
A New Challenge for Applying Time Series Metrics

Data to Software Quality Estimation

Sousuke AMASAKI (amasaki@ist.osaka-u.ac.jp), Takashi

YOSHITOMI, Osamu MIZUNO (o-mizuno@ist.osaka-u.ac.jp),

Yasunari TAKAGI and Tohru KIKUNO

Graduate School of Information Science and Technology, Osaka University, Japan

Abstract. In typical software development, a software reliability growth model

(SRGM) is applied in each testing activity to determine the time to finish the testing.

However, there are some cases in which the SRGM does not work correctly. That

is, the SRGM sometimes mistakes quality for poor quality products. In order to

tackle this problem, we apply time series data collected from development to quality

estimation. First, we investigate the characteristics of the time series data on the

detected faults by observing the change of the number of detected faults. Using the

rank correlation coefficient, the data are classified into four kinds of trends. Next,

with the intention of estimating software quality, we investigate the relationship

between the trends of the time series data and software quality. Here, software

quality is defined by the number of faults detected during six months after shipment.

Finally, we find a relationship between the trends and metrics data collected in the

software design phase. Using logistic regression, we statistically show that two review

metrics in the design & coding phase can determine the trend.

Keywords: Software testing, Software quality, Time series data, Statistical analysis

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

kluwer_journal.tex; 24/11/2004; 15:46; p.1



1. Introduction

Software quality assurance is important for satisfying not only the

users’ requirements but also for reducing the cost of software main-

tenance. As the life cycle of software becomes longer and software is

updated many times according to new requirements, software quality

becomes more difficult to assure.

One of the ways to assure software quality is to reduce the number

of faults remaining in software products by sufficient testing (Marick,

1995). Here, the software quality is considered as the number of re-

maining faults. For this purpose, estimating the number of remaining

faults has become important. Therefore, various methods have been

proposed. Generally speaking, these methods are classified into two

types: estimation using the product metrics and estimation using the

process metrics.

The methods using the product metrics estimate the number of

remaining faults (that is, software quality) by using metrics such as the

code size, the complexity, and so on, which are obtained or observed

from software products. For instance, Halstead proposed an equation

that calculates the number of faults from the complexity of software,

which is derived from the source code(Halstead, 1977). Compton et al.

proposed an equation that calculates the number of faults from the

kluwer_journal.tex; 24/11/2004; 15:46; p.2



LOC, which is the well-known size metrics (Compton and Withrow,

1990).

Although various methods have been proposed, methods based on

product metrics usually estimate the software quality less accurately,

whereas methods based on process metrics estimate more acculately,

especially in the case of large size projects. The reason for this difference

seems that the effect of human factors and the quality of organiza-

tion, which can be observed by process metrics, are more significant

than that of product characteristics, which can be measured by prod-

uct metrics in large software projects. For example, in CMM (Paulk

et al., 1993), the importance of quality of organization, which can be

guessed from process metrics but not from product metrics, is especially

emphasized.

Therefore, methods based on process metrics, which estimate the

number of remaining faults, have also been proposed. Process metrics

are recorded in the progress of the development process. Methods esti-

mating the number of remaining faults (that is, software quality), such

as capture-recapture model (Basin, 1973) and the software reliability

growth model (SRGM) (Goel, 1985; Musa et al., 1987) are well-known.

Both methods are designed for software testing activity.

In the capture-recapture model, pseudo defects are seeded in soft-

ware products before testing. During testing, such pseudo defects and

kluwer_journal.tex; 24/11/2004; 15:46; p.3



real defects are found. By using the number of both defects, the number

of real defects is estimated (Basin, 1973). However, an application for

practical use is difficult because of the difficulty and the cost of the

implantation of defects, especially for large products.

In the SRGM, the change in the number of faults detected in a

testing activity is represented by a successive curve function that aims

to fit the actual number of detected faults. The software release time,

which is the time to finish testing, can be decided using the ratio of

the time to be spent and the number of faults expected to be detected,

both of which are known from the curve. Thus, developers in actual

companies have extensively applied the SRGM to decide release time

in order to manage testing efficiently.

In a certain company, the SRGM has been used to decide the release

time of a testing activity. In most projects of the company, the final

quality of software products has been successfully assured to be good

by testing based on the SRGM. However, cases remain where the final

quality of software products is still poor even after decision making by

the SRGM. Therefore, the software engineering process group (SEPG)

in the company believes that finding a reason for the problem becomes

an important problem to be solved.

We focus on the fact that although the SRGM was applied to each of

the four testing activities, which are a part of the software testing phase

kluwer_journal.tex; 24/11/2004; 15:46; p.4



(usually, consisting of four activities: unit testing, integration testing,

function testing, and system testing), the relationship among the data

collected from more than one testing activity in the testing phase has

not been investigated. In order to check this possibility, we investigate

the time series data on the number of faults collected from more than

one test activity and focus on the trends of the time series data.

In previous research, an investigation using time series data is per-

formed by Smidts et al. (Smidts et al., 1996). In order to develop a

software reliability prediction model (SRPM), the authors introduced a

requirement failure data histogram over the software development pro-

cess. In the histogram, the x-axis represents a life-cycle effort and the

y-axis represents a percentage of requirement failures (that is: change,

addition, and deletion of requirements). Next, the authors found that

the shape of the histogram is bimodal, and they developed the SRPM

using this characteristic. However, empirical evaluation has not been

performed.

On the other hand, we focus on the time series data of the number

of detected faults. Based on the observation that projects have several

specific kinds of shapes, we assume the shape itself plays an important

role. That is, the shapes tend to show software quality indirectly. Thus,

we investigate the relationship between a shape of the time series data

kluwer_journal.tex; 24/11/2004; 15:46; p.5



and software quality, and utilize this relationship in software quality

prediction.

First, we present the characteristic of the time series data on the

numbers of detected faults by investigating the changes in the values.

In this study, we use actual data collected from development projects

in a certain company. By applying the rank correlation coefficient, the

data are classified into four types of trends: strictly increasing (TSI), al-

most increasing (TAI), almost decreasing (TAD), and strictly decreasing

(TSD).

Secondly, we show the relationship between the trends of the time

series data on the numbers of detected faults and software quality. In

this study, we take the number of faults detected during six months

after shipment as the software quality. As a result of the statistical

analysis, we find that the quality of software products developed by

projects with trends TAD and TSD can be relatively high.

Finally, with the intention of controlling the trend of detected faults

in the early stage of a project (if we can do so before the testing

phase, the quality of products will become better), we investigate a

relationship between the trends of detected faults in the test phase

and metrics data collected in the design and the coding phases. From

this study, we find that two review metrics, the efficiency of the design

review and the amount of effort in the code review, can determine

kluwer_journal.tex; 24/11/2004; 15:46; p.6



the trends. Furthermore, we find that a logistic regression model using

these metrics can estimate the trends of detected faults successfully.

2. Target Projects

2.1. Characteristics of Projects

The projects targeted in this paper are the development of computer

control systems with embedded software in a certain company. The

software products developed by the projects have the following common

characteristics. The systems are related to retail systems, and thus

embedded software implements rather complex functions dealing with

many sensors, actuators, and control signals including various kinds

of interrupts. Furthermore, since the software products are delivered

in the form of LSI chips, modification of faults after delivery is very

expensive. Thus, high quality is especially required for the embedded

software.

We use actual project data of 111 projects, which have already fin-

ished their development. Each project was carried out between 1995 and

1998. Additionally, we select these projects under certain conditions.

First, the total number of faults detected during the test & debug phase

kluwer_journal.tex; 24/11/2004; 15:46; p.7



exceeds a certain number. This condition implies that the size of target

project is relatively large. Second, the size of product exceeds a certain

size. This condition implies that the size of product is also relatively

large. In this research, we assume the threshold is about 4Kstep. Third,

as in any targeted project, the code review must be performed.

2.2. Process Model

In the target projects, the products are developed under a development

process as shown in Figure 1. The development process is an ordinal

waterfall model. This process consists of two successive phases, namely

the design & coding phase and the test & debug phase. The design

& coding phase is divided into five activities: Concept design (CD),

Function design (FD), Structure design (SD), Module design (MD),

and Coding (CO). Each activitiy has a review activity, such as Concept

design review (CDR), Function design review (FDR), Structure de-

sign review (SDR), Module design review (MDR), and Coding review

(CR), to assure software quality. The test & debug phase consists of

four activities: Unit test & debug (UT ), Integration test & debug (IT ),

Function test & debug (FT ), and System test & debug (ST ).

One characteristic of the design & coding phase is that review ac-

tivity is introduced after each design activity. Review activity enables

kluwer_journal.tex; 24/11/2004; 15:46; p.8



the detection and correction of faults in software artifacts as soon as

these artifacts are created. Furthermore, the review activity not only

improves the quality of the artifacts but also helps software develop-

ment organizations reduce their cost of producing software (Bisant

and Lyle, 1989; Fagan, 1986). In the review activity, the documents

are distributed to the persons concerned in the company, and then

review results are returned to developers via a manager (this review

activity is called peer review (Bisant and Lyle, 1989)). The SEPG in

the company establishs several guidelines for the review activity. One

guideline directs at least 15% of the total effort of design & coding

phase to be assigned to review activities (Takagi et al., 1995).

The test & debug phase consists of the repetition of a pair of test

activity and debug activity. Testing activity is the process of analyzing

a software item to detect the differences between existing and required

conditions and to evaluate the features of the software items. The

SRGM has been used to decide the release time of each testing activity.

Debug activity is the process used to detect, locate, and correct faults

(International Standard Organization, 1990). The persons engaged in

the test and debug phase are directed to record all faults that are

detected by the test activity and removed by the debug activity (Tanaka

et al., 1995). In order to improve and to assure the quality of the

software product, the product needs to be sufficiently tested.

kluwer_journal.tex; 24/11/2004; 15:46; p.9



3. Time Series Data of Detected Faults

3.1. Software Metrics

(1) Frequency of detected faults: DF

The frequency of detected faults (DF ) is the number of detected

faults normalized by the effort needed for an activity for detection.

This metric indirectly represents the ability of developers and the

density of faults. In order to define DF , we introduce the following

two parameters Dα and Eα where α denotes an activity out of five

activities: CR, UT , IT , FT and ST in Figure 1.

Dα: the number of detected faults in an activity α.

Eα: the effort needed for an activity α (measured by person-day).

For example, the number of detected faults in the Unit test &

debug activity (UT ) is described as DUT . Thus, DF for activity

α is defined as follows:

DFα =
Dα

Eα

According to this definition, we define the frequency of detected

faults DFCR, DFUT , DFIT , DFFT , DFST for activities CR, UT ,

IT , FT , and ST , respectively.

kluwer_journal.tex; 24/11/2004; 15:46; p.10



(2) Field fault density: FFD

In the target company, the field quality of the final product is

measured by the metrics named field fault density FFD. This

density is defined as follows:

FFD =
Dfield

Sfinal

Here, Sfinal represents the product size and is represented by the

unit KLOC.

In the company, Dfield is defined as the number of faults detected

during six months after delivery.

3.2. Collected Data

The effort data and faults data are recorded manually, and are stored

in workstations by each developer. Next, the data are collected by

the project leader, and validated by the manager. On the other hand,

field faults data are reported by a quality assurance staff, translated

into a fault-based number by the project leader, and validated by the

manager. All validated data are sent to the SEPG, who analyzes such

data and reports the analysis report back to the project team and

development organization(Takagi et al., 1995).

kluwer_journal.tex; 24/11/2004; 15:46; p.11



Table 1 shows the actual project data. This data includes quality

data for DFCR, DFUT , DFIT , DFFT , and DFST for 111 projects.

Regarding FFD, we have actual data, but cannot show such data here

due to contract obligations with the company. In Table 1, for projects

No.1, No.2, No.110, and No.111, all metrics data are shown. However,

since the neighboring testing activities are sometimes combined and

performed as one testing, some metric data of several projects are

missing.

Table 1 also summarizes the average and the median of DFα in

each activity. As observed, the average and the median values of DFα

decrease as the testing activities proceed from CR to ST . Figure 2

shows the actual values of DF ’s for six projects. From this figure, we

can ascertain a certain trend in the successive values of DFCR, DFUT ,

DFIT , DFFT , and DFST . Intuitively speaking, projects No.10, No.39,

and No.90 show decreasing trend in these successive DF ’s, and project

No.17 shows increasing trend in these successive DF ’s.

kluwer_journal.tex; 24/11/2004; 15:46; p.12



4. Classification by Trend in Faults Detection

4.1. Key Idea

As shown in Table 1 and in Figure 2, the projects are classified into

several groups by the faults detection trend (for example, the increasing

or decreasing trend in the successive DF values). In order to identify

the trend, we introduce a quantitative measure of the trend. Although

there are many metrics for measuring trend, the rank correlation coef-

ficient is one of the most popular metrics for a monotonic increasing or

decreasing trend(Muto, 1995). In this paper, we adopt Kendall’s rank

correlation coefficient τ(Kendall and Gibbons, 1990).

By using Kendall’s τ , we can quantitatively measure the trend of

faults detection. Therefore, we define the following four types of trends

based on the value of τ .

(a) Strict decreasing type (TSD) (τ = −1)

(b) Almost decreasing type (TAD) (−1 < τ < 0)

(c) Almost increasing type (TAI) (0 ≤ τ < 1)

(d) Strict increasing type (TSI) (τ = 1)

Projects No.10 and No.90 with τ = −1 in Figures 2(a) and 2(f),

respectively, are classified into type TSD. Project No.39 and project

kluwer_journal.tex; 24/11/2004; 15:46; p.13



No.71 with τ = −0.6 in Figure 2(c) and Figure 2(e), respectively, are

classified into type TAD. Project No.45 with τ = 0.21 in Figure 2(d)

is type TAI . Finally, project No.17 with τ = 1 in Figure 2(b) is type

TSI . This result implies that the value of Kendall’s τ is adequate for

distinguishing these trends.

Here, we explain the motivation of the classification for τ . We firstly

try to define the two trends: decreasing (−1 ≤ τ < 0 ) and increasing

(0 ≤ τ ≤ 1). However, based on the experience of the actual developers,

we know empirically that there may be a significant difference between

the projects with τ = −1 (or τ = 1) and −1 < τ < 0 (or 0 ≤ τ < 1).

The followings present interpretations of each trend:

(a) Strict decreasing: Many faults are detected and removed in the

early stage, and then a few faults are detected and removed in the

later stage. Thus, only a very few faults remain in the final software

product. This type project is most desirable.

(b) Almost decreasing: This type is similar to the “strict decreasing

type”. Thus, a few remaining faults may be found. However, an

increase of detected faults seems caused by a flaw of design, by

testing in previous activity, or by process management. Then, the

almost decreasing type is to be a good trend type, but is not the

best one.

kluwer_journal.tex; 24/11/2004; 15:46; p.14



(c) Strict increasing: A few faults are detected and removed in the early

stage, and then many faults are detected and removed in the later

stage. Thus, many faults still remain in the final software product.

This type project is most undesirable.

(d) Almost increasing: This type is similar to the “strict increasing

type”. Thus many faults may remain. However, a decreasing of

the trend is caused by an activity trying to recover the quality of

product and process. Therefore, the almost increasing type seems

better than a strict one.

Using these trends for classification, the various effects of factors

such as the skill level of the development team, the kind of product,

etc. are mitigated and included in the trend.

4.2. Result of Classification

Table 2 shows the result of classification by applying Kendall’s rank

correlation coefficient τ to 111 projects. We can see that almost 35% of

projects are in type TSD, and almost 50% of projects are in type TAD.

Thus, 85% of projects have decreasing trends. However, the remaining

15% of projects have increasing trends (that is, types TAI and TSI).

In order to find the relationship between the FFD and the four

types, we present histograms of the FFD in Figure 3. Figure 3 also

kluwer_journal.tex; 24/11/2004; 15:46; p.15



shows the average rank of the field quality for each type. Please note

that the y-axis of Figure 3 denotes the ranks of the values of FFD

rather than the values themselves. Here, the rank of each project takes

a value from 1 to 111. Thus, rank= 1 implies the highest quality (that

is, FFD = 0 in actual data) and rank= 111 implies the lowest quality

(for this case, we cannot show actual value of FFD by the contract).

Figure 3(a) with type TSD shows that 50% of projects have the rank= 1.

Similarly, 3(b) with TAD shows that 51.2% of projects have the rank=

1. Therefore, we can assume that projects with these types tend to

produce very high quality products. On the other hand, Figure 3(d)

with type TAI shows that 20% of projects have the rank= 1, and Figure

3(c) with type TSI shows that no project has the rank= 1. Thus, we can

assume that projects with these types tend to produce lower quality

products.

From Table 2 and Figure 3, we can expect that the average field

quality of the projects with the types TSD and TAD is rather good. On

the other hand, the field quality is not so good for types TSI and TAI .

This property will be further investigated in the next section.

kluwer_journal.tex; 24/11/2004; 15:46; p.16



Figure 1. Development process

Table 1. Actual project data

No. DFCR DFUT DFIT DFFT DFST

1 2.1 0 .6 0.7 1 .8 0.5

2 6.7 0 .0 1.7 1 .2 0.0

... ... ... ... ... ...

110 11.6 1 .8 0.2 1 .0 2.9

111 3.3 5 .3 15.2 3 .3 6.3

Average 7.3 2 .2 1.4 0 .7 0.8

Median 5.2 1 .1 1.1 0 .5 0.3

Table 2. Classification by fault detection trend

Type s Number of projects (%)

Strict decreasing (TSD) 39 (35.1% )

Almost decreasing (TAD) 55 (49.6% )

Almost increasing (TAI) 15 (13.5% )

Strict increasing (TSI) 2 (1.8%)

kluwer_journal.tex; 24/11/2004; 15:46; p.17



5. Relationship between Trend and Field Quality

5.1. Outline of Analysis

In this section, we try to clarify the relationship between the trend and

the field quality of products.

As shown in Table 2, the number of projects in TSI is too few to

perform statistical analysis. Therefore, we integrate TSI and TAI into

TI . Since our purpose is to predict whether or not the final quality

becomes low, we can integrate the projects whose quality is low. Then,

in order to compare the field quality of projects having three types of

trends, we introduce θ, which is the parameter of the location on the

rank of the FFD. In this paper, we define θSD, for projects with type

TSD, to be the average rank of FFD. Similarly, we define θAD and θI

for projects with types TAD and TI , respectively. For simplicity, we call

θSD, θAD and θI the average FFD of projects with types TSD, TAD

and TI , respectively. Then, from the average and the interpretations,

we naturally derive the following relationship.

θSD ≤ θAD ≤ θI (1)

In this paper, we planned three steps of analysis for the average

FFD, θSD, θAD, and θI of projects.

kluwer_journal.tex; 24/11/2004; 15:46; p.18



Analysis 1. (Jonckheere test(Lehmann, 1975))

By using the Jonckheere test, we can check if there is a significant

ordered difference shown in Equation 1 among θSD, θAD, and θI .

Analysis 2. (Multiple comparison)

If the order exists among θSD, θAD, and θI , we perform Ryan’s

pairwise comparison(Iwahara, 1964) to show more detailed rela-

tions among them. Ryan’s procedure consists of the repetition

of the following procedure: Compare the farthermost pair on the

order. When there is significant difference, the next farthermost

pairs are compared.

By repeating such comparison step by step, we finally analyze a

significant difference between neighboring pairs.

Analysis 3. (Fisher’s exact test)

In this step, we investigate whether or not there is a significant

difference among the trend groups of projects with respect to

the final quality of products. We first define the criterion for the

quality, and classify the project data into high quality projects

and low quality projects, according to the criterion. Next, we in-

vestigate the distribution of the number of high quality projects

and the number of low quality projects in the same type. If the

trend is useful as the predictor, then the distribution of each type

kluwer_journal.tex; 24/11/2004; 15:46; p.19



should have significant difference. In order to evaluate, we perform

Fisher’s exact test.

5.2. Experimental Evaluation

Analysis 1. (Jonckheere test)

We define the following two hypotheses H0 and H1 for the average

FFD of projects in types, θSD, θAD, and θI . The null hypothesis H0

is the following relation:

H0 : θSD = θAD = θI

On the other hand, the alternative hypothesis H1 is the following

relationship with at least one of the inequalities being strict.

H1 : θSD ≤ θAD ≤ θI

In this analysis, the level of significance α is chosen as 0.1.

By the Jonckheere test, the null hypothesis H0 is rejected at sig-

nificance level α = 0.1 level because the probability that H0 can-

not be rejected becomes 0.068. Thus, the alternative hypothesis H1

is accepted. This result implies that there is a statistically significant

difference among θSD, θAD, and θI of target projects as the whole, and

the field quality becomes worse according to the order of TSD, TAD,

kluwer_journal.tex; 24/11/2004; 15:46; p.20



and TI . However, at this stage we cannot know which inequalities in

the hypothesis H1 hold.

Analysis 2. (Ryan’s pairwise comparison)

Next, the result of the Ryan’s pairwise comparison is summarized in

Table 3. Here, the significance level α is chosen as 0.1. In Step 1,

comparison of the farthermost pair, θSD and θI , is performed. As a

result, there is somewhat significant difference between θSD and θI .

Similarly, Step 2 shows a significant difference between θAD and θI ,

but no significant difference between θSD and θAD.

From these facts, the following equation holds for the average FFD

of projects.

θSD ≤ θAD < θI

This equation implies that the average rank of the field fault density

FFD becomes larger according to the order of θSD, θAD, and θI , and

that an especially large difference exists between θAD and θI .

In subsections 4.1 and 4.2, we estimated that the two types, TSD

and TAD, behave in the same way with respect to (the rank of) FFD.

Similarly, two types TSI and TAI behave in the same way. Furthermore,

the analysis result implies that there is a large difference between two

types TI (that is, TSI and TAI), and TAD. Therefore, the estimation

agrees with this result.

kluwer_journal.tex; 24/11/2004; 15:46; p.21



(a) Project No.10 (b) Project No.17

(c) Project No.39 (d) Project No.45

(e) Project No.71 (f) Project No.90

Figure 2. Trend of actual data

Table 3. Result of the Ryan’s pairwise comparison

Step
Nominal

significance level α'
Pair of types p-value

1 α'=0.033 (θSD, θI) 0.026

(θSD, θAD) 0.452

(θAD, θI) 0.034
2 α'=0.067

kluwer_journal.tex; 24/11/2004; 15:46; p.22



Analysis 3. (Fisher’s exact test)

As a result of Analysis 1 and 2, we cannot say that there is a significant

difference between θSD and θAD but we can see that the trend affects

the rank of FFD, that is, the final quality of product.

In this analysis, we analyze whether the value of FFD affects the

trend conversely in order to show that the trend is a factor that affects

the final quality. Here, we integrate TSD and TAD into TD, and use

them for analysis.

First, we classify the projects into two types according to the value

of FFD. Here, in order to divide the projects, we introduce a threshold

to the values of FFD. In the analysis we decided to use a value, which

has been used in the company to discriminate poor projects, as the

threshold. Unfortunately we cannot show the value itself here because

of the contract with the company. However we can say that the value

is quite close to the average value of FFDs of 111 projects.

Classified groups are called “High Quality (HQ)” (FFD is larger

than the average) and “Low Quality (LQ)” (FFD is smaller than

the average). Next, by using Fisher’s exact test, we try to show the

difference of the distribution of the trend between classified groups.

Table 4 shows the result of classification. As the result of Fisher’s

exact test using Table 4, the p-value becomes p = 0.050. Therefore,

the null hypothesis can be rejected at the significance level α = 0.1.

kluwer_journal.tex; 24/11/2004; 15:46; p.23



This implies that the ratios of the number of projects in the two groups

(that is, “HQ” and “LQ”) have significant difference between that of

θD and that of θI .

5.3. Conclusion of Evaluation

In Analysis 1, we showed that there is an order among θSD, θAD, and

θI , as a whole. The order is as follows:

θSD ≤ θAD ≤ θI

Next, in Analysis 2, we showed that a significant difference only exists

between θAD and θI . This relation is as follows:

θSD ≤ θAD < θI

From Analysis 1 and 2, we can see that the trend affects the rank of

FFD. In Analysis 3, we showed conversely that the value of FFD

affects the trend.

Finally, we can say that trend type, TD and TI , is an important

factor that may estimate software quality.

kluwer_journal.tex; 24/11/2004; 15:46; p.24



6. Estimating Trend by Metrics in Design & Coding Phase

In Section 5, we showed the relationship between the trend of detected

faults and the field quality. However, in order to assure the quality of

software products in an earlier stage of the development, we need to

analyze the factor that affects the trend and is obtained from the design

& coding phase. In the practical development process, such factors are

used to predict the trend in the test & debug phase. Thus, according

to the result, a plan for the test & debug phase can be managed to

control the final quality of the product.

6.1. Outline of analysis

In Section 5, we show the relationship between the trend of detected

faults and the final software quality. Since the target is the test & debug

phase, which is the last phase of the development process, we cannot

use the trend directly for software quality improvement. Therefore, in

order to control software quality, we use the data collected from the

design and coding phase. In brief, by using such data obtained from

the earlier phase, we try to estimate the trend in the test & debug

phase.

kluwer_journal.tex; 24/11/2004; 15:46; p.25



Therefore, we first analyze the factor that affects the trend from the

data obtained from the design & coding phase.

For analysis, we select the following four metrics that will affect

the trend of detected faults in the test & debug phase based on the

experience of the developers in the company. (As space is limited, we

present the exact or formal definitions in subsection 6.2 only for the

metrics to be utilized.)

− Frequency of detected faults in the review activities: DFreview

− Productivity of the team in a coding activity: P

− Review effort ratio: RR

− Coding review effort ratio: CRR

The metrics related to the review effort ratio are regarded as especially

important in the company(Takagi et al., 1995).

Using the trend type TD and TI as the dependent variable, we

first performed the logistic regression analysis that applies the step-

wise method to the four metrics listed above. By performing logistic

regression analysis on these four metrics, we verify which metrics are

a meaningful factor of the logistic regression model. Logistic regression

is a standard classification technique based on maximum likelihood

estimation and has been used in software engineering.

kluwer_journal.tex; 24/11/2004; 15:46; p.26



Next, by applying Fisher’s exact test, we verify the correlation be-

tween the classification using the logistic model and the classification

using the rank correlation coefficient.

6.2. Result of Statistical Test

As a result of logistic regression analysis, only two metrics, DFreview

and CRR, are shown to be significant, but neither P nor RR are serious.

Thus, we explain the definition and the meaning of the two metrics,

DFreview and CRR, as follows:

− Frequency of detected faults in the review activities: DFreview

DFreview is calculated from the total number of faults detected in

review activities and the total time of effort of review activities at

the design phase. Here, we define the following two parameters:

Dreview: the total number of detected faults in the four review

activities, CDR, FDR, SDR, and MDR in the design phase.

Ereview: the total effort needed for review activities, CDR, FDR,

SDR, and MDR in the design phase (measured by person-

day).

Then, DFreview is formulated as follows:

DFreview =
Dreview

Ereview

kluwer_journal.tex; 24/11/2004; 15:46; p.27



− Coding review effort ratio: CRR

Coding review is the review activity performed after the coding

activity. We define CRR as follows:

CRR =
ECR

ECO + ECR

We can assume the metrics as review effort ratio at coding activity.

A logistic regression model using these two metrics is constructed

as follows:

p =
e−22.391CRR−0.149DFreview+1.261

1 + e−22.391CRR−0.149DFreview+1.261

Here, p represents the probability that a project is classified into type

TI .

Table 5 shows the result of classification using the logistic regres-

sion model p and the rank correlation coefficient τ . As a result of the

Fisher’s exact test using Table 5, the null hypothesis is rejected by

the significance level α = 0.01(< 0.1). Overall, the model p tends to

predict the project as TD. However, the accuracy of prediction about

TI is 57.1%, and the one about TD is more than 90%. That is, by using

model p, we can find at the average 57.1% of projects with low quality

products at the end of the design & coding phase. Thus, we can say

that two metrics, DFreview and CRR, are the characterizing factor of

the trend of detected faults. Furthermore, we can also say that model p

kluwer_journal.tex; 24/11/2004; 15:46; p.28



classifies the projects successfully so that the trends of detected faults

can be estimated.

7. Conclusion

In this paper, we analyzed time series data on the number of faults

detected by successive coding review and testing activities. First, by

applying the rank correlation coefficient to actual project data, we have

successfully classified the data into four types of trends: TSI , TAI , TAD

and TSD. Next, we have investigated the relationships between trends

and field quality, and showed that the software project having trend

TAD or TSD would produce high quality products.

Moreover, we have investigated the relationships between trends and

metrics collected at the design phase, and showed that DFreview and

CRR are related to the trends of detected faults in the test phase.

As future work, since these results are obtained from data of one par-

ticular company, we need to analyze more data from various software

development organizations and to generalize the results.

kluwer_journal.tex; 24/11/2004; 15:46; p.29



(a) Strict decreasing type (b) Almost decreasing type

(c) Almost increasing type (d) Strict increasing type

Figure 3. Histogram of FFD for each type

Table 4. Fisher’s exact test

Table 5. Logistic regression model vs. rank correlation coefficient

��� �������
	�� �
���
� ���������
�������� "!$#&%(' )+*-,�.0/�1325476

�"� ������� 	8� �9�:��� ��� �������� "!$#&%(' ;=< >���
? �������� "!$#&%(@ <A> B

kluwer_journal.tex; 24/11/2004; 15:46; p.30



References

Basin, S. L.: 1973, ‘Estimation of Software Error Rates via Capture-Recapture

Sampling’. Technical report, Science Applications, Inc.

Bisant, D. B. and J. R. Lyle: 1989, ‘A two-person inspection method to improve

programming productivity’. IEEE Trans. on Software Engineering 15(10), 1294–

1304.

Compton, T. and C. Withrow: 1990, ‘Prediction and Control of Ada Software

Defects’. Journal of Systems and Software 12, 199–207.

Fagan, M. E.: 1986, ‘Advances in software inspections’. IEEE Trans. on Software

Engineering 12(7), 744–751.

Goel, A. L.: 1985, ‘Software Reliability Models: Assumptions, Limitations, and

Applicability’. IEEE Trans. on Software Engineering pp. 1411–1423.

Halstead, M. H.: 1977, Elements of Software Science. Elsevier.

International Standard Organization: 1990, IEEE Standard Glossary of Software

Engineering Terminology. IEEE Std 610.12-1990.

Iwahara, S.: 1964, Psychological Statistics: Non-parametric Method. Nihon Bunka

Kagakusha Co.,Ltd. (in Japanese), 2nd edition.

Kendall, M. and J. D. Gibbons: 1990, Rank Correlation Methods. Edward Arnold,

5th edition.

Lehmann, E. L.: 1975, Nonparametrics: Statistical Methods Based on Ranks. Holden-

Day, Inc.

Marick, B.: 1995, The craft of software testing: subsystem testing including object-

based and object-oriented testing. NJ: Prentice-Hall.

kluwer_journal.tex; 24/11/2004; 15:46; p.31



Musa, J. D., A. Iannino, and K. Okumoto: 1987, Software reliability: measurement,

prediction, application. McGraw-Hill.

Muto, S.: 1995, Statistical Analysis Handbook. Asakura Books (in Japanese), 1st

edition.

Paulk, M. C., B. Curtis, and C. Weber: 1993, ‘Capability Maturity Model, Version

1.1’. IEEE Software 10(4), 18–27.

Smidts, C., R. W. Stoddard, and M. Stutzke: 1996, ‘Software Reliability Models:

An Approach to Early Reliability Prediction’. In: Proc. of 7th International

Symposium on Software Reliability Engineering. pp. 132–141.

Takagi, Y., T. Tanaka, N. Niihara, K. Sakamoto, S. Kusumoto, and T. Kikuno: 1995,

‘Analysis of review’s effectiveness based on software metrics’. In: Proc. of 5th

International Symposium on Software Reliability Engineering. pp. 34–39.

Tanaka, T., K. Sakamoto, S. Kusumoto, K. Matsumoto, and T. Kikuno: 1995, ‘Im-

provement of software process by process description and benefit estimation’. In:

Proc. of 17th International Conference on Software Engineering. pp. 123–132.

kluwer_journal.tex; 24/11/2004; 15:46; p.32


