
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Software Engineering for Embedded Systems

Constructing a Bayesian Belief Network for Predicting Final
Quality in Embedded System Development

Sousuke AMASAKI†a), Yasunari TAKAGI††b), Nonmembers, Osamu MIZUNO†c),
and Tohru KIKUNO†d), Members

SUMMARY Recently, software development projects have been re-
quired to produce highly reliable systems within a short period and with
low cost. In such situation, software quality prediction helps to confirm
that software product satisfies required quality. In this paper, by using
Bayesian belief network (BBN), we try to construct a prediction model
based on relationships elicited from embedded software development pro-
cess. According to a characteristic of embedded software development, we
especially propose to classify test and debug activities into two distinct ac-
tivities on software and hardware. Then we call the proposed model “the
BBN for embedded software development process”. On the other hand, we
define “the BBN for general software development process” to be a model
which doesn’t consider such a classification, but merge them into a single
activity. Finally, we conducted experimental evaluations by applying these
two BBNs to actual project data. As the results of experiments, we proved
that the BBN for embedded software development process is superior to
the BBN for general development process and is applicable effectively for
practical use.
key words: Bayesian belief network, causal model, software quality pre-
diction

1. Introduction

Recently, embedded systems have been used for many types
of systems including critical ones. An embedded system is
used in many areas such as vending machine, cellar phone,
home appliances, etc. Formerly, software used in an embed-
ded system has been used mainly for controlling hardware.
However, the purpose of embedded system has been diversi-
fied recently according to growth of demand for embedded
system. In such situation, software in embedded system gets
to play important role. For making embedded system more
flexible, realizing functionality by software is prior to that
by hardware. Thus, many functionality is realized by soft-
ware instead of hardware.

Increase of demand for software causes increase of size
and complexity of software. On the other hand, in terms
of market strategy, duration for development is required to
be shorten. That is, although recent embedded systems be-
come complicated steadily, demands for cost, quality, and
duration become severe. These problems are accelerated
by the characteristics of embedded software [1]. An em-
bedded software is required to achieve real-time processing

†Graduate School of Information Science and Technology, Os-
aka University, 1–5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
††Social Systems Company, OMRON Corporation, Japan
a) E-mail: amasaki@ist.osaka-u.ac.jp
b) E-mail: y-takagi@ist.osaka-u.ac.jp
c) E-mail: o-mizuno@ist.osaka-u.ac.jp
d) E-mail: kikuno@ist.osaka-u.ac.jp

with various hardware with severely constrained resources.
Furthermore, recent embedded system deploys widely once
it releases. This means that it is difficult to replace a system
including faults.

In such situation, it is required for software develop-
ment projects that highly reliable systems should be pro-
duced strictly within a short period and with low cost. Soft-
ware quality prediction is valuable for the requirement be-
cause it helps to confirm that software product satisfies re-
quired quality. This is useful for avoiding wasteful effort
and shipment of low quality product.

For general software development projects, there are
extensive research for software quality prediction. Regres-
sion models with several metrics are often used as a method
for predicting risky projects [2–4]. However, the regression
models have the following problems [5].

First, metrics that are highly correlated cannot be used
in the regression model simultaneously. Avoiding this diffi-
culty is possible by introducing a new composite metric of
these correlated metrics. However, we want to use values
of metrics directly, since the values make it easy to investi-
gate the relationship among metrics. Second, the regression
model cannot be applied in a case such that the values of
the explanatory variable in the model are unknown. That
is, when we try to use the regression model, all values of
the explanatory variable must be collected. The metrics that
affect the final quality of software include the ones related
to phases after the end of developmental activities, such as
the number of detected faults after shipping. Thus, in order
to use such metrics in our research, applying the regression
model is difficult.

Thus, we try to apply the Bayesian belief network
(BBN) [6] as a modeling method to find risky project. The
BBN is one of the methods for modeling systems that in-
clude causal relationships among variables. The BBN can
handle uncertainties such as probabilistic events, and thus
it can be extensively applied under the condition that not
all values of metrics or variables are given. That is, even
if we cannot collect all data corresponding to the metrics
in the model, we can make a decision or diagnose by us-
ing the probabilities for metrics whose value is unknown.
This feature of the BBN is useful for solving the two prob-
lems of the regression model just mentioned. Furthermore,
the BBN helps to model characteristics of embedded soft-
ware development process differing from general software
development process since it is constructed by using rela-



2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Concept Design and Review 

Module Design  and Review 

Function Design and Review

Coding  and Review

Structure Design  and Review 

Unit Test and Debug 

System Test and Debug 

Integration Test and Debug 

Function Test and Debug 

Design &

Coding phase

Test &

Debug phase

Acceptance Test  and Debug

Acceptance

Test & Debug

phase

Fig. 1 Development process

tionships among diverse factors. This feature of the BBN is
more suited than regression model when used for our pur-
pose (that is to say, used for embedded software develop-
ment).

In this paper, we propose a prediction model for final
software quality of embedded software. We apply the BBN
to embedded software development process. Thus, we also
can handle uncertainties such as probabilistic events in the
proposed model. Additionally, in order to deal with embed-
ded software development process, we newly try to classify
several activities in test and debug phase into two distinct ac-
tivities on software and hardware. By the classification, we
aim at realizing high prediction rate of the proposed model.

The rest of this paper is organized as follows: Section
2 explains target development process. Section 3 describes
the flow of our study and mentions objectives. In Sect. 4 we
construct abstract development process. We then construct
the BBN in Sect. 5, and evaluate empirically the BBN in
Sect. 6. Finally, Sect. 7 concludes this paper, and Appendix
explains the BBN briefly.

2. Target Development Process

Figure 1 shows an overview of a development process in the
company cooperating with us (provisionally named Com-
pany A). The development process is the overlapping ordi-
nal waterfall model [7]. This process consists of three suc-
cessive phases: the design and coding phase, the test and
debug phase, and the acceptance test and debug phase.

The characteristics of the phases in this company are as
follows:

(1) Design and Coding

This phase is divided into five activities: Concept design,
Function design, Structure design, Module design, and Cod-

ing. One characteristic of design and coding phase in Com-
pany A is that review activity is introduced after each activ-
ity. A review activity not only improves the quality of an
artifact but also helps software development organizations
reduce their cost of producing software. [8]. In Company
A, peer review [9] is carried out. The software engineering
process group in the company establishes several guidelines
for a review activity. One guideline directs at least 15% of
the total effort for a design and coding phase to be assigned
to a review activity [10]. After design activities, executable
modules are coded.

(2) Test and Debug

This phase consists of four activities: Unit test and debug,
Integration test and debug, Function test and debug, and
System test and debug. In the company, the test and de-
bug on software is carried out in the first two activities, and
the test and debug on hardware is carried out in the last two
activities. Test and debug on hardware is a feature of devel-
opment process for embedded software.

(3) Acceptance Test and Debug

This phase (that is, this activity) is different from the test
and debug on hardware in the test and debug phase. While
a product is tested by developers themselves in the last two
activities in the test and debug phase, it is tested by a soft-
ware quality assurance team, which is organized apart from
the development team.

3. Flow of Our Study

Figure 2 shows an outline of our study. Roughly speaking,
we have the following two objectives in this study.

(1) For predicting final quality in embedded software devel-
opment, we propose a new BBN with such a key feature
that test and debug on hardware is dealt distinctly from
test and debug on software. (Normally these two activi-
ties are summarized into a single test and debug.) Then
we show that the proposed model can predict final qual-
ity quite well.

(2) In order to show the effectiveness of the key feature
mentioned in (1), we also construct a BBN for general
software development process for predicting final qual-
ity. (We imply that the BBN for general software devel-
opment process has a single test and debug.) Then we
show the superiority of the proposed BBN empirically
to the BBN for general software development process.

The left hand side of Fig. 2 shows an outline of con-
struction of the BBN with key feature for embedded soft-
ware development process. The right hand side shows the
construction of the BBN for general software development
process.

In the following sections, we call the BBN with the
key feature as “embedded model”. On the other hand, we
call the BBN with single test and debug as “general model”.



AMASAKI et al.: CONSTRUCTING A BAYESIAN BELIEF NETWORK FOR PREDICTING FINAL QUALITY IN EMBEDDED SYSTEM DEVELOPMENT
3

Development Process
in Fig. 1

Abstract Development
Process in Fig. 3

Abstract Development
Process in Fig. 4

Prediction BBN
in Fig. 6 (a)

Prediction BBN
in Fig. 6 (b)

Abstraction
in Section 4

Construction of BBN
in Section 5

Empirical Evaluation
in Section 6

Comparison Result

Fig. 2 Flow of Our Study

4. Abstract Development Process

As the first step, we construct abstract development process
from actual development process. Here, the actual develop-
ment process is given in Fig. 1.

Now we explain how to construct abstract development
process for embedded model shown in Fig. 3 Later we de-
scribe construction of the one for general model shown in
Fig. 4.

(1) Firstly for design and coding phase, we construct a pair
of design activity and review activity, as shown in Fig.
3. That is, from four kinds of design and review in Fig.
1, we define two activities: Design Activity and Review
Activity as shown in Fig. 3.

(2) Next for test and debug phase, we propose a new trial
based on the fact that the first two test and debug in Fig.
1 are executed for software and the last two test and
debug are for hardware. Then, we define two activities:
Software Test and Debug and Machine Test and Debug
as shown in Fig. 3.

(3) Finally for acceptance test and debug phase, we define
a single activity as shown in Fig. 3.

On the other hand, abstract development process for
general model is constructed by the similar steps mentioned
above. The difference is only for test and debug phase. Ac-
cording to general view point, four test and debug activities
in Fig. 1 are merged into a single test and debug. As the re-
sult, abstract development process for general model shown
in Fig. 4 is obtained.

5. BBNs for Software Quality Prediction

Then, we construct a prediction model by using the BBN

Design               (DS)

Review               (RV)

Software Test and Debug  (SDB)

Machine Test and Debug   (MDB)

Design &

Review phase

Test &

Debug phase

Acceptance Test and Debug  (AT)
Acceptance

Test & Debug

phase

Fig. 3 Abstract development process for embedded model

Test and Debug     (DB)

Design &

Review phase

Test &

Debug phase

Acceptance Test and Debug  (AT)
Acceptance

Test & Debug

phase

Design              (DS)

Review             (RV)

Fig. 4 Abstract development process for general model

from abstract development process. Detailed explanation
about the BBN is described in Appendix. In order to con-
struct the BBN, we need to construct DAG and CPT. How-
ever, method for CPT is already established and can be car-
ried out automatically. Thus, in the following subsections,
we describe only how to construct the DAG for prediction
model. The resultant DAGs are shown in Fig. 5 and 6.

5.1 Approach to Model Construction

Based on the abstract development process in Sect. 4, we
construct the prediction model for final software quality us-
ing the BBN. Because the concept of software quality con-
sists of diverse facets of software, we should consider vari-
ous criteria, which are usually assessed by collectable met-
rics. In such metrics, the amount of residual faults is consid-
ered one of the most important factors because it represents
the amount of inconsistency between the specification and
the implemented product. Furthermore, the development
members in the company regard this metric as the most im-
portant quality measurement. Thus, in this paper, we deal
with the amount of residual faults in a product as a factor of
software quality. Concretely, our proposed models predict
whether the amount of residual faults in a product is accept-
able at the end of the acceptance test and debug activity.

The following approach represents the policy of model
construction:

(1) Observe carefully the change in the amount of residual
faults at each activity and represent this change as the
main flow of the model.

(2) Calculate the amount of residual faults in each activity
from the metrics recorded in the corresponding activity.



4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

5.2 Software Metrics

In order to represent relationships between development
process and final software quality, we use software metrics
obtained in each activity. The metrics used in the proposed
models are classified into five groups: S α, Eα , DFα , T Iα,
and RFα where α denotes an activity in Fig. 3 and 4. For
example, S DS denotes product size in DS (design activity),
and EDS denotes effort in DS . The detailed definitions are
given as follows:

• Product size (Kstep): S DS

• Effort (person-day): EDS , ERV , EDB , EAT

• Detected faults (number): DFRV , DFS DB , DFMDB,
DFDB(= DFS DB + DFMDB), DFAT

• Test Items (number): T IS DB, T IMDB, T IDB(= T IS DB +

T IMDB), T IAT

• Residual faults (number): RFDS , RFRV , RFS DB ,
RFMDB , RFDB(= RFS DB + RFMDB), RFAT

All metrics without RFα can be collected in an actual soft-
ware development project. Since each activity in the abstract
development processes consists of some activities, the val-
ues of metrics Eα , DFα , and T Iα are given by summing up
the values of the corresponding activities (shown in Fig. 1).
For example, effort EDS is calculated as the total sum of ef-
fort at the concept design, function design, structure design,
module design, and at coding. Here, Effort metrics for soft-
ware test and debug activitiy and machine test and debug
activity are not defined since these metrics are not recorded
separately. Thus, we use EDB to DAGs for S DB and MDB.

On the other hand, we cannot record the metrics RFα in
each activity α because the number of injected faults cannot
be counted a priori. In order to overcome this deficiency, we
assume that RFAT is equal to the number of detected faults
during the six months after shipping. Thus, we can define
the total number of faults RFDS (that is, the residual faults
after the design activity) to be the sum of RFAT and the to-
tal number of faults detected in each activity of the software
development process. Thus, we assume the following equa-
tion:

RFDS = RFAT + DFRV + DFS DB + DFMDB + DFAT

According to this definition, the residual faults RFα af-
ter each activity α are calculated by subtracting the detected
faults DFα in each activity α from the residual faults in the
previous activity.

When we try to predict software quality, human fac-
tors such as ability and expertise, should be considered key
metrics for the prediction. However, these metrics are not
recorded, and thus we do not consider them in this paper.
Considering such human factors, however, still remains an
important task for future work.

In order to use these software metrics for the BBN, we

next discretize them. First, we discretize all software met-
rics without RFAT . The number of classes for discretized
software metrics is decided as three in this paper. For ex-
ample, these classes are called “Large”, “Medium”, and
“Small”, respectively. Next, thresholds for each class in dis-
cretized software metrics are decided. In this paper, for each
metric, these are decided by using actual dataset such that
sorted dataset of a metric are divided equally. Next, we de-
cide a threshold for the metric RFAT . Since the model is
used for software quality prediction, zero should be a single
group. Thus, classes for RFAT are “Good”, which means
RFAT = 0 , and “Poor”, which means RFAT > 0, respec-
tively.

5.3 Construction of DAG

In this subsection, we define prediction model using the
BBN for abstract development processes shown in Fig. 3
and 4. First, we construct DAGs for each activity. For em-
bedded model, we construct DAGs for five activities based
on relationships among metrics related to the corresponding
activities. Then, we integrate these DAGs into a DAG that
represents the whole development process.

Figure 5 shows resultant DAGs for each activity. Please
note that DAGs for design activity, review activity, and ac-
ceptance test and debug activity are common to both ab-
stract development processes for embedded model and gen-
eral model. DAGs for software test and debug activity and
machine test and debug activity are shown in the left side
of Fig. 5 and DAGs for test and debug activity is shown in
the right side of Fig. 5. In the following, we mainly explain
in detail how to construct DAGs for embedded model. For
general model, we explain only about a DAG for test and
debug activity.

(1) DAG for Design Activity (common)

Here, we assume that faults are introduced by design activ-
ity, and that residual faults are removed by other activities
such as review, test and debug in Fig. 3 and 4. We assume
that metrics S DS and EDS in design activity (DS ) affect the
number of the introduced faults RFDS . The larger the de-
sign effort EDS is, the larger the number of introduced faults
RFDS is. Similarly, the RFDS becomes large in proportion
to the size of the product S DS .

(2) DAG for Review Activity (common)

Review is carried out in order to remove faults remaining or
introduced in the earlier phase. In the company, peer review
[11] is carried out after the design activity. In peer review, no
explicit test case is prepared, and thus T Iα is not recorded.

Obviously, the sum of the detected faults DFRV and the
residual faults RFRV is equal to the total number of faults
RFDS . Thus we obtain the following relation among these
metrics:

RFRV = RFDS − DFRV

Clearly, RFRV depends on RFDS and DFRV .



AMASAKI et al.: CONSTRUCTING A BAYESIAN BELIEF NETWORK FOR PREDICTING FINAL QUALITY IN EMBEDDED SYSTEM DEVELOPMENT
5

RFRV

ERV DFRV

RFDS

RFDS

SDS EDS

RFSDB

EDB DFSDB

RFRV

TISDB

RFMDB

EDB DFMDB

RFSDB

TIMDB F RFDB

EDB DFDB

R RV

TIDB

RFAT

EAT DFAT

TIAT

RFMDB

RFDB
or

Design
 (DS)

Review
 (RV)

Test and
Debug
  (DB)

Software
Test and
Debug
 (SDB)

Machine
Test and
Debug
(MDB)

Acceptance
Test and
Debug
    (AT)

Embedded Softwware
Development Process

General Software
Development Process

Design
 (DS)

Review
 (RV)

Acceptance
Test and
Debug
    (AT)

Fig. 5 DAGs for development processes

Next, we consider the DFRV in more detail. In review
activity, faults are discovered from the residual faults of the
product. Moreover, the number of detected faults is affected
by the review effort. Then, DFRV is affected by RFDS and
ERV .

(3) DAG for Software Test and Debug Activity

The activities in software test & debug (S DB) are also used
to remove the residual faults. Then, the structure of DAG for
S DB is almost the same as that for RV. The difference be-
tween two DAGs is that the number of the test items T IS DB

is recorded in the software debug activity . Since metric
T IS DB is related to the coverage of the test, we consider that
T IS DB affects the number of detected faults DFS DB . Fur-
thermore, T IS DB clearly affects the effort EDB.

(4) DAG for Machine Test and Debug Activity

The activities in the machine test & debug (MDB) are also
for removing the residual faults. By applying similar dis-
cussions in DAG for S DB, we get the DAG.

(5) DAG for Test and Debug Activity

In general development process, test and debug (DB) is per-
formed only for software. Thus, activities in test and debug
phase are integrated into a single test and debug activity, as
shown in Fig. 4. As same as integration of activities in
software test and debug activity, we simply add T IS DB and
T IMDB. This metric is defined as T IDB in Subsection 5.2.
Similarly, RFDB and DFDB are defined. Since the relation-

ships between these metrics are the same ones, the DAG for
test and debug activity is constructed as shown in Fig. 5.

(6) DAG for Acceptance Test and Debug Activity (com-
mon)

The activities in the acceptance test and debug (AT ) also
have the same properties as the software debug activities.
Thus, we obtain the DAG shown in Fig. 5.

5.4 DAG for Prediction Model

Finally, DAGs in Fig. 5 are integrated into a prediction
model. Figure 6 (a) and (b) show DAGs for embedded
model and for general model, respectively.

6. Evaluation of BBNs

6.1 Dataset

For empirical evaluation, we use actual project data obtained
from Company A, which cooperates with us. The projects
targeted in this paper are the development of computer con-
trol systems with embedded software in Company A. The
software products developed by the projects have the fol-
lowing common characteristics. The systems are related
to retail systems, and thus, embedded software implements
rather complex functions dealing with many sensors, actu-
ators, and control signals including various kinds of inter-
rupts. Furthermore, since developed software is delivered in



6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

SDS

RFDS

EDS

RFRV

DFRV

ERV

RFSDB

DFSDB

RFMDB

DFMDB
EDB

TISDB TIMDB

RFAT

DFAT

EAT

TIAT

(a) Embedded Model

SDS

RFDS

EDS

RFRV

DFRV

ERV

RFDB

DFDB
EDB

TIDB

RFAT

DFAT

EAT

TIAT

(b) General Model

Fig. 6 DAGs for prediction BBNs

the form of LSI chips, modification of faults after delivery
is very expensive. Thus, high quality is especially required
for the embedded software.

The dataset used in this paper consists of the actual
project data of 51 projects, which have already finished their
development. Each project started its development from
1995 to 1998.

6.2 Application Procedure

In order to evaluate the BBNs according to objectives men-
tioned in Sect. 3, we perform two experiments using the
dataset.

• Self-application
As a preliminary experiment, we first apply the dataset
to a prediction model for both training and prediction.
From the result of this experiment, we can see how well
the model represents a relationship between a feature of
software development process and final software qual-
ity.

• 10-fold cross validation
The evaluation through k-fold cross validation method
is one of the most common technique for model evalu-
ation. The dataset is here split into k equally sized sub-
sets. Then in i-th iteration (i = 1, . . . , k), the i-th subset
is used for testing the BBN that has been learned from
all other remaining subsets. Notice that each instance
of data is classified exactly once. The number of sub-
sets k is usually set to 10. From this experiments, we
can see how applicable the model is for practical use.

The results of predictions are evaluated using the fol-
lowing two perspectives:

Table 1 Self-application result for embedded model

Good Poor
Good 11 10
Poor 3 27Actual

Predicted
Embedded

Accuracy rate: 75.51%
Fisher’s exact test: p<0.01

Table 2 Self-application result for general model

Good Poor
Good 8 11
Poor 7 23Actual

General
Predicted

Accuracy rate:  72.55%
Fisher’s exact test:  p<0.01

Table 3 10-fold cross-validation result for embedded model

Good Poor
Good 10 11
Poor

Embedded
Predicted

Actual
6 24

Accuracy rate: 66.67%
Fisher’s exact test: p=0.06

Table 4 10-fold cross-validation result for general model

Good Poor
Good 8 13
Poor

Embedded
Predicted

Actual
7 23

Accuracy rate: 60.78%
Fisher’s exact test: p=0.35

• Accuracy rate
Accuracy rate represents the ratio of the correct pre-
diction. This criterion implies the accuracy of the pre-
diction. The larger the accuracy rate is, the better the
model is. For evaluating both BBNs, we use this crite-
rion.

• Fisher’s exact test
Fisher’s exact test is the statistical test for verifying the
correlation between two variables. By using this test-
ing, we can verify whether or not there is a relationship
between the result of a prediction and the actual result
(which is recorded as a metric). This criterion is used
for evaluating goodness of a prediction model. In this
paper, we adopt significance level α = 0.1.

6.3 Comparison

The prediction result of self-application is shown in Table
1. From this result, we can see that accuracy rate is 75.51%.
It is relatively good accuracy rate. P-value of Fisher’s exact
test results in lower than 0.01. This implies that there is
a correlation between actual software quality and predicted
one. From these two, we can say that embedded model can
represent a feature of development process for embedded



AMASAKI et al.: CONSTRUCTING A BAYESIAN BELIEF NETWORK FOR PREDICTING FINAL QUALITY IN EMBEDDED SYSTEM DEVELOPMENT
7

software.
Next, the prediction result of 10-fold cross-validation

is shown in Table 3. This table says that accuracy rate is
66.67%. It is also relatively well though lower than the one
of self-application. In the fact, p-value of Fisher’s exact test
is 0.06. This is still lower than significance level α = 0.1.
Thus, we can say that embedded model is applicable for
practical use.

In contrast to embedded model, the prediction results
of general model is not so good. For self-application, Ta-
ble 2 shows that accuracy rate is 72.55%. This is slightly
inferior to that of embedded model. However, p-value of
Fisher’s exact test is lower than 0.01. Thus, we can say
that general model represent a feature of development pro-
cess for embedded software. On the other hand, for 10-fold
cross-validation, accuracy rate of Table 4 is 60.78%. P-value
of Fisher’s exact test is 0.35. This exceeds the significance
level. Thus, we cannot say that there is a correlation between
actual software quality and predicted one.

These results imply that distinction of test and debug
activities on software and on hardware leads higher predic-
tion rate and that prediction model based on embedded soft-
ware development process is applicable for practical use.

7. Conclusion

In this paper, we proposed the prediction model for final
software quality by using the Bayesian belief network. This
model is based on embedded software development process.

In order to deal with embedded software development
process, we especially classify several test and debug activ-
ities into two activities on software and on hardware. By
applying the classification, we defined the BBN for embed-
ded software development process. We also define the BBN
for general software development process, in which such a
classification is not applied.

Then, we evaluated both BBNs with empirical data set
collected from actual projects developing embedded sys-
tems. As a result, we showed that the BBN for embedded
software development process gives higher accuracy rate
rather than the BBN for general software development pro-
cess and is applicable for practical use.

In future work, refinement of the model to improve the
accuracy of the prediction is needed. For this purpose, the
human factor should be in the model. Additionally, the pre-
diction in the early phase of the development process is also
a challenging topics.

References

[1] H. Takada, “The recent status and future trends of embedded system
development technology,” IPSJ Journal, 2001.

[2] J.C. Munson and T.M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Trans. on Software Engineering, vol.18, no.5,
pp.423–433, 1992.

[3] J.A. Morgan and G.J. Knafl, “Residual fault density prediction using
regression methods,” Proc. 7th International Symposium on Soft-
ware Reliability Engineering, pp.87–92, 1996.

[4] Y. Yokoyama and M. Kodaira, “Software cost and quality analysis
by statistical approaches,” Proc. 20th International Conference on
Software Engineering, pp.465–467, 1998.

[5] N.E. Fenton and M. Neil, “A critique of software defect predic-
tion models,” IEEE Trans. on Software Engineering, vol.25, no.5,
pp.675–689, 1999.

[6] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter,
Probabilistic Networks and Expert Systems, Springer-Verlag, 1999.

[7] W.S. Humphrey, A Discipline for Software Engineering, Addison-
Wesley, MA, 1995.

[8] M.E. Fagan, “Advances in software inspections,” IEEE Trans. on
Software Engineering, vol.12, no.7, pp.744–751, 1986.

[9] D.B. Bisant and J.R. Lyle, “A two-person inspection method to im-
prove programming productivity,” IEEE Trans. on Software Engi-
neering, vol.15, no.10, pp.1294–1304, 1989.

[10] Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto, S. Kusumoto, and
T. Kikuno, “Analysis of review’s effectiveness based on software
metrics,” Proc. of 5th International Symposium on Software Relia-
bility Engineering, pp.34–39, 1995.

[11] M.C. Paulk, C.V. Weber, S.M. Garcia, M.B. Chrissis, and M. Bush,
“Key practice of the capability maturity model, version 1.1,” Tech.
Rep. CMU/SEI-93-TR-025, Software Engineering Institute, 1993.

[12] E. Charniak and R. Goldman, “A Bayesian model of plan recogni-
tion,” Artificial Intelligence, vol.64, pp.53–79, 1993.

[13] J. Forbes, T. Huang, K. Kanazawa, and S. Russel, “The batmobile:
Towards a Bayesian automated taxi,” Proc. of the 14th International
Joint Conference on Artificial Intelligence, pp.1878–1885, 1993.

[14] P. Haddawy, “An overviewof some recent developments in Bayesian
problem solving techniques,” AI Magazine, vol.20, no.2, pp.11–20,
1999.

[15] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse,
“The lumiere project: Bayesian user modeling for inferring the goals
and needs of software users,” Proc. of the 14th Conference on Un-
certainty in Artificial Intelligence, pp.256–265, 1998.

Appendix: Bayesian Belief Network

The BBN is used to deal with causal relationships among
variables that allow uncertainty for some variables. In re-
cent years, because of the capability of fast computation, the
BBN is used in widespread areas [12–15] such as artificial
intelligence, medical diagnosis, trouble shooting diagnosis,
and decision making.

The Bayesian belief network (BBN) consists of two
components: the graph and the probability table. The graph
represents causal relationships between variables by the di-
rected links connecting variables [6]. Formally, this graph is
in the form of DAG (directed acyclic graph).

An example of DAG is shown in Fig. A· 1. Since
variable v4 depends on variable v2 and v3, there exist links
(v2, v4), (v3, v4) in DAG. Figure A· 1 implies that variable v5
depends on variable v1 and v4 directly, and variable v2 and v3
indirectly. In this case, we call v5 a dependent variable.

On the other hand, the probability table is assigned to
each variable. The probability table is especially assigned
to the dependent variable (here, v4 and v5 are such depen-
dent variables), and is named the conditional probability ta-
ble (CPT).

Table A· 1 is an example of the CPT assigned to vari-
able v4, which shows the relationship among v2, v3, and v4.
Here, we assume that all variables are binary which take val-



8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

v1

v5

v4

v2 v3

Fig. A· 1 Example of DAG

Table A· 1 Conditional probability table for v4

v4

v2 v3 T F

T 0.4 0.6

F 0.3 0.7

F
0.6 0.4

F 0.5 0.5

T

T

ues “T” or “F”.
With the BBN, we can perform the calculation of the

probability. Two typical cases exist:

Case 1: Values of all variables are known.
Case 2: Values of some variables are unknown.

In this paper, by utilizing a property in Case 2, we construct
a prediction model.

For example, we calculate the probability of v5 = T
under the condition that v1 = T , v2 = T , v3 = T , and v4 =
T . We assume that the CPT for v5 (shown in Table A· 2)
is assigned to v5. Because the value of v4 is set to “T”, we
don’t care about v2 and v3. Therefore, p(v5 = T |v1 = T, v2 =
T, v3 = T, v4 = T ) = p(v5 = T |v1 = T, v4 = T ) = 0.7 is
obtained from Table A· 2.

Next, we calculate the probability of v5 = T under the
almost same condition. The difference is that a value of v4
is uncertain. In order to calculate the probability of v 5, we
need the value of v4. However, in this case, the value of v4 is
unknown.

First, from Table A· 1, we get p(v4 = T |v2 = T, v3 =
T ) = 0.4, and p(v4 = F|v2 = T, v3 = T ) = 0.6. If the value
of v4 were to be assigned, we would be able to determine the
probability of v5 = T simply from Table A· 2. Although v4
is uncertain, we can calculate the probability of v5 = T by
using Table A· 2 as follows:

p(v5 = T |v1 = T, v2 = T, v3 = T )

= p(v5 = T |v1 = T, v4 = T ) × p(v4 = T |v2 = T, v3 = T )

+ p(v5 = T |v1 = T, v4 = F) × p(v4 = F|v2 = T, v3 = T )

= 0.7 × 0.4 + 0.3 × 0.6

= 0.46

Table A· 2 Conditional probability table for v5

0.7 0.3

0.70.3

0.8 0.2

0.3 0.7

v5

v1 v4 T F

T

F

F
F

T

T

Sousuke Amasaki received B.E. degree in
computer science and system engineering from
Okayama Prefectural University in 2000 and
M.E. degree from Osaka University in 2003. He
is currently a Ph.D course student in Graduate
School of Information Science and Technology,
Osaka University. His current research interests
include quantitative evaluation of software pro-
cess and software quality prediction.

Yasunari Takagi received B.E. degree in
information and computer science from Nagoya
Institute of Technology in 1985. He has been
working for OMRON Corporation. He is cur-
rently a Ph.D course student in Graduate School
of Information Science and Technology, Osaka
University. His current research interests in-
clude software process improvement activities
in industries and software quality assurance of
embedded software systems.

Osamu Mizuno received M.E. and Ph.D.
degrees from Osaka University in 1998 and
2001, respectively. He is currently an Assis-
tant Professor in Graduate School of Informa-
tion Science and Technology at Osaka Univer-
sity. His research interests include methodolo-
gies of software process improvement and risk
evaluation and prediction in software develop-
ment. He is a member of the IEEE.

Tohru Kikuno received M.Sc. and Ph.D.
degrees from Osaka University in 1972 and
1975, respectively. He joined Hiroshima Uni-
versity from 1975 to 1987. Since 1990, he has
been a Professor of the Department of Infor-
mation and Computer Sciences at Osaka Uni-
versity. Since 2002, he has been a Professor
of Graduate School of Information Science and
Technology at Osaka University. He also holds
a Director of Osaka University Nakanoshima
Center from 2004.

His research interests include the analysis and design of fault-tolerant sys-
tems, the quantitative evaluation of software development processes, and
the design of procedures for testing communication protocols.
He is a senior member of IEEE, a member of ACM, IEICE (the Institute
of Electronics, Information and Communication Engineers), and a fellow
of IPSJ (Information Processing Society of Japan). He received the Paper
Award from IEICE in 1993.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


