG provides the monitoring phase and col-
lects all data concerning the failures detected by customers,
as shown in Figure 1. We call these failures post-released
failures, and use the metricFmonitor to represent the number
of post-released failures.

Using these data collected from the projects, we define soft-
ware metrics� and � to evaluate the quality of software
product.

(1) Ratio of detected faults (�’s: %)

In order to evaluate the ratio of detected faults in a
specific phase to all the faults detected, we define three
metrics as follows:

�review=total =
Freview

Freview + Ftest + Fmonitor

� 100

�test=total =
Freview

Freview + Ftest + Fmonitor

� 100

�monitor=total =
Freview

Freview + Ftest + Fmonitor

� 100

The metric�review=total stands for the ratio of faults de-
tected in the review to all faults detected, and�test=total
stands for the ratio of faults detected in the debug & test
phases. Finally,�monitor=total stands for the ratio of
post-release failure detected in the monitor phase.

(2) Seriousness of failure (� : level)

For each post-release failure, the maintenance operator
and the SEPG jointly decide the seriousness�. The
values of seriousness� are as follows: destructive,
confusingandmild. The level� =destructivemeans
that the failure can lead to the system down. Thus the
failure must be removed immediately. Then the level
� =confusingmeans that only a part of system may
be down by the failure and other parts may keep work-
ing. Thus it should be removed immediately if possible.
Finally the level� =mild means that the failure never
affects the essential part of the system, and thus it may
be negligible for a while.

We evaluate the effectiveness of review process improvement
quantitatively. Thus, we investigate the changes in the num-
ber of detected faults and the changes in the quality of the
final product. They are the indirect effects, but are the most
essentially expected effects of the review process improve-
ment.

We try to prove the following assertionsA2 andA3 by
statistical analysis:

A2 The number of faults detected by the review increases
in each project of the faithful project group. Similarly,
the number of faults detected in the debug & test phase
decreases.

A3 As a result of the review process improvement, the qual-
ity of the final code is also improved.

3.2 Ratio of detected faults�
Now we investigate the effect of review process improvement
concerning the assertionA2. Table 2 shows the mean values
of software metrics�review=total (the ratio of faults detected
in review phase to all the faults detected),�test=total (the
ratio of faults detected in debug & test phase to all the faults
detected) and�monitor=total (the ratio of post-release failures
to all the faults). In Table 2, we classify the projects into
faithful project group (that is, Retail System) and unfaithful
project group(Vending System and Checking System).

By the test of statistical hypothesis with 5% level of sig-
nificance, all of the values�review=total and�test=total con-
firmed the significant difference between the faithful project
group and the unfaithful project group. Thus, we can say
the correctness of the assertionA2 is confirmed by statistical
analysis.

However, the values of�monitor=total shown in Table 2 seems
to indicate that there are no difference between the ratio of

Table 2: Comparison of ratio of detected faults�

FaithfulFaithful
project groupproject group

78.4%78.4%rrreview/totalreview/total

UnfaithfulUnfaithful
project groupproject group

38.8%38.8%

rrtest/totaltest/total 21.1%21.1% 60.7%60.7%

rrmonitor/totalmonitor/total 0.5%0.5% 0.5%0.5%

post-release failures in faithful and unfaithful projects. Then
we have to perform another analysis to investigate the post-
release failure.

3.3 Post-release failure
As mentioned before, for each post-release failure the SEPG
or the maintenance operator decide the seriousness� and
assign its value to the failure. Table 3 summarizes the total
number of post-release failures and the distributions of�’s
assigned to post-release failures. Because the values of these
metrics are confidential, we cannot publish the values them-
selves in this paper. Thus Table 3 shows only the relative
values by assuming all the values for the unfaithful project
group to be one.

Table 3: Comparison of post-release failures

FaithfulFaithful
project groupproject group

0.550.55
FFmonitormonitor

 # of projects# of projects

UnfaithfulUnfaithful
project groupproject group

11

cc

destructivedestructive

mildmild

confusingconfusing

0.440.44

0.500.50

00

11

11

11

Since the original values of these metrics are so small, we
cannot apply the statistical analysis. However, in Table 3
we can observe some interesting properties. The total num-
ber of post-release failures(Fmonitor /# of projects) of the
faithful project group is smaller than that of the unfaithful
project group. Especially, the number of the failures with
� =destructiveis smaller drastically. Thus we can guess the
correctness of the assertionA3.

4 Conclusion
We have analyzed the effectiveness of the review process
improvement activities by the SEPG during these six years in
a certain company. According to the guidelines determined
by the SEPG, we have investigated the ratio
 of the review
effort to the total effort for design and coding activities. As
a result we found that a newly started project group followed
the guidelines faithfully. Similarly, we have investigated
the ratio� of faults detected in review to the total number
of detected faults. The result showed that the ratio� is
improved drastically in a faithful project group. Finally, we
have confirmed the number of post-release failures during six
months after code release is also decreased by the SEPG’s
process improvement activities. Furthermore, we confirmed
the number of critical failures are also decreased.

Acknowledgements
Authors would like to thank Dr. Shinji Kusumoto of Osaka
University and Mr. Naoki Niihara, Mr. Yasunari Takagi
and Mr. Keishi Sakamoto of OMRON Corporation for their
discussions and advice to our analysis in this paper.

REFERENCES

[1] L. C. Briand, K. E. Emam, B. Freimut and O. Laiten-
berger: “Quantitative evaluation of capture-recapture
models to control software inspections,” Proc. of 8th
Int’l Symposium on Software Reliability Engineering,
pp.234–244, 1997.

[2] R. G. Ebenau and S. H. Strauss:Software Inspection
Process, McGraw-Hill, 1993.

[3] M. E. Fagan: “Advances in software inspections,”
IEEE Trans. on Software Engineering, Vol.12, No.7,
pp.744–751, 1986.

[4] W. S. Humphrey: Managing the Software Process,
Addison Wesley, Reading, MA, 1989.

[5] O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi and
K. Sakamoto: “Analyzing effects of cost estimation
accuracy on quality and productivity,” Proc. of 20th
Int’l Conference on Software Engineering(ICSE’98),
pp.410–419, 1998.

[6] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis
and M. Bush: “Key practice of the capability maturity
model, version 1.1,” Technical Report CMU/SEI-93-
TR-25, Software Engineering Institute, 1993.

[7] Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto, S.
Kusumoto and T. Kikuno: “Analysis of review’s ef-
fectiveness based on software metrics,” Proc. of 6th
Int’l Symposium on Software Reliability Engineer-
ing(ISSRE’95), pp.34–39, 1995.

