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SUMMARY This paper describes a novel approach for detecting fault-
prone modules using a spam filtering technique. Fault-prone module de-
tection in source code is important for the assurance of software quality.
Most previous fault-prone detection approaches have been based on using
software metrics. Such approaches, however, have difficulties in collecting
the metrics and constructing mathematical models based on the metrics.
Because of the increase in the need for spam e-mail detection, the spam
filtering technique has progressed as a convenient and effective technique
for text mining. In our approach, fault-prone modules are detected in such
a way that the source code modules are considered text files and are ap-
plied to the spam filter directly. To show the applicability of our approach,
we conducted experimental applications using source code repositories of
Java based open source developments. The result of experiments shows
that our approach can correctly predict 78% of actual fault-prone modules
as fault-prone.
key words: fault-prone module, prediction, spam filter

1. Introduction

Fault-prone prediction is one of the most mature area of soft-
ware engineering. The prediction of faulty software mod-
ules is important for both the reduction of development cost
and the assurance of software quality. Much research has
been conducted so far [2], [4], [7], [11], [13]–[18], [20], [24].
Most research used some kind of software metrics, such as
program complexity, size of modules, object-oriented met-
rics, etc., and constructed mathematical models to calculate
fault-proneness. This approach is usually based on a hypoth-
esis that the more complex module the more bugs. However,
such a hypothesis is not always true.

We thus tried to break through the conventional fault-
prone prediction by introducing a text-mining technique.
This paper introduces a new idea for fault-prone module
detection. The idea is inspired from a spam e-mail filter-
ing technique. According to Postini Inc.’s report, 94% of
all e-mail messages on the Internet were spam in Novem-
ber 2006 [23]. Such an explosive increase of spam e-mail
messages triggered the development of many spam filtering
techniques [3], [22].

In spam e-mail filtering, incoming e-mail messages are
classified into spam or ham (non-spam) based on the fre-
quency of tokens appearing in e-mail messages. Recently,
since the usefulness of Bayesian theory for spam filtering
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has been acknowledged, most spam filtering tools have im-
plemented this theory. Consequently, the accuracy of spam
detection has been improved drastically.

Spam filters are usually implemented as a generic text
discriminator. We thus tried to apply a generic text discrim-
inator to the fault-prone detection. We call our approach
“fault-prone filtering.” In fault-prone filtering, we consider
a software module as an e-mail message, and assume that
all of the software modules belong to either fault-prone (FP)
modules or not-fault-prone (NFP) modules. After learning
of existing FP and NFP modules, we can classify a new
module into either FP or NFP by applying a spam filter.
One advantage of such a statistical approach is that we do
not have to investigate source code modules in detail. We
do not measure any metrics explicitly, but implicitly our ap-
proach measures only one metric: frequency of tokens found
in the source code.

To validate the usefulness of our approach, we describe
experiments using Java-based open source developments,
such as argoUML and the Eclipse BIRT plugin. In these
experiments, we consider a method in Java class as a mod-
ule. That is, the judgments of FP and NFP were applied
to methods in Java source code. We then performed 10-fold
cross validation to evaluate our approach. The result showed
that the best classifier can classify 78% of actual fault-prone
modules correctly. This result implies that “fault-prone fil-
tering” may be useful for detecting fault-prone modules.

The rest of this paper is organized as follows: Sec-
tion 2 describes work related to this study. The outline of
“fault-prone filtering” is then described in Sect. 3. An ex-
periment to show the effectiveness of our approach is shown
in Sect. 4. Section 5 discusses the result obtained in the ex-
periment and Sect. 6 shows threats to the validity of our re-
search. Finally, Sect. 7 summarizes this study and also ad-
dresses future work.

2. Related Work

2.1 Fault-Prone Prediction

Fault-prone prediction is a mature area in software engineer-
ing with various studies having been done over the past 20
years. From 1999, for example, many studies have been
conducted [2], [4], [7], [11], [13]–[18], [20], [24].

Software metrics related to program attributes such as
lines of code, complexity, frequency of modification, co-
herency, coupling, etc., have been used in many previous
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studies. In those studies, such metrics are considered ex-
planatory variables and fault-proneness is considered an ob-
jective variable. Mathematical models are constructed from
those metrics. The selection of metrics varies according to
studies. For example, studies such as [11], [20], [24] used
NASA’s Metrics Data Program. Object oriented metrics are
used in [4], for example. Some studies used metrics based
on metrics collection tools [2], [7].

Our approach does not use software metrics explic-
itly, but rather, uses the frequency of tokens (combination
of words) in code modules as metrics. To the best of our
knowledge, no work has used the frequency of tokens as
predictors of fault proneness. The calculation of frequency
of tokens is done by a spam filtering tool.

The selection of classification techniques also varies
according to studies. Khoshgoftaar et al. performed a series
of fault-prone prediction studies using various classification
techniques; for example, the classification and regression
trees [18], the tree-based classification with S-PLUS [15],
the Treedisc algorithm [14], the Sprint-Sliq algorithm [16],
and logistic regression [13]. The comparison was sum-
marized in [17]. Logistic regression is a frequently used
technique in fault-prone prediction [4], [7], [13]. Menzies
et al. compared three classification techniques and reported
that the naive Bayesian classifier achieved the best accu-
racy [20].

Our approach adopted a Markov random field for the
classification technique. Since it is an extension of the naive
Bayesian classifier, the Markov random field is expected to
achieve good accuracy.

2.2 Spam E-mail Filtering

Early stages of spam-filtering software were based mainly
on pattern matching using dictionaries of spam-prone words
in e-mail messages. However, dealing with new spam e-
mail messages including novel words is difficult. As a result,
spammers and developers of spam filters were in the rat race.

In 2002, Graham stated that most spam e-mail mes-
sages can be automatically classified by Bayesian classifica-
tion [10]. The merit of Bayesian classification is flexibility
for new spam messages and the user’s corrections. Inspired
by his article, various spam filtering software based on
Bayesian classification have been developed [3], [22]. Since
traditional spam filters such as SpamAssassin [27] also im-
plemented Bayesian techniques, Bayesian classification has
become an essential technique.

CRM114 has been developed by Yerazunis [5] as
an extension of a Bayesian classification-based filtering.
CRM114 has been implemented as a generic text discrimi-
nator with remarkable accuracy in detecting spam messages.

3. Overview of Fault-Prone Filtering

3.1 Fundamental Idea

The basic idea of fault-prone filtering is inspired from spam

e-mail filtering. In spam e-mail filtering, the spam filter first
learns both spam and ham (non-spam) e-mail messages from
a learning data set. Then, an incoming e-mail is classified
into either ham or spam by the spam filter.

This framework is based on the fact that spam e-mail
usually includes particular patterns of words or sentences.
From the viewpoint of source code, a similar situation usu-
ally occurs in faulty software modules. That is, similar faults
may occur in a similar contexts. We thus guessed that faulty
software modules have similar pattern of words or sentences
like spam e-mail messages.

From the viewpoint of effort, conventional fault-prone
detection techniques require a relatively great effort for ap-
plication because they have to measure various metrics. Of
course, metrics are useful for understanding the property
of source code quantitatively. However, measuring met-
rics usually requires extra effort and translating the values of
metrics into meaningful results also requires additional ef-
fort. Thus, easy-to-use techniques that do not require much
effort will be useful in software development.

We then try to apply a spam filter to identification of
fault-prone modules. We named this approach “fault-prone
filtering”. That is, the fault-prone learner first learns both
FP and NFP modules. Then, a new module can be classified
into FP or NFP using the fault-prone classifier. To do so, we
have to prepare spam filtering software and sets of FP and
NFP modules.

Figure 1 shows an overview of Fault-prone Filtering.

Fig. 1 Outline of FP filtering.
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3.2 Classification Techniques

In this study, we used CRM114 spam filtering software [6]
for its versatility and accuracy. Since CRM114 is imple-
mented as a language to classify text files for general pur-
pose, applying source code modules is easy. Furthermore,
the classification techniques implemented in CRM114 are
based mainly on Markov random field model instead of the
naive Bayesian classifier.

In this experiment, we used the following 3 classifica-
tion strategies built in CRM114 to evaluate the effectiveness
of our proposed approach.

1. Sparse Binary Polynomial Hash Markov model
(SBPH)
SBPH is the default classification model used in
CRM114. It is an extension of the Bayesian clas-
sification and maps features in the input text into a
Markov Random Field [5]. In this model, tokens are
constructed from combinations of n words (n-grams)
in a text file. Tokens are then mapped into a Markov
random field to calculate the probability.

2. Orthogonal Sparse Bigrams Markov model (OSB)
OSB is a simplified version of SBPH. It consider to-
kens as combinations of exactly 2 words created in the
SBPH model. This simplification decreases both mem-
ory consumption of learning and time of classification.
Furthermore, it is reported that OSB usually achieves
higher accuracy than SBPH [25].

3. Simple Bayesian model (BAYES)
BAYES is a simplified version of SBPH, since it uses
only single words as tokens. This model is thus con-
sidered to be identical to the classical Bayesian classi-
fication.

As developers of CRM114 stated, those classifiers have
both merits and demerits. To investigate the applicability to
FP filtering, we compare the accuracy of these 3 strategies
when they are applied to FP filtering in the experiment.

The scripts of CRM114 used for learning and classifi-
cation are shown in the Appendix.

3.3 Example of Filtering

Here, we explain briefly how these classifiers works. The
difference among these 3 classifiers are in both tokenization
and classification.

(1) Tokenization

Since SBPH is a base for all techniques, we explain how
SBPH tokenizes input text files. First, words in a source
code module are separated by a lexical analyzer. Then, sep-
arators such as braces, parentheses, colons, and semicolons
are deleted. SBPH then picks up a sequence of 5 words.
Next, SBPH generates combinations of these words by fix-
ing the first word. For example, a sentence “if (x == 1)
return;” is tokenized as shown in Fig. 2 (a).

Fig. 2 Example of tokens for SBPH.

For all words in a source code module, the above pro-
cedure is applied and the tokens are obtained.

In OSB, tokens are extracted from SBPH generated to-
kens so that these tokens include exactly 2 words. Thus, in
the same example as SBPH, tokens are generated as shown
in Fig. 2 (b). By definition, the number of tokens drastically
decreases compared to SBPH.

In BAYES, a single word is considered a token. In this
example, 5 tokens are obtained as follows: if, x, ==, 1,
return.

(2) Classification

Let TFP and TNFP be sets of tokens included in FP and NFP
corpuses, respectively. The probability of fault-proneness is
equivalent to the probability that a given set of tokens Tx

is included in either TFP or TNFP. In SBPH and OSB, the
probability that a new module mnew is faulty, P(TFP |Tmnew ),
with a given set of token Tmnew in a new source code module
mnew is calculated by the following Bayesian formula:

P(Tmnew |TFP)P(TFP)

P(Tmnew |TFP)P(TFP) + P(Tmnew |TNFP)P(TNFP)

Intuitively speaking, this probability denotes that the new
code is classified into FP. According to P(TFP|Tmnew ) and
pre-defined threshold tFP, classification is performed.

3.4 Classification Example

Here, we present a very simple example of how modules are
classified by the OSB. Figures 3 (a) and (b) show examples
of FP and NFP modules, respectively. The module fact()
is intended to calculate a factorial of a given x recursively.
However, implementation in Fig. 3 (a) includes a bug ++x in
line 2 which should be --x.

Assume that FPTrainer trains only these 2 modules.
In this case, bigrams are generated from both modules and
trained as either FP or NFP. The difference between FP and
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Fig. 3 Example code for classification.

Fig. 4 Difference of generated tokens for FP and NFP modules.

Fig. 5 Example of a new module.

NFP tokens is shown in Figs. 4 (a) and (b). All tokens gen-
erated from Fig. 3 are shown in Fig. 6.

In Fig. 4 (a), tokens FPx are trained as characteristic of
FP modules and stored in the FP corpus. Similarly, tokens
NFPx in Fig. 4 (b) are trained as NFP and stored in the NFP
corpus. All other tokens are stored in both corpuses, too.

Next, assume that the new module shown in Fig. 5 is
constructed and has to be classified. After tokenization, we
can obtain the tokens shown in Fig. 6 (c).

Figure 6 shows the contents of the FP and NFP cor-
puses and tokens generated from the new module mnew. We
can see the following from Fig. 6:

• The number of all tokens in Figs. 6 (a), (b), and (c) is
45.
• The number of common tokens between Figs. 6 (a) and

(c) is 14. They are shown as grayed rectangle in
Fig. 6 (a).
• The number of common tokens between Figs. 6 (b) and

(c) is 13. They are shown in the grayed rectangle in
Fig. 6 (b).

For example, we can see that the 37th token of “: ++” in
the new module in Fig. 6 (c) is also found in line 37 of the
FP corpus in Fig. 6 (a), too.

By Bayesian formula, we can get a probability to be
fault-prone for the new module. In this example, P(TFP) =
P(TNFP) = 1/2 since there are only 2 modules trained. As
mentioned before, the number of tokens in both FP and
NFP corpuses is 45. The number of identical tokens be-
tween FP and the new module is 14. The number of iden-

Fig. 6 Tokens generated for NFP, FP, and new modules.

tical tokens between NFP and the new module is 13. Thus,
P(Tmnew |TFP) = 14/45 and P(Tmnew |TNFP) = 13/45. The
probability that the new code is classified as FP is thus cal-
culated as follows:

P(TFP|Tmnew ) =
14
45 × 1

2
14
45 × 1

2 +
13
45 × 1

2

= 0.519.

As a result, a new module in Fig. 5 is classified as FP with
the probability of 0.519. In fact, the new module has a sim-
ilar bug as the FP module in Fig. 3. That is, ++ should be
--.

Our approach is based on the tendency that developers
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often make similar mistakes and thus inject similar bugs. In
other words, there is a pattern of bugs for individual devel-
opers. In this example, mistaking -- for ++ tends to take
place in different modules. Such bugs are difficult to ob-
tain by metrics-based fault-prone predictions. By using the
spam-filtering technique, we try to capture such similar pat-
terns of bugs.

Of course, this is just a trivial example. In a real sit-
uation, many of other tokens also affect classification. The
calculation of probability thus becomes more complex.

4. Experimental Application

To see the effectiveness of the proposed approach, we have
conducted an experiment to evaluate the accuracy of classi-
fication strategies.

4.1 Target Projects

For the experiment, we selected an open source project that
can track faults. For this reason, we selected two projects,
“argoUML project [1]” and “Eclipse BIRT plugin [9]”.

Table 1 shows the context of the target projects. Both
projects are developed in Java language, and revisions are
maintained by a concurrent version control system (cvs).
The source repository of argoUML was prepared for use in
the Mining Challenge in the Mining Software Repository
Workshop in 2006 [8]. As for the Eclipse BIRT plugin, an
archive of the repository was obtained from the official Web
site on the 27th of November, 2006. Fault reports were ob-
tained from the bug database of both projects. The type of
faults is “bugs”, therefore these faults do not include any
enhancements or functional patches. The status of the faults
is either “resolved”, “verified”, or “closed”, and the resolu-
tion of faults is “fixed”. This status means that the collected
faults have already been resolved and fixed and thus this
fixed revision should be included in the entire repository. As
for the Eclipse BIRT, the severity of faults are also specified.
Faults with “blocker”, “critical”, “major”, and “normal” are
collected in this experiment.

4.2 Collecting Fault-Prone Modules

We have to collect both fault-prone (FP) modules and non

Table 1 Target projects.

Name argoUML eclipse BIRT plugin
Language Java Java
Revision control cvs cvs
Type of faults Bugs Bugs
Status of faults Resolved, Resolved,

Verified, Verified,
Closed Closed

Resolution of faults Fixed Fixed
Severity N/A blocker, critical,

major, normal
Priority of faults all all
Total number of faults 1058 4708

fault-prone (NFP) modules from the source code repository
for this research. The collection of such modules seems
easy for a software project which has a bug database such
as an Open Source Software development. However, even
in such an environment, the revision control system and bug
database system are usually separated and thus tracking on
the fault-prone modules requires effort. In the development
of software in companies, the situation becomes more diffi-
cult [17].

We have to extract FP and NFP modules by ourselves.
We assumed that the target project is a Java-based develop-
ment in this study. We also assumed that a module of source
code is a method in Java class. We then extracted FP mod-
ules from source code based on an algorithm by Sliwerski
et al. [26].

The following restriction and assumption exist in this
collection method:

Restriction We seek FP modules by examining the cvs log.
Therefore, faults that do not appear in the cvs log can-
not be considered. That is, the set of FP modules used
in this study is not complete.

Assumption We assume that faults are reported just after
they are injected in the software.

First, we collected the following information from the
bug database of a target project such as Bugzilla.

• FLT : A set of faults found in the bug database.
• fi: Each fault in FLT .
• date( fi): Date in which a fault fi is reported.

Here, we consider the software module Mi as a tuple of
di, mi, and sa

i , where di is the last modified date of Mi, mi is
a source code of Mi, and sa

i is the actual fault status (FP or
NFP) of Mi.

We then start mining a source code repository accord-
ing to the following algorithm to extract fault-prone mod-
ules.

1. For each fault fi, find class files CLFaultFixed in which
the fault has just been fixed by checking all revision
logs.

2. Extract modules MODFaultFixed in classes CLFaultFixed.
3. For each module Mi in MODFaultFixed, let sa

i = FP if Mi

is unmodified since date( fi).
4. Let MODFP = {Mi|sa

i = FP }
5. Extract modules MODAllRev in all revision.
6. For each module M j in MODFP, track back older re-

visions of M j and append older revisions of M j to
MODFPold only if M j has remained unchanged until the
bug is fixed.

7. Let MODNFP = MODAllRev−MODFPold−MODFP. For
each module Mk in MODNFP, let sa

k = NFP.

This algorithm collects fault-prone modules very
strictly. In other words, we collect modules in which faults
are definitely included. Therefore, some modules are not
collected as FP since there is a possibility that the module is
not FP.
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Fig. 7 Collection of FP modules.

An illustrated example of collecting a fault-prone mod-
ule is shown in Fig. 7. In this example, assume that a class
CLFaultFixed has revisions 1.1, 1.2, · · ·, 1.9, and revision logs
are appended when each revision is committed. At first,
a fault f100 is found on the 24th of December, 2006. By
searching all revision logs, assume that the fixed point is
found as revision 1.9 of CLFaultFixed (Shown as (1) in Fig. 7).
Then, MODFaultFixed can be extracted by taking the differ-
ence between revision 1.8 and 1.9 (Shown as (2) in Fig. 7).
For each module in MODFaultFixed, we find modules which
have not been modified since the 24th of December, 2006
by searching revision differences. Here, assume that revi-
sion 1.6 of CLFaultFixed was committed on 20th of December,
2006. Therefore, we have to check all differences between
revision 1.6 and 1.9. Assume that the difference between re-
vision 1.7 and 1.8 includes modification to x() and z(), and
the difference between revision 1.6 and 1.7 includes modi-
fication to z(). Then, we can find that the modification to
y() between 1.8 and 1.9 is the first modification since the
fault f100 was reported, and that the fault f100 is fixed where-
upon y() is modified. This implies that y() is a cause of
fault f100. The modules y() in revision 1.6, 1.7, and 1.8 are
then added to MODFP (Shown as (3) in Fig. 7). On the other
hand, modules such as x() and z() in revision 1.8 are not
included in MODFP, because they are modified between 1.6
and 1.8 for some reason. Of course, they may include the
cause of f100, but the probability is smaller than that of y()
in 1.8. Therefore we do not include x() and z() in revision
1.8 in MODFP.

We implemented a prototype tool named “FPFinder” to
track bugs in the cvs repository. The inputs of FPFinder is a
cvs repository of the target project and a bug report to track
the bugs. The output of FPFinder are sets of FP modules
(MODFP) and NFP modules (MODNFP).

The result of FPFinder is shown in Table 2. The num-
ber of faults found in the cvs log of argoUML is 396. This
number was 37% of the total reported faults in the bug

Table 2 Result of FPFinder for target projects.

Name argoUML eclipse BIRT plugin

# of faults found 396 1973
in cvs log (37% of total) (42% of total)

# of FP modules 1093 9547
# of NFP modules 20219 86770

Table 3 Legend of experimental result.

Predicted
NFP FP

Actual NFP N1 N2
FP N3 N4

database. As for Eclipse BIRT, 1973 faults were found in
the cvs log and this number was 42% of total.

4.3 Application of FPClassifier

We performed a 10-fold cross validation with 3 classifiers
using modules in MODFP and MODNFP.

Here, let us explain the details of the 10-fold cross val-
idation in this experiment. First, we randomly shuffled the
order of the modules in MODFP and MODNFP. Next, we
split MODFP into 10 subsets MOD1

FP,MOD2
FP, · · · ,MOD10

FP
so that the number of modules in each subset is almost
the same. Similarly, we split MODNFP into MOD1

NFP,
MOD2

NFP, · · · ,MOD10
NFP.

We then picked MOD1
NFP and MOD1

FP for testing
data. Obviously, MOD2

NFP, · · · ,MOD10
NFP and MOD2

FP, · · · ,
MOD10

FP are used for learning. Next, MOD2
NFP, · · · ,MOD10

NFP
and MOD2

FP, · · · ,MOD10
FP are learnt to the corpuses. Us-

ing the learnt corpus, MOD1
NFP and MOD1

FP are classified
into FP or NFP by calculating the probability of being fault-
prone. Here, threshold tFP for classifying FP or NFP is de-
termined to be 0.5. By only using the subset MODi

NFP and
MODi

FP for testing, we can obtain a relatively fair result of
the classification.

4.4 Result of Experiment

For the evaluation of the experiments, we define several
evaluation measurements. Table 3 shows a legend of tables
for experimental result. In Table 3, N1 shows the number
of modules that are predicted as NFP and are actually NFP.
N2 shows the number of modules that are predicted as FP
but are actually NFP. Usually, N2 is called a false positive.
On the contrary N3 shows the number of modules that are
predicted as NFP but are actually FP. N3 is called a false
negative. Finally N4 shows the number of modules that are
predicted as FP and are actually FP. Therefore, N1 + N4 is
the number of correctly predicted modules. The accuracy
rate shows the ratio of correctly predicted modules to entire
modules and is defined as follows:

accuracy =
N1 + N4

N1 + N2 + N3 + N4
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Table 4 Result of 10-fold cross validation for argoUML.

(a) Result by SBPH

SBPH Predicted
NFP FP

Actual NFP 25,822 457
FP 1,096 482

(b) Result by OSB

OSB Predicted
NFP FP

Actual NFP 22,550 3,792
FP 493 1,085

(c) Result by BAYES

BAYES Predicted
NFP FP

Actual NFP 26,275 4
FP 1,537 41

Table 5 Result of 10-fold cross validation for eclipse BIRT plugin.

(a) Result by SBPH

SBPH Predicted
NFP FP

Actual NFP 84,234 2,146
FP 6,647 2,893

(b) Result by OSB

OSB Predicted
NFP FP

Actual NFP 70,475 15,905
FP 2,039 7,501

(c) Result by BAYES

BAYES Predicted
NFP FP

Actual NFP 86,246 134
FP 8,948 592

Table 6 Evaluation metrics for argoUML.

Classifier Precision Recall F1 Accuracy
SBPH 0.513 0.305 0.383 0.944
OSB 0.225 0.687 0.339 0.848
BAYES 0.911 0.026 0.051 0.945

Table 7 Evaluation metrics for eclipse BIRT plugin.

Classifier Precision Recall F1 Accuracy
SBPH 0.574 0.303 0.397 0.908
OSB 0.320 0.786 0.455 0.812
BAYES 0.815 0.062 0.115 0.905

For evaluation purposes, we used two measurements:
recall, precision, and F1. Recall is the ratio of modules cor-
rectly predicted as FP to the number of entire modules that
are actually FP. The ratio is defined as follows:

recall =
N4

N3 + N4

Intuitively speaking, recall implies the reliability of the ap-
proach because a large recall denotes that actual FP modules
can be covered by the predicted FP modules.

Precision is the ratio of modules correctly predicted as
FP to the number of entire modules predicted as FP. This
ratio is defined as follows:

precision =
N4

N2 + N4

Intuitively speaking, precision implies the cost of the ap-
proach because a small precision requires much effort to find
the actual FP modules from the predicted FP modules.

Finally, F1 is a combined evaluation criterion of recall
and precision [12]. F1 is defined as follows:

F1 =
2 × Recall × Precision

Recall + Precision

Tables 4 and 5 show the results of the 10-fold cross
validation using 3 classifiers for argoUML and the Eclipse
BIRT plugin, respectively. The result of the evaluation by
recall, precision, and F1 is shown in Tables 6 and 7.

5. Discussion

5.1 Comparison between Classifiers

To investigate the difference of classifiers, we look into the
result of the Eclipse BIRT plugin in Tables 5 and 7.

By looking at Table 5 carefully, we can find that OSB
can predict more FP modules than the other 2 classifiers.
That is, N4 = 7,501 in Table 5 (b), N4 = 2,893 in Ta-
ble 5 (a), and N4 = 592 in Table 5 (c). The amount of N4

is one of the most important measurements for prediction of
fault-proneness.

From Table 7, we can see several characteristics of each
classifier. The F1 and recall of the BAYES classifier were
the worst (0.062 and 0.115, respectively) in 3 classifiers.
In other words, BAYES predicts almost all modules to be
NFP. The reason, we assume, is because source code mod-
ules of software are more similar to each other than e-mail
messages are. BAYES considers a word in a text file as a
token for learning. However, too much similar words ap-
pear in software code modules. The characteristics of FP
modules were difficult to extract by BAYES. In other classi-
fiers, more than 2 words are used for a token. This extension
drastically increases the number of tokens to learn. The dif-
ference of BAYES and the other classifiers may be derived
from too many similar words.

The measurement “accuracy” shows an extremely high
value even in BAYES, but this fact is almost meaningless
since the accuracy is strongly affected from unbalanced data.
For example, if all modules are simply predicted as NFP,
the accuracy becomes more than 0.9. Thus, we do not use
accuracy for evaluation. We showed the values of accuracy
only for reference.

The OSB classifier achieves the most relevant result for
FP prediction. Since recall is 0.786, we can say that 78%
of actual fault-prone modules can be detected by the OSB
classifier. The fact that precision is as low as 0.320 implies
that we have to investigate 3 modules to find 1 fault-prone
module on average.

In fault-prone modules prediction, recall implies the
coverage of actual faults and precision implies the cost
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needed for testing. However, the balance of the cost of test-
ing and the quality of software is always a problem of test-
ing economics [19]. It is said that a type-II error requires 10
to 200 times more cost to remove than a type-I error [17].
We thus believe that the coverage of actual faults is more
important than the cost of testing in an actual software de-
velopment and such imbalanced recall and precision are ac-
ceptable.

Note that we can adjust the balance of recall and pre-
cision by changing the threshold of probability tFP shown
in Sect. 3.3. According to the domain of development, the
balance of recall and precision should be adjusted.

The results for argoUML in Tables 4 and 6 also show
that the OSB achieves the best recall and the worst precision.
We can say that the tendency between the two projects is
almost the same.

Therefore, we can conclude that the OSB classifier
is the most appropriate classifier for fault-prone prediction
from the viewpoint of quality assurance.

5.2 Comparison between Previous Studies

Here, we briefly survey the accuracy of previous metrics-
based studies shown in Sect. 2.1. Denaro et al. proposed a
logistic regression based approach, and achieved 0.906 pre-
cision and 0.682 recall [7]. Briand et al. adopted logistic
regression and object-oriented metrics based method, and
achieved 0.840 precision and 0.483 recall [4]. Guo et al. pro-
posed an approach using Dempster-Shafer Belief Network
and achieved 0.690 precision and 0.915 recall [11]. Bellini
et al. used the discriminate analysis and achieved 0.736 pre-
cision and 0.543 recall [2].

On the other hand, our approach with the OSB classi-
fier achieved 0.320 precision and 0.786 recall. Since the en-
vironment of application differs from previous studies, we
cannot compare these results directly. We can see that the
recall of our approach is relatively better, but the precision
is rather lower than previous results.

6. Threats to Validity

The threats to validity are categorized into four categories
as in [28]: external, internal, conclusion, and construction
validity.

External validity mainly includes the generalizability
of the proposed approach. For these experiments, we can
confirm that the fault-prone filtering works correctly for two
projects. In Tables 6 and 7, we can see that the tendency
of evaluation measurements is similar in both projects. This
fact implies that our approach has a certain kind of general-
ity. Therefore, the threat to external validity is mitigated.

As for internal validity, 10-fold cross validation can be
a threat. Although cross validation is a good method for
validation of a prediction technique, cross validation cannot
deal with several important aspects such as the order of the
creation of modules. One solution is the ‘Training only er-
rors’ approach [21]. The approach can deal with the order

of creation and the modification of software modules. We
have conducted an experiment using this approach.

One of the construction validity threats is the collection
of fault-prone modules from open source software projects.
As mentioned before, the number of faults found in the cvs
repository was about 40% of the total faults reported in a
bug database. The algorithm adopted in this study has the
limitation that faults not recorded in the cvs log cannot be
collected. To make an accurate collection of FP modules
from the source code repository, further research is required.

The way of statistical analysis usually causes threats to
conclusion validity. We cannot find any threats to conclu-
sion validity in our study at this point.

7. Conclusion

This paper proposed an approach to classify fault-prone
software modules using a spam filtering technique. In our
approach, source code modules were considered text files
and were applied to the spam filter directly. For the spam
filtering software, we selected a generic text discriminator.

We conducted an experiment using source code repos-
itories of Java-based open source developments. The result
of our experiment showed that the OSB classifier is the most
appropriate for fault-prone prediction. By using the OSB
classifier, our approach can classify 78% of actual fault-
prone modules as fault-prone.

For future work, we have to apply our approach to not
only open source development, but also to actual develop-
ment in industries. Additionally, further investigation of
misclassified modules will contribute to improvement of ac-
curacy. Finally, an application environment has to be devel-
oped.
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[28] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering: An introduction,
Kluwer Academic Publishers, 2000.

Appendix: CRM114 Scripts for Learning and Classifi-
cation

CRM114 is a powerful tool for generic text discrimination
and it accepts original scripting language. Figures A· 1 and
A· 2 show scripts of CRM114 used in our study. In these
scripts, $CLASSIFIER is replaced with the following op-
tions according to the selected classifier:

SBPH <unique microgroom>
OSB <osb unique microgroomx>
BAYES <unigram>.

Fig. A· 1 Learning script for CRM114.

Fig. A· 2 Classification script for CRM114.
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