
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003
1

PAPER

Test Item Prioritizing Metrics for Selective Software

Testing

Masayuki HIRAYAMA†, Nonmember, Osamu MIZUNO††, and Tohru KIKUNO††, Members

SUMMARY In order to respond to the active market’s needs
for software with various new functions, the system testing must
be completed within a limited period. Additionally, important
faults, which are closely related to essential functions for users
or the target system, have to be removed, preferably in system
testing.

Many techniques have been proposed to date for effective
software testing. Among them, selective software testing is one
of the most cost effective techniques. However, most of the pre-
vious techniques cannot be applied to short-term development
and initial development of software with various new functions
because much cost is needed for their testing preparation.

In this paper, we propose a new method for selective system
testing in which priorities assigned to functions play an essential
role in the execution of testing. The priorities are determined
based on the evaluation results of three metrics for functions:
the frequency of use, the complexity of use scenario, and the fault
impact to users. Detailed testing instructions are assigned to test
items with high priority, and short and ordinal instructions are
assigned to those with low priority. The difference in the volume
of testing instruction controls the effort of checking test items.

As a result of experimental application to actual software
testing in a certain company, we have confirmed that the pro-
posed selective system testing can detect both fatal faults related
to key functions and critical faults for the system.
key words: Software testing, selective testing, prioritization

1. Introduction

As the number of software functions implemented in
software has been increasing, two trends have formed
in software development. The first trend is that the size
of software has also been increasing and the structure
of software has become more complex[9]. The second
trend is that the period and resources for software de-
velopment are usually limited. In particular, pressure
to expedite the shipment of software systems has cur-
tailed development.

Correspondingly, in order to assure software qual-
ity, software testing should be performed effectively.
Software testing is generally divided into three phases:
unit testing, build testing, and system testing. Among
them, system testing checks the functional behavior of
the target software system[1], [16], and thus is directly

Manuscript received January 21, 2004.
Manuscript revised June 21, 2004.
Final manuscript received January 1, 2004.

†The author is with the Software Engineering Center,
Toshiba Corporation.

††The authors are with Graduate School of Information
Science and Technology, Osaka University.

related to the users’ satisfaction. The growing complex-
ity of software structure and the users’ desire for high
quality have created great demand for more efficient
system testing.

An approach toward attaining the demand is to
select a certain part of test items and to reduce the
number of test items to be tested[12]. This approach
is very effective in reducing the time for testing. How-
ever, if test items are reduced without any considera-
tion to operation by the user, several critical faults in
the untested part might remain in the software related
to an important function, and thus, the final quality
of the software may become worse. Therefore, the de-
termination of criteria in selecting the test items is a
critical issue in selective testing[17].

The software development targeted in this study
is the initial development of software open to the pub-
lic. A typical example is the successive development of
embedded software for a new series of cellular phones.
Such software usually contains various functions and
its development period is quite limited. Thus, the sys-
tem testing plays an important role in assuring quality
within a limited time. Although such software includes
many functions, users do not always use all of the func-
tions in the software to the same extent. In an extreme
case, there may be several functions that are not used
at all. On the other hand, some rarely activated func-
tions may have important roles from the viewpoint of
the system’s behavior. Considering these facts, soft-
ware functions can be classified by applying two crite-
ria or viewpoints: the use frequency of the function and
functional importance. As a result, it is reasonable to
select test items for functions that are important and
frequently used.

Here, we review the previous techniques on reduc-
ing the number of test items. The previous techniques
can be summarized into the following two types:

1. Test item selection from the user’s viewpoint
2. Test item reduction in regression testing

In type (1), the user’s operation and operational
situation is considered. In order to generate and se-
lect test items for system performance evaluation, Musa
et al. proposed the use of operational profiles[10], [11].
Operational profiling is a technique, which supports the
decision on testing conditions based on the assumption
of various user’s operational situations. On the other

2
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

hand, Kallepalli et al. proposed a statistical testing
method using the execution logs for Web systems[8]. In
their method, by applying the Unified Markov Model,
the user’s scenario and operational procedure are statis-
tically analyzed. Both the operational profile and Uni-
fied Markov Model refer to behavior logs in the actual
execution or specification information such as control
flow, and such logs are used to calculate the operations
occurrence probability.

However, the operation modeling of the target sys-
tem requires a large effort in actual development. Since
the preparation of testing activity requires much time,
it is not applicable to time limited development.

In type (2), test item reduction technique for re-
gression testing has been studied. Rothermel et al. con-
sidered software safety factors and proposed a selection
method of test items using the information on differ-
ences in several versions of the software or the informa-
tion on testing coverage in the first version, and con-
firmed the effectiveness of their method[13], [14]. Re-
lated with this research, Harrold et al. proposed a cost-
effectiveness evaluation method in regression testing us-
ing Rothermel’s method[7]. Elbaum et al. also proposed
test item reduction in regression testing[3], [4]. They
can control regression test items by evaluating state-
ment coverage and functional coverage. Gupta et al.
proposed a testing technique by applying the source
code slicing to regression testing[6]. Binkley et al. used
semantic differences that focus on the source code’s se-
mantic view and tried to select test items[2]. Wong
et al. proposed a test item reduction technique based
on path coverage evaluation in system execution[18].
Thus, these techniques are mainly based on the idea of
a difference in information among the various software
versions, or on the idea of testing coverage and faults
information. However, these ideas are only available in
regression testing, applying them to newly developing
software is difficult.

Since the aforementioned techniques require much
data on testing activity and much effort in preparing
the testing, they are not sufficient for system testing
on newly developed software with a short development
period. Thus, in this paper, we propose a new method
for selective system testing, which is easily applicable
to such system testing. The purpose of the proposed
selective testing method is to achieve a stable detection
of important faults that should be removed within a
limited period. Here, “the important faults that should
be removed” implies the following:

1. Faults that are related to frequently used functions
for users or systems, or

2. Faults that may have critical influence on system
reliability or system safety.

Faults of the first type are closely related to the func-
tions that are frequently used by system users, or the
functions that may cause serious disadvantages to users

in case of abnormal behavior. We can evaluate these
faults by using the concept of functional priority. On
the other hand, regarding the second type of faults, we
believe that such faults make the system run out of
control. We can evaluate these faults by using the con-
cept of severity. The definitions of functional priority
and fault severity do not necessarily provide a specific
relation between these two factors. That is, a function
with high priority does not necessarily cause a critical
fault with high severity.

In this paper, we assume that a list of functions
and a list of test items for every function have already
been constructed. This assumption is validated because
the targeted software development usually prepares a
list of functions in the design phase, and it is relatively
easy to generate test items from the list of functions
(however, the amount of test items usually becomes
very large). In the proposed method, we prioritize the
functions based on metrics by considering the use fre-
quency and the impact of faults, and we append testing
instructions, which enable effective testing based on the
priority of each test item.

In order to confirm the effectiveness of the pro-
posed method, we performed an experimental applica-
tion to actual software testing, and evaluated the result
of the experiment. As a result, our selective testing
method achieved reliable detection of such faults relat-
ing to functions with high priority. Moreover, regarding
critical faults relating to system safety and system re-
liability, as many such faults as possible were detected.

In this paper, the concept and basic idea of the se-
lective testing method are presented together with ex-
amples showing the generation of test items using this
method. In addition, the effectiveness of testing in-
structions for test items is also shown. The rest of this
paper is organized as follows: In Section 2, we show an
outline of the proposed selective testing method. The
conventional testing method is briefly described in Sec-
tion 2, too. In Section 3, the detailed procedure of the
proposed method is explained by referring to an exam-
ple of an actual development project. Section 4 shows
an experiment by applying the proposed method to ac-
tual software testing. The results of the experiment are
also evaluated in Section 4. Finally, Section 5 concludes
this paper.

2. Proposed Method

The proposed selective testing method tries to detect
as many faults that have a serious influence on users
as possible in a limited period of testing. Since the
testing period is quite limited, we have to develop a
straightforward method to apply to the actual testing.
To do so, we introduce several metrics to determine the
priority of functions. On prioritizing, we mainly focus
on the user’s viewpoint by considering the properties
of the target software. Before discussing our selective

HIRAYAMA et al.: TEST ITEM PRIORITIZING METRICS FOR SELECTIVE SOFTWARE TESTING
3

Requirements Functions list

Step 2: Conduct testing
in the order of

the test specification.

Step 1: Construct test items according to
the functional specification.

Test specification
(Test items)

Test results

Test preparation

Test execution

Fig. 1 Outline of conventional software testing in the company

testing method, we summarize the conventional testing
method in the next subsection.

2.1 Conventional testing method

Figure 1 shows the main procedure of the conventional
testing method. As the figure illustrates, in the conven-
tional testing method, test engineers confirm the func-
tional requirements described in a specification docu-
ment sequentially[12]. In the first step, test items are
extracted in sequential order of functional requirements
in the specification document. Next, testing is con-
ducted in the order of test items described in the test
specification document. Thus, during the conventional
testing method, test items themselves are neither eval-
uated nor selected.

Figure 2 and Table 1 show an example of a software
specification document and a test specification docu-
ment, respectively. These are example documents of
a Railway Transfer Information System (RTIS), which
graphically describes the railway’s transferring infor-
mation for a certain district. The software specification
document in Figure 2 describes the functional specifi-
cations for railway registration and station registration,
including the attribute inputs for railways and stations.
A test engineer constructed the test specification docu-
ment according to the software specification document.
In the test specification document, items for confirma-
tion are listed in the order of functional requirements
in the software specification document.

2.2 Outline of the proposed method

The proposed selective testing method consists of three
phases: functional priority assignment, test instruction
assignment, and testing. Figure 3 shows the outline of
the proposed method.

2. Operation

2.1 Railway operation

2.1.1 Registration of railway corp.
1. Select "Register railway’s name"

in the right click menu.

2. In the railway newly registration dialog,
input a railway corp. name.

If cancel button is pressed,
the railway corp. name is not registered.

2.1.2 Create a new route
1. Select "New route"

from the right-click menu.

2. In the "new route mode",
select a railway name.

Register railway corp.

New route

Background

Register railway corp.

New route

Background

Register railway corp.

OKOK

CancelCancel

Input newly created railway corp.
and press OK

Register railway corp.

New route

Background

Select railway corp. <New route mode>

JR
TOKYU Corp.

Select Railway corp.

OKOK

CancelCancel

Newly registrationNewly registration

Change NameChange Name

Fig. 2 Software specification document

Table 1 Test items by conventional method
Function’s

ID
Function’s

 name
Testing item Expected result of testing

1 Register name
of railway
corp.

Select "Register railway’s name" in the right click menu,
then specify the name "JR1" in the dialog and press
"OK".

The name "JR1" is registered and
shown.

1 Register name
of railway
corp.

Select "Register railway’s name" in the right click menu,
then specify a name "JR2" in the dialog and press
"cancel".

No name is registered.

2 Create a new
route

Select "New route " from the right-click menu, then
select "JR1" from the railway selection dialog and press
"OK".

Switch to "New route mode" and close
the dialog.

2 Create a new
route

In "new route mode", left-drag the mouse between start
and end points, then release the left button.

A new route is created and stations are
automatically created on the start and
end points.

2 Create a new
route

Select "New route " from right-click menu, then select
"JR1" from railway selection dialog and press "Cancel".

Close the dialog.

2 Create a new
route

Select "New route " from right-click menu, then pres s
"Register new railway" button from railway selection
dialog.

The new railway registration dialog is
shown.

2 Create a new
route

Select "New route " from right-click menu, then select
"JR1" and press "Change railway’s name" button from
railway selection dialog.

Property dialog for the railway(JR1) is
shown.

2 Create a new
route

In the property dialog for the railway (JR1), change the
name of railway to "JR2" and press "OK".

The name of railway is changed to
"JR2".

2 Create a new
route

In the property dialog for the railway (JR2), change the
name of railway to "JR1" and press "Cancel".

The name of railway is not changed.

2 Create a new
route

Select [Edit(E)-Edit curve(L)] from top-menu. Switch to "Line edit mode".

2 Create a new
route

In "line edit mode", left click on a route. A black circle appears on the route.

2 Create a new
route

In "line edit mode", left-drag the black circle, and
release the left button.

The route becomes a curved-line.

3 Extend a route Right-click on a station, and select "Extend route" from
right-click menu.

Switch to "Route extend mode".

3 Extend a route In "route extend mode", left-drag the terminal, and
release the left-button.

A new terminal station is automatically
created at the end point.

4 Delete a route Right-click on a route, and select "Delete " from a
pop-up menu, then press [OK] button on the
confirmation dialog.

All lines in the route are disappeared.

4 Delete a route Right-click on a route, and select "Delete " from a
pop-up menu, then press [Cancel] button on the
confirmation dialog.

No line in the route is disappeared.

5 Connect
routes

Create two routes, and place a station on the other
station by moving a station.

The stations become transfer stations.

5 Connect
routes

Create two routes, and place a station on the other
station by moving a route.

The stations become transfer stations.

5 Connect
routes

Cross two routes, right-click on the intersection point
and select "New station...".

The station becomes a transfer station.

6 Change color
of a route

Right-click on a route, select "Color..." from a pop-up
menu, and choose a color and press [OK] button on the
color dialog.

The color of the route and the stations in
the route changes.

6 Change color
of a route

Right-click on a route, select "Color..." from a pop-up
menu, choose a color, and press [Cancel] button on the
color dialog.

The color of the route and the stations in
the route does not change.

First, a specification for testing is constructed by
the conventional method mentioned in subsection 2.1.

Next, the functions that the target system provides
are first prioritized from various viewpoints. In the test
instruction assignment phase, detailed testing instruc-
tions are appended for the functions with a higher test-
ing priority. On the contrary, for functions with low
priority, simple test instructions are appended. The
priority of test items inherits the priority of the func-

4
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

Step 2: Do testing

Metrics evaluation

Step 1: Prioritize functions

Functions list
with priority

Step 2: Assign detailed instructions
based on the functional priority

Step 3: Conduct testing

Step 1: Construct test items

Test results Test results

Test preparation

Test execution

Test specification
with testing instructions

Conventional Method

Test specification
(Test items)

Functions list

Fig. 3 Outline of the proposed selective testing method

tion. By changing the detailed level of test specifica-
tions, the quality and quantity of software testing can
be controlled. Thus, we can effectively utilize the time
for the testing and obtain maximum reliability in a lim-
ited time. Finally, in the testing phase, testing instruc-
tions are executed. In the proposed selective testing,
the functions with higher priority are checked with a
preference over those with lower priority.

3. Detailed Procedure

3.1 Step 1: Prioritization of functions

(a) Metrics

The aim of the proposed selective testing method is the
stable detection of faults relating to important func-
tions for users and systems. Thus, in the first step of
our method, we extract important functions for users
and systems. In order to extract important functions,
our method pays attention to the user’s viewpoint and
adopts three metrics: “the frequency of use,” “the com-
plexity of use scenario,” and “the fault’s impact to
users.” At this point, these metrics are considered to
be sufficient for the proposed selective testing method
based on the developers’ experience and interviews with
them.

An important function for users is the function
that many users frequently operate with important
data, or a function that has a large impact on many
people if they encounter a problem[10]. Therefore, we
evaluate two metrics, “the frequency of use” and “the
fault impact to users” based on the assumption of a
problem. The frequency of use was adopted as a test
item selection viewpoint in Musa’s Operational pro-
files[10]. The metric for the fault impact to users was
used as a reliability evaluation metric for release ver-
sion software in Musa’s method although this metric

was not used as a metric for test item selection.
On the other hand, functions with complicated

user operations tend to lead to errors of operation by
the user. In addition, these types of software may not
be sophisticated and may tend to contain many com-
plex modules. Therefore, in our method, we also eval-
uate “the complexity of use scenario.” This metric is
introduced according to the engineers’ experience in the
company.

(b) Evaluation

In priority assignment to a function, the priority for
each function is quantitatively evaluated using the met-
rics mentioned above. We think that easy selection
of test items is one of the most important factors in
this method. In order to protect ease of selection, the
proposed method does not require other documents for
testing that are newly developed, nor does the method
require other works for system behavior evaluation.
By using the existing document and evaluating cur-
rent functions subjectively, we can easily prioritize the
functions to be tested. However, if we adopt a com-
pletely subjective criteria, the result of evaluation may
become vague. Therefore, we have prepared the evalua-
tion guidelines for each metric as summarized in Table
2. (The notation of this table is based on the refer-
ence[5].) With this evaluation guideline, the result of
the evaluation can be justified to a certain degree. For
example, the use frequency is evaluated as follows: If a
function is used 1 time per a month, then the metric is
evaluated as 1. Similarly, if a function is used 1 time
per a day or 1 time per an hour, then the metric is
evaluated as 5 or 8, respectively.

Each metric has a value from 1 to 10. The priority
for each function is calculated from the values of these
three metrics. The priority of test items inherits the
priority of the function.

In order to evaluate the testing priority as simply
as possible, we have integrated these 3 metrics into 1
priority metric. To do so, we used the Analytical Hier-
archy Process(AHP)[15], a methodology used in deci-
sion making for selecting the best among a set of alter-
natives, to select the strategy for metrics integration.
The overview of the strategy selection is as follows:

1. Prepare 3 metrics M1 (Complexity of use scenario),
M2 (Fault impact to users), and M3 (Use fre-
quency).

2. Prepare the following 3 strategies of priority cal-
culation using metrics M1, M2, and M3, which are
applicable in the actual software testing.

S1 Non-weighted metrics summation
S2 Weighted summation with respect to the cus-

tomer’s loss
S3 Weighted summation with respect to the inter-

nal software quality

HIRAYAMA et al.: TEST ITEM PRIORITIZING METRICS FOR SELECTIVE SOFTWARE TESTING
5

Table 2 Evaluation guideline for each metric

Fault impact to users (Time for recovery)

1 min./fault 1 hour/fault 1 day/fault 1 week/fault
1 2 3 4 5 6 7 8 9 10

Use frequency
1 time/month 1 time/week 1 time/day 1 time/hour 1 time/min.
1 2 3 4 5 6 7 8 9 10

Complexity of use scenario
1 operation/function 10 opers./func. 20 opers./func.
1 2 3 4 5 6 7 8 9 10

Table 3 Result of AHP evaluation

Strategy
S1 S2 S3

M1 0.2 0.2 0.6
Metrics M2 0.2 0.6 0.2

M3 0.2 0.7 0.1
Score 0.2 0.5 0.3

3. Do pairwise comparisons on importance be-
tween all metrics pairs (M1, M2), (M2, M3), and
(M3, M1). Relative weights for M1, M2, and M3

are calculated.
In this study, we asked for 3 developers in our com-
pany to perform AHP†. According to the result of
3 developers’ discussion, the weights for M1, M2,
and M3 are determined as 1/3, 1/3, and 1/3, re-
spectively. This means that these 3 developers con-
sidered 3 metrics, M1, M2, and M3, have the same
importance for system testing.

4. For the metric M1, do pairwise comparisons with
strategies S1, S2, and S3, asking in which strategy
M1 is considered important. Consequently, con-
tributions of strategies for the metric M1 is calcu-
lated. Similarly, contributions of metrics M2 and
M3 to 3 strategies are calculated.
In this study, the 3 developers also evaluated the
contributions of metrics to each strategy. For ex-
ample, contribution of M1 to strategy S1 is evalu-
ated as 0.2. Table 3 shows the evaluated contribu-
tions for all pairs of metric and strategy.

5. By multiplying the weights and contributions, the
scores of supporting strategies S1, S2, and S3 are
calculated. For example, in the case of S2, the
score is calculated by 0.2× 1/3+ 0.6× 1/3 + 0.7×
1/3 = 0.5. Similarly, the scores for S1 and S3

are calculated as 0.2 and 0.3, respectively. Conse-
quently, since the score of strategy S2 is the high-
est, strategy S2 is selected for prioritization of test
items.

As a result, the prioritization was performed ac-
cording to the strategy S2. In S2, the weights for met-
rics M1, M2, and M3 are 0.2, 0.6, and 0.7, respectively.
By normalizing so that the sum of all weights becomes
1.0, we obtained the following formula to calculate the

†In order to perform AHP, we used a tool, AHPNaviTM ,
developed by TOSHIBA Corporation.

Table 4 Calculated priority for each function in RTIS

Function’s
ID

Function’s Name
(Operation for routes)

Complexity of
manipuration
(M1)

Fault impact
to users (M2)

Frequency of
use (M3)

1 Register name of railway corp. 4 7 3 4.7 Medium
2 Create a new route 10 9 9 9.1 High
3 Extend a route 1 4 2 2.7 Low
4 Delete a route 2 4 1 2.3 Low
5 Connect routes 2 9 8 7.6 High
6 Change color of a route 10 5 7 6.6 High

Priority

priority of test items:

P (M1, M2, M3) = 0.13× M1 + 0.40 × M2 + 0.47× M3

3.2 Step 2: Assignment of detailed instructions

In the conventional testing, the granularity of test items
depends mainly on the description of the product’s
specification document. So, in many cases, the gran-
ularity of the test items does not reflect the testing
priorities from the user’s viewpoints. In the proposed
method, we generate the instructions for testing ac-
cording to the test priorities for functions, apart from
the granularity of each function’s specification. That is,
testing instruction is clearly described for the test items
with high priority. On the other hand, for the test items
with low priority, the instruction directs the testing of
only the behaviors that are explicitly described in the
specification document. With these specifications, the
quality and quantity of testing is controlled, and de-
pendence on the skill of the testing operator can be
avoided.

3.3 Case Study

In this subsection, an example of priority assignment
for functions from the user’s viewpoint, and instruc-
tions for test items are shown by using the case study
of the specification of a railway transfer information
system (RTIS), which was shown in subsection 2.1.

(a) Test priority

Table 4 shows the calculated priority for each function
of the RTIS. In the priority calculation, we evaluated
the frequency of use, the complexity of use scenario,
and the fault impact to users.

6
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

In addition, for this application experiment, func-
tions having a calculated score of 5.0 or higher are
regarded as high priority functions. Similarly, those
having a score ranging from 2.5 to 5.0 are regarded
as medium priority functions, and those having 2.5 or
smaller as low priority functions.

Since we performed the experiment in actual soft-
ware development, we had to choose the most practical
selection of test items. That is, we had to increase
the number of test items to be tested to prevent miss-
ing critical faults. That’s why we expanded the range
of high priority functions to twice as large as those of
medium and low priority functions.

For example, the function ID. 5 is a function that
registers a condition for railway route connection at
each station. Concerning this function, the complexity
of use scenario is 2, the impact of a fault is 9, and the
frequency of use is 8. The priority score of this function
is calculated as 7.6. From this score, this function is
regarded as a high priority function.

(b) Testing instruction

First, the expected behavior and the results of target
functions are described in the test specifications, and
the required operation for the behavior and results are
also described by the conventional method. Table 1
shown in Section 2 is an example of test specifications
that are generated from the behavior of the RTIS.

Next, based on the assigned priority, testing in-
structions are appended to test items for high priority
functions in the selective testing method. These in-
structions are appended so that engineers can notice
the priority of each test item. Of course, by specify-
ing detailed instructions by the experienced engineers,
the efficiency of testing will be improved. For example,
engineers are instructed to check illegal behaviors of
the software, to check for unexpected input characters
for a dialog, and so on. For low priority functions, on
the other hand, only simple instructions are assigned.
Table 5 shows a portion of a test specification docu-
ment used for the RTIS. In this document, taking into
account the test priorities for each function, detailed
instruction for high priority test items are added in the
test specification document.

For example, test items with ID. 2 have a high
priority, and therefore testing instructions are given to
them. On the other hand, the test items with ID. 4,
which is for a function with low priority, are given only
a simple instruction, “Check only basic behaviors.”

4. Application to Software Testing

In this section, we will show the actual application to
another software system that is under construction.

Source file
parser

Project window
(List of functions

to be tested)

Generation pattern window

Switching stub & real function

Setting test data

Generation
pattern

file

Test itemsTest results

User defined type window

Code to initialize
user defined types

Test items window
(List of test items and expected results)

Stub & driver

Value setting window

Criteria analysis

Random generation

Test execution dialog

Auto generator of test items

Stub & driver
generator

Functions definition

Conditions Types
Invocation of functions

Parse part

Stub & Driver
Generation part

GUI part

Data flow

Information flow

Operation flow

Fig. 4 An overview of the target software tool

4.1 Characteristics of target software

We applied the proposed selective testing method to the
unit testing support tool(UTST), which is an actual
application software developed in a certain company.
The UTST is a software tool that has functions to se-
lect testing targets, functions to support automatic test
data generation, and functions to support stub driver
generation.

The overall architecture of the UTST is shown in
Figure 4. The UTST consists of the Parse part, the
GUI part, and the Stub & Driver Generation part. In
the GUI part, five windows are implemented. The main
window of this tool is the “Project window,” and it has
a list of functions to be tested. By using the “Genera-
tion pattern window” and the “Value setting window,”
the criteria and patterns for generating test items are
changed, and automatically generated test items are
shown in the “Test items window”.

The main specifications of this software are as fol-
lows:

Language: C language.
Size of software: About 30000 LOC.
Degree of reuse: All newly developed.

4.2 Purpose

An example of test specification generation, taking into
account functional priority using the selective testing
method, was shown in subsection 3.3. In this subsec-
tion, an experiment is shown, in which the generated
test specification document is actually used. For the ex-
periment, two independent testing teams, Team-A and
Team-B, were organized in order to verify the effec-
tiveness of the proposed method. Team-A used a test
specification document prepared by the conventional
method, and Team-B used a document prepared using
the selective testing method described in Sections 2 and
3.

In this experimental application, the evaluation fo-

HIRAYAMA et al.: TEST ITEM PRIORITIZING METRICS FOR SELECTIVE SOFTWARE TESTING
7

Table 5 Example of generated test items with testing instructions

Testing item Expected result of testing

1 Register name
of railway corp.

Select "Register railway’s name" in the right click menu, then
specify a name "JR1" in the dialog and press "OK" .

The name "JR1" is registered and shown.

1 Register name
of railway corp.

Select "Register railway’s name" in the right click menu, then
specify a name "JR2" in the dialog and press "cancel".

No name is registered.

Select "New route " from right-c lick menu, then select "JR1" from
railway selection dialog and press "OK".

Switch to "New route mode" and close the
dialog.

In "new route mode", left-drag the mouse between start and end
points, then release the left button.

New route is created and stations are
automatically created on the start and end
points.

Select "New route " from right-c lick menu, then select "JR1" from
railway selection dialog and press "Cancel".

Close the dialog.

Select "New route " from right-c lick menu, then press "Register
new railway" button from railway selection dialog.

The new railway registration dialog is shown.

Select "New route " from right-c lick menu, then select "JR1" and
press "Change railway’s name" button from railway selection
dialog.

Property dialog for the railway(JR1) is shown.

In the property dialog for the railway (JR1), change the name of
railway to "JR2" and press "OK".

The name of railway is changed to "JR2".

In the property dialog for the railway (JR2), change the name of
railway to "JR1" and press "Cancel".

The name of railway is not changed.

Select [Edit(E)-Edit curve(L)] from top-menu. Switch to "Line edit mode".

In "line edit mode", left click on a route. A black circle appears on the route.

In "line edit mode", left-drag the black circle, and release the left
button.

The route becomes a curved-line.

Extend a route Right-click on a station, and select "Extend route" from right-click
menu.

Switch to "Route extend mode".

Extend a route In "route extend mode", left-drag the terminal, and release the left-
button.

A new terminal station is automatically created
at the end point.

Delete a route Right-click on a route, and select "Delete " from a pop-up menu,
then press [OK] button on the confirmation dialog.

All lines in the route are disappeared.

Delete a route Right-click on a route, and select "Delete " from a pop-up menu,
then press [Cancel] button on the confirmation dialog.

No line in the route is disappeared.

Create two routes, and place a station on the other station by
moving a station.

The stations become a transfer station.

Create two routes, and place a station on the other station by
moving a route.

The stations become a transfer station.

Cross two routes, right-click on the intersection point and select
"New station...".

The station becomes a transfer station.

Right-click on a route, select "Color..." from a pop-up menu, and
choose a color and press [OK] button on the color dialog.

The color of the route and the stations in the
route changes.

Right-click on a route, select "Color..." from a pop-up menu,
choose a color, and press [Cancel] button on the color dialog.

The color of the route and the stations in the
route does not change.

Detailed instruction (if any)
Function’s

ID
Function’s

name

Check whether a confirmation dialog appears.

Change color
of a route

Check the change of railway’s name is reflected in other views in the application.

Create a new
route

Create a new
route

Create a new
route

Create a new
route

Check whether a confirmation dialog appears.

Change color
of a route

Check the name of railway is appropriately changed. Check the behavior of the listbox in the dialog.

Create a new
route

Create a new
route

Check the mode and the name of railway is not changed. Check the behavior of the listbox in the dialog.

Check the route is displayed during dragging. Check the route is a staraight line. Also check tw o stations are
created in the appropriate positions.

Create a new
route

Check the right click menu is properly displayed.

Check the appropriate railways name is shown.

Check whether the name of railway is appropriate. Check the property dialog is closed.

Check the route is displayed during dragging.

Create a new
route

Check the black circle is on the right position.
Create a new
route

Create a new
route Check whether the mode is unchanged if the menu is canceled.

Check only the basic behaviors.

Check only the basic behaviors.

Check only the basic behaviors.

Check only the basic behaviors.

Check if the message of confirmation window is correct.

Check if the route is adequately divided into two routes.

Check if the station does not become a transfer station on the point other than the cossing point.

Connect routes

Connect routes

Connect routes

6

6

5

5

5

4

4

3

3

2

2

2

2

2

2

2

2

2

2

cused on the following three questions:

Q1) In determining priority, are there a larger number
of faults detected for the functions with a higher
priority?

Q2) In determining priority, does any difference arise in
the detection of critical faults related to reliability
and safety?

Q3) Are the faults that should be removed before sys-
tem shipment (faults in functions with higher pri-
ority and faults in functions essential to system
reliability) definitely detected?

4.3 Application procedure

(a) Testing teams

We compared the tendency of fault detection by the

two Teams A and B. Testing specifications that Team-
B used contained testing instructions for test items re-
lated to high priority functions and simple instructions
for test items related to low priority functions. The
meaning of these testing instructions was explained in
advance to the engineers who participated in this ex-
periment. Thus, the engineers understood that the in-
structions had been prepared so as to reflect the test
priorities for each test item. In order to avoid devia-
tion due to the engineers’ skills, engineers having almost
the same technical experience and skill were assigned
to this experiment. The similarity of technical experi-
ence and skill among engineers was mainly evaluated
by the number of years each engineer had worked, and
the individual degree of technical knowledge.

Moreover, it should be noted that another group of
engineers designed and implemented the target software
other than these two groups. In addition, an engineer

8
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

Metrics evaluation

Step 1: Prioritize functions

Functions list
with priority

Step 2: Assign detailed instructions
based on the functional priority

Step 3: Conduct testing

Test results

Test specification
with testing instructions

Requirements Functions list

Step 2: Conduct testing
in the order of

the test specification.

Step 1: Construct test items according to
the functional specification.

Test specification
(Test items)

Test results

Experiment coordinator

Team B

Team A

Fig. 5 Outline of the experiment

(here, we call the engineer experiment coordinator) who
prepared the specifications of the target software coor-
dinated the entire experiment. In this experiment, the
experiment coordinator was needed to make the exper-
imental environment for each testing team as same as
possible. In order to show the difference between the
methods used by Teams A and B, the experiment co-
ordinator prepared test specifications for both teams.

Note that the experiment coordinator is not
needed in actual application of proposed selective test-
ing since one of the testing staff can act as an exper-
iment coordinator. It is also noted that an engineer
who appends instructions is not necessarily experienced
since the main objective of an instruction for a test item
is to notify the priority of the test item to the testing
team according to the detailedness of the instruction.

The overview of the experiment is shown in Figure
5.

(b) Generating test items

During the experiment, Team-A and Team-B per-
formed testing independently. Test items generated for
the experiment included 32 items for high priority func-
tions, 50 items for medium priority functions, and 54
items for low priority functions. A part of the priori-
tized functions are shown in Table 6.

As was explained in subsection 3.3, the coordina-
tors appended the testing instructions to the test items
for the highly prioritized functions. As a result, we
obtained the test items for Team-B as shown in Table
7.

The faults detected by each team were summarized
and fed back to the engineer who developed the soft-
ware in order to correct and debug.

Table 6 A part of prioritized functions

Function’s
ID

Function’s Name
(From UTST specification)

Complexity of
manipuration
(M1)

Fault impact
to users (M2)

Frequency of
use (M3)

9
Refresh the project window
and update information

9 8 6 7.2 High

2 Open a project 10 8 5 6.9 High

42
Show results at a glance in
the test case window

7 6 10 8.0 High

1 Newly create a project 9 10 2 6.1 High
0 Start this application 3 10 5 6.7 High

34 Dialog to set detailed values 5 6 7 6.3 High

23
Show the generating pattern
window

7 6 5 5.7 High

...

12
Delete a function in the
project window

2 3 2 2.4 Low

...

Priority

Table 7 A part of test items for Team-B

Testing item Expected result of testing

...

Delete a function in the project window
from pop-down menu.

A node of the function should be deleted.

...

Invocate the generating pattern window
from menu.

(1) Columns such as "Name of variables",
"Types", "Guideline to generate concrete
values", "Concrete values", "Guideline to
generate loops" are shown.
(2) Names of arguments used in functions
to be tested, global variables, and stub
functions are shown in "variable name"
columns.
(3)

Open an existing pattern file or create it
newly.

(1) Pattern generation window is shown.
(2) Name of pattern file is shown in the title
bar. (3) The stub and real modules can be
chosen.

...

Detailed instruction (if any)
Function’s

ID
Function’s name

Check only the basic behaviors.

12
Delete a function in
the project window

23
Show the generating
pattern window

When you open an existing pattern file, check both of a real module file and a stub file.

23

Do testing for both "new file" and "open existing file" commands. Concrete values
should be set for all types of variables such as arguments, global, and stub.

Show the generating
pattern window

4.4 Evaluations

(a) Time for testing

As for the time required for the actual testing in this
experimental application, no significant difference ex-
isted between Team-A (the conventional method) and
Team-B (the selective method). However, an additional
three hours were required for the coordinating group to
prepare detailed testing specifications by taking into
account the priority of the functions. Since this ad-
ditional time was shorter than 10 percent of the total
time required for the entire testing, we considered this
additional time acceptable.

(b) Fault detection

The result of Team-B obtained from the experimental
application is shown in Table 8(a). Each row shows a
test item with its priority. A test item is labeled such
as 2-(13). The first number shows function’s ID and
the second number shows serial number of test item in
the function. Each column shows a fault detected by
the proposed selective testing. For example, the first
fault is detected by test item 2-(13). We can see that
test item 12-(3) detected 4 faults and one of these faults

HIRAYAMA et al.: TEST ITEM PRIORITIZING METRICS FOR SELECTIVE SOFTWARE TESTING
9

Table 8 Result of experiment (Team-B)

(a) Fault detection data for Team-B

Test
item

Priority 1 2 3 4 5 ... 12 13 14 15 ... 22

...

2-(13) High v
2-(14) High v

...

4-(3) Medium v
4-(4) Medium v
4-(5) Medium v

...

12-(2) High
12-(3) High ... v v v v ...
12-(4) High

...

14-(2) High ... v ...
14-(3) High v

...

30-(2) Low

Faults

(b) Aggregated result for Team-B

Critical Major Minor Total

High 1 5 5 11

Medium 0 0 5 5

Low 1 1 4 6

Total 2 6 14 22

T
es

t p
rio

rit
y

Seriousness of faults

Table 9 Aggregated result of experiment for Team-A

Critical Major Minor Total

High 0 4 1 5

Medium 0 0 4 4

Low 0 2 7 9

Total 0 6 12 18

T
es

t p
rio

rit
y

Seriousness of faults

was also detected by test item 14-(2).
In Table 8(b), the number of faults detected in the

experimental application is aggregated in a matrix form
expressed in terms of test priority and the seriousness of
the faults. In aggregating, we only count one test item
per one fault. For example, the 2nd fault was detected
by two test items, 2-(14) and 14-(3). Since test item
2-(14) detected the fault, the detection of 14-(3) is not
counted in Table 8(b).

“Test priority” in the table represents the priority
for test items that is determined from the evaluated
results of viewpoints and metrics. As explained in sub-
section 3.3, based on the calculated score, the priority is
classified into three levels: high, medium, and low. The
priority “High” is assigned for a score of 5 or higher,
the priority “Medium” for a score ranging from 2.5 to
5, and the priority “Low” for a score of 2.5 or smaller.
The “seriousness of faults” means the seriousness if the
fault occurs. The seriousness is also classified into the
following three levels[9]:

Critical: Faults that seriously deteriorate system reli-

ability or product safety, for instance, a fault which
makes the system run out of control or halt alto-
gether.

Major: Faults whose impacts are smaller than the
above and are limited to a portion of the system’s
behavior.

Minor: Faults whose impacts are relatively small,
which allow many users to continue the operation
without any troubleshooting, for instance, a fault
such as a simple indicator error.

Table 8(b) shows the classification of faults de-
tected in the proposed selective method. The columns
show classification by the seriousness of faults. That
is, Team-B detected 2 critical, 6 major, and 14 minor
faults during their testing. On the other hand, the rows
show the priority of test items by which faults are first
detected. That is, 11 faults are detected by the test
items with a high priority, and 5 and 6 faults are de-
tected by the test items with a medium and low priority,
respectively.

When test items related to high priority functions
were tested, Team-A, using the conventional method,
detected no “critical” faults, 4 “major” faults, and 1
“minor” fault (as shown in Table 9). On the other hand,
Team-B, using the selective testing method, detected 1
“critical” fault, 5 “major” faults, and 5 “minor” faults.

(c) Detected faults related to high priority functions

As mentioned in subsection 3.1, the priority of test
items inherits the priority of the function. Thus, faults
detected by test items with a high priority related to
functions with a high priority.

As far as the number of detected faults related to
high priority functions are concerned, 5 faults in total
were detected using the conventional method and in-
cluding all seriousness levels, as shown in Table 9. On
the other hand, 11 faults were detected in total by the
selective method. For this experimental application, a
function with high priority means that the frequency
of its use is very high, faults related to the function
cause critical damage if they occur, or the use scenario
is complicated and numerous faults may easily be in-
corporated.

Faults for high priority functions for users must be
detected and removed, without any exception, even if
they are trivial. From this viewpoint, the fact that the
selective method detected more faults for high priority
functions is significant. For this experimental applica-
tion, testing instructions were provided to the testing
operators for testing high priority functions with care.
These instructions were considered effective for detect-
ing faults.

(d) Detection of critical faults

Regarding the detection of serious faults, the conven-

10
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.3 MARCH 2003

Table 10 Result of comparison considering the seriousness

Team-A Team-B
Type-R:
 Must be removed.
Type-P:
 Preferably be removed.
Type-T:
 Trivial faults.

4

1 6

13 10

6

tional method detected no “critical” faults as shown in
Table 9. On the other hand, the selective method de-
tected 2 “critical” faults, including one fault detected
from the testing of a high priority test item as shown
in Table 8(b). This result shows the effectiveness of the
testing instructions for high priority test items. How-
ever, the other fault was detected from the test of a low
priority test item. By examining the test specifications
related to this fault, we found that this fault originated
from a test item which partly overlaps another test item
for high priority functions performed just prior to this
testing. Thus, this fault cannot necessarily be recog-
nized as a fault that was detected in a low priority test
item. Therefore, the selective method’s ability to de-
tect “critical” faults can be considered superior to that
of the conventional method.

(e) Faults that should be removed

Considering the above discussions, we examined how
completely the testing methods detect the faults that
must be removed before shipment. Here, the faults that
must be removed mean:

(1) Faults that are related to important functions for
users or the target system.

(2) Faults that have a critical influence on other sys-
tems from the viewpoint of reliability or safety.

The faults in the dark gray area in Tables 8(b) and
9 must be removed since they are related to both defini-
tions (1) and (2). Similarly, since faults in the medium
gray area are related to either (1) or (2), they should
preferably be removed. However, faults in the light gray
area have no relation to (1) and (2). Detection of these
faults is unnecessary.

Thus, faults were classified into the following three
categories and summarized in Table 10 as:

Type-R: Faults that must be removed. Since they are
both critical and important to users, they must be
removed immediately.

Type-P: Faults that should preferably be removed.
Since these faults have possibility to be the sys-
tem failure, they should also be removed as soon
as possible.

Type-T: Trivial faults. Even though they are identi-
fied as faults, it is considered that they might not
cause any serious problems immediately. So, they
can be removed in the next regular update.

Table 10 shows that the selective method or Team-
B detected 6 Type-R faults (that is, 1+5+0), whereas
the conventional method or Team-A detected 4 (that
is, 0 + 4 + 0). Moreover, concerning the Type-P faults,
the selective method detected 6 faults, whereas the con-
ventional method detected 1. The number of Type-R
and Type-P faults detected by the selective method was
12, whereas 5 faults were detected by the conventional
method. The selective method (Team-B) showed a fault
detection ability about two times higher than that of
the conventional method (Team-A). As a result, the se-
lective testing method is considered to be effective for
detecting faults that must be or should preferably be
removed before the system shipment.

5. Conclusion

This paper reported on a selective testing method that
enables effective testing. The purpose of the selective
testing method is to effectively detect the faults that
must be or should preferably be removed. In order
to accomplish this purpose, functions to be tested are
prioritized from various viewpoints, and the testing op-
eration is controlled by using the testing specifications
containing testing instructions reflecting the priority.

The overall steps of the selective testing method
are outlined, and the effectiveness of the method is ex-
perimentally confirmed. In the experimental applica-
tion, functions to be tested were prioritized from the
users’ viewpoint, and the testing instructions were pro-
vided in the test specification document. By adopting
the selective method, the faults that must be or should
preferably be removed were successfully detected.

Currently, the proposed method has actually been
applied to software development of for Web cellular
phones in a certain company. Although we have not ob-
tained quantitative data yet, the developers stated that
test activity has greatly facilitated their work. Further-
more, since the proposed method took only a few hours
to generate testing instructions, applying this method
to practical software testing is quite easy. In future
work, we intend to confirm the effectiveness of the pro-
posed method quantitatively.

In the future, we also intend to investigate the pri-
oritizing method for functions or test items from other
viewpoints, and we will try to confirm the effectiveness
of the method by applying it to the software testing of
actual developments.

References

[1] B. Beizer. Black-Box Testing. John Wiley & Sons, New
York, 1995.

[2] D. Binkley. Semantics guided regression test cost reduction.

IEEE Trans. on Software Engineering, 23(8):498–516, Aug.
1997.

[3] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case

prioritization: A family of empirical studies. IEEE Trans.

HIRAYAMA et al.: TEST ITEM PRIORITIZING METRICS FOR SELECTIVE SOFTWARE TESTING
11

on Software Engineering, 28(2):159–182, Feb. 2002.
[4] S. Elbaum and G. Rothermel. Incorporating varying test

costs and fault severities into test case prioritization. In
Proc. of 23rd International Conference on Software Engi-

neering, pages 329–338, 2001.
[5] N. E. Fenton and S. L. Pfleeger. Software Metrics : A

Rigorous & Practical Approach. PWS Publishing, 1997.

[6] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to
regression testing using slicing. In Proc. of International
Conference on Software Mentenance, pages 299–308, 1992.

[7] M. J. Harrold, D. Rosenblum, G. Rothermel, and
E. Weyuker. Empirical studies of a prediction model for
regression test selection. IEEE Trans. on Software Engi-

neering, 27(3):248–263, 2001.
[8] C. Kallepalli and J. Tian. Measuring and modeling usage

and reliability for statistical web testing. IEEE Trans. on

Software Engineering, 27(11):1023–1036, Nov. 2001.
[9] D. M. Marks. Testing very big systems. McGraw-Hill, 1992.

[10] J. D. Musa. Software-reliability-engineering testing. IEEE

Software, 29(11):61–68, Nov. 1996.
[11] J. D. Musa. Software Reliability Engineering: Faster De-

velopment and Testing. McGraw-Hill, 1998.

[12] W. Perry. Effective methods for software testing. Wiley
Publications, 1995.

[13] G. Rothermel and M. J. Harrold. Analyzing regression test

selection techniques. IEEE Trans. on Software Engineer-
ing, 22(8):529–551, Aug. 1996.

[14] G. Rothermel and M. J. Harrold. Empirical studies of a

safe regression test selection technique. IEEE Trans. on
Software Engineering, 24(6):401–419, June 1998.

[15] T. L. Saaty. The Analytic Hirarchy Process. McGraw-Hill,

1980.
[16] I. Sommerville. Software Engineering. Addison-Wesley,

MA, 4th edition, 1992.

[17] J. A. Whittaker. What is software testing? and why it is
so hard? IEEE Software, 21(1):70–79, 2000.

[18] W. Wong, J. Horgan, S. London, and H. Agrawal. A study

of effective regression testing in practice. In Proc. of 8th
International Symposium on Software Reliability Engineer-
ing, pages 230–238, 1997.

Masayuki Hirayama received B.E.

and M.E. degrees from Waseda Univer-
sity in 1984 and 1986, respectively. He
also received Ph.D. degree from Osaka

University in 2003. He has been working
at R&D center, Toshiba corporation since
1986. He is currently a senior research sci-

entist in the Software Engineering Center
at Toshiba Corporation. His research in-
terests include the software validation and

verification technique.

Osamu Mizuno received M.E. and
Ph.D. degrees from Osaka University in

1998 and 2001, respectively. He is cur-
rently an Assistant Professor in Graduate

School of Information Science and Tech-
nology at Osaka University. His research
interests include the software process im-

provement and the risk evaluation and
prediction of software development. He
is a member of the IEEE.

Tohru Kikuno received M.Sc. and
Ph.D. degrees from Osaka University in
1972 and 1975, respectively. He joined

Hiroshima University from 1975 to 1987.
Since 1990, he has been a Professor of
the Department of Information and Com-

puter Sciences at Osaka University. Since
2002, he has been a Professor of Grad-
uate School of Information Science and

Technology at Osaka University. He
also holds a Director of Osaka University

Nakanoshima Center from 2004.

His research interests include the analysis and design of fault-
tolerant systems, the quantitative evaluation of software devel-
opment processes, and the design of procedures for testing com-

munication protocols.
He is a senior member of IEEE, a member of ACM, IEICE (the
Institute of Electronics, Information and Communication Engi-

neers), and a fellow of IPSJ (Information Processing Society of
Japan). He received the Paper Award from IEICE in 1993. He
served as a program co-chair of the 1st International Symposium

on Object-Oriented Real-Time Distributed Computing (ISORC
’98) and the 5th InternationalConference on Real-Time Comput-
ing Systems and Applications (RTCSA’98). He also served as a

symposium chair of the 21st Symposium on Reliable Distributed
Systems(SRDS2002).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

