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Abstract

For predicting the software quality, we must consider
various factors because the software development con-
sists of various activities, which Software reliability growth
model (SRGM) does not consider.

In this paper, we propose a model to predict the final
quality of software product by using the Bayesian belief
network (BBN) model. By using the BBN, we can con-
struct a prediction model that focuses on the structure of
software development process explicitly, represents complex
relationships between metrics, and handles uncertain met-
rics such as residual faults in software products. In order
to evaluate the constructed model, we perform an empir-
ical experiment based on the metrics data collected from
the development projects in a certain company. As the re-
sult of the empirical evaluation, we confirmed that the pro-
posed model can predict the amount of residual faults that
the SRGM cannot handle.
Keywords: Bayesian belief network, causal model, soft-
ware quality prediction

1 Introduction

In order to assure the software quality effectively, the
prediction of software quality has become important. Var-
ious methods for predicting the software quality have been
proposed so far. Software reliability growth model (SRGM)
is one of the best-known methods, which is designed for
software testing phase. Generally, the testing phase consists
of the four activities: unit testing, integration testing, func-
tion testing, and system testing [10, 15]. In the SRGM, the
change of the number of faults detected in each testing ac-
tivity is represented by such a successive curve function that
aims at fitting to the actual number of detected faults.

The software release time, that is the time to finish test-
ing, can be decided using the ratio of the time to be spent
and the number of faults expected to be detected, both of
which are known from the curve. Thus, developers in ac-

tual companies have extensively applied the SRGM to de-
cide the release time in order to manage testing efficiently.

In a certain company also, the SRGM has been used to
decide the release time of a testing activity. In the most
projects, the final quality of software products has been suc-
cessfully assured to be good by the testing based on the
SRGM. In other words, by applying the SRGM, the residual
faults of software products is kept small. However, there re-
main such cases that the final quality of software products is
still poor even after decision making by the SRGM. There-
fore, the SEPG (Software Engineering Process Group) in
the company thinks that the SRGM cannot give a precise
prediction of the residual faults.

By discussions with SEPG, we conclude that the metrics
data collected in the activities (before test activities) give
a hint to solve the problem remained by the SRGM. The
main reason of our conclusion is the fact that review activity
affects the software quality [17].

The objective of our research is to find such risky
projects (producing software products with the poor final
quality), that cannot be detected by the SRGM, using met-
rics collected from all activities in the software development
process.

As a method for predicting risky projects by using sev-
eral metrics, the regression models are often used [3, 12].
However, the regression models have the following prob-
lems for our purpose [7].

First, the metrics that are highly correlated cannot be
used in the regression model simultaneously. It is possi-
ble to avoid this difficulty by introducing a new composite
metric of these correlated metrics. However, we want to use
values of metrics directly, since it makes easy to investigate
the relationship among metrics.

Second, the regression model cannot be applied when
values of explanatory variable in the model is unknown.
That is, when we try to use the regression model, all val-
ues of explanatory variable must be collected. The metrics,
which affect the final quality of software, include the ones
that are related to phases after the end of developmental ac-
tivities, such as the number of detected faults after shipping.



Thus, in order to use such metrics in our research work, it
is difficult to apply the regression model.

In our research, we try to apply Bayesian belief network
(BBN) [4] as a modeling method to find risky project. The
BBN is one of methods for modeling systems that include
causal relationships among variables. The BBN can handle
uncertainties as probabilistic events, and thus it can be ex-
tensively applied under the condition that not all values of
metrics or variables are given. That is, even if we cannot
collect all data corresponding to the metrics in the model,
we can make decision or diagnose by using the probabili-
ties for metrics which value is unknown. This feature of the
BBN is useful for solving two problems of the regression
model just mentioned.

In this paper, by using the BBN model, we firstly try to
construct the prediction model for software quality. Con-
cretely, by measuring the software quality as the amount of
residual faults in the software product, the prediction model
observes the changes of the amount of residual faults during
the successive development activities. Next, by applying the
actual project data, we evaluate the usefulness of prediction
model. Here, in all of these project data, the SRGM is used
to decide the release time, but unfortunately a few projects
still have some residual faults in the final products. As the
result of evaluation, we can say that the proposed model
identifies the risky projects successfully, and that the model
is applicable for complementing the SRGM.

The rest of this paper is organized as follows: Section 2
explains the BBN with example model. Section 3 describes
the development process of the target project. In Section 4,
we construct the prediction model for software quality using
the BBN. We then evaluate the model by applying the actual
project data in Section 5. Finally, Section 6 concludes this
paper and shows the future works.

2 Bayesian Belief Network

2.1 Calculation using BBN

The Bayesian belief network (BBN) consists of two
components: the graph and the probability table. The graph
represents causal relationships between variables by the di-
rected links connecting variables [4]. Formally, this graph
is in the form of DAG (directed acyclic graph).

An example of DAG is shown in Figure 1. Since variable
v4 depends on variable v2 and v3, there exist links (v2, v4),
(v3, v4) in DAG. Figure 1 implies that variable v5 depends on
variable v1 and v4 directly and variable v2 and v3 indirectly.
In this case, we call v5 as dependent variable.

On the other hand, the probability table is assigned to
each variable. Especially, the probability table assigned to
the dependent variable (here, v4 and v5 are such dependent
variables) is named conditional probability table (CPT).

v1

v5

v4

v2 v3

Figure 1. Example of DAG

Table 1. Conditional probability table for v4

v4

v2 v3 T F

T 0.4 0.6

F 0.3 0.7

F
0.6 0.4

F 0.5 0.5

T

T

Table 1 is an example of CPT assigned to variable v4,
that shows the relationship among v2, v3, and v4. Here, we
assume that all variables are binary that take values “T” or
“F”.

With the BBN, we can perform the calculation of the
probability. There exist two typical cases:

Case 1: Values of all variables are known (Figure 2).

Case 2: Values of some variables are unknown (Figure 3).

In Figure 2, a black circle � represents the node for
which the value (that is, T or F) is assigned and a dou-
ble circle � represents the target node for which the prob-
ability must be calculated. For example, we calculate the
probability of v5 = T under the condition that v1 = T ,
v2 = T , v3 = T , and v4 = T . We assume that the CPT for
v5 (shown in Table 2) is assigned to v5. Because the value
of v4 is set to “T”, we don’t care about v2 and v3. Then,
p(v5 = T |v1 = T, v2 = T, v3 = T, v4 = T ) = p(v5 = T |v1 =

T, v4 = T ) = 0.7 is obtained from Table 2.
Next, in Figure 3, white circle � represents the node for

which the value is not assigned and thus it is unknown. In
order to calculate the probability of v5, we need the value of
v4. However, in this case, the value of v4 is unknown.

Before calculation, we assume that the CPT shown in Ta-
ble 2 is assigned for v5 and that the prior probability tables
shown in Table 3, 4, and 5 are assigned for v1, v2, and v3,
respectively. Here, the prior probability table represents the
distribution of the probability.
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v1

v5

v4

v2 v3

Figure 2. Assignment for Case 1

v1

v5

v4

v2 v3

Figure 3. Assignment for Case 2

Here again, we calculate the probability of v5 = T under
the condition that v1 = v2 = v3 = T . First, from Table 1, we
can get p(v4 = T |v2 = T, v3 = T ) = 0.4 and p(v4 = F|v2 =

T, v3 = T ) = 0.6. If the value of v4 were to be assigned, we
would be able to determine the probability of v 5 = T simply
from Table 2. Although v4 is uncertain, we can calculate the
probability of v5 = T by using Table 2 as follows:

p(v5 = T |v1 = T, v2 = T, v3 = T )

= p(v5 = T |v1 = T, v4 = T )

× p(v4 = T |v2 = T, v3 = T )

+ p(v5 = T |v1 = T, v4 = F)

× p(v4 = F|v2 = T, v3 = T )

= 0.7 × 0.4 + 0.3 × 0.6

= 0.46

2.2 Application to Software Engineering

The BBN is used to deal with causal relationships among
variables that allow uncertainty for some variables. In re-
cent years, because of the capability of fast computation,
the BBN is used in the widespread areas [2, 9, 11, 13] such
as artificial intelligence, medical diagnosis, trouble shoot-
ing diagnosis, and decision making.

Table 2. Conditional probability table for v5

0.7 0.3

0.70.3

0.8 0.2

0.3 0.7

v5

v1 v4 T F

T

F

F
F

T

T

Table 3. Prior probability table for v1

v1

T F

0.8 0.2

The BBN is introduced to the software engineering by
Fenton [6–8]. In [8], they considered the BBN as a tool for
the risk analysis and management. They modeled the de-
fects using the BBN and analyze the relationships under the
uncertainty. In this paper, we try to predict the software
quality using the BBN model and perform the empirical
evaluation statistically by applying the constructed model
to the actual projects data.

3 Target Projects

3.1 Characteristics of Projects

The projects targeted in this paper are the development
of computer control systems with embedded software in a
certain company. The software products developed by the
projects have the following common characteristics. The
systems are related to retail systems, and thus embedded
software implements rather complex functions dealing with
many sensors, actuators and control signals including vari-
ous kinds of interrupts. Furthermore, since it is delivered in
the form of LSI chips, modification of faults after delivery
is very expensive. Thus, high quality is especially required
for the embedded software.

We use two datasets DATA1 and DATA2 collected from
two project groups. DATA1 consists of the actual project
data of 51 projects, which have already finished their de-
velopment. Each project started its development from 1995
to 1998. DATA2 consists of the actual project data of 47
projects, which have already finished their development,
too. Each project started from 2001 to 2002.

3.2 Actual Development Process

In the target projects, the products are developed under
a development process as shown in Figure 4. The devel-
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Table 4. Prior probability table for v2

v2

T F

0.6 0.4

Table 5. Prior probability table for v3

T F

0.7 0.3

v3

opment process is an ordinal waterfall model. This process
consists of three successive phases, design & coding phase,
test & debug phase, and acceptance test & debug. The de-
sign & coding phase is divided into five activities: Concept
design, Function design, Structure design, Module design,
and Coding. On the other hand, the test & debug phase is
divided into four activities: Unit test & debug, Integration
test & debug, Function test & debug, and System test & de-
bug. In the company, the software test is carried out in the
early two activities, and the test on a hardware is carried out
in the last two activities.

One characteristic of the design & coding phase is that
review activity is introduced after each design activity. Re-
view activity enables the detection and correction of faults
in software artifacts as soon as these artifacts are created
[1, 5]. The review activity not only improves the quality
of the artifacts but also helps software development organi-
zations to reduce their cost of producing software. In the
review activity, the documents should be distributed to the
persons concerned in the company, and then review results
should be returned to developers via manager (this review
activity is called peer review [1]). The SEPG in the com-
pany established several guidelines for the review activity.
One of them directs that at least 15% of the total efforts for
design & coding phase should be assigned to review activi-
ties [18].

The test & debug phase consists of the repetition of a pair
of test activity and debug activity. Test activity is the pro-
cess of analyzing a software item to detect the differences
between existing and required conditions and to evaluate the
features of the software items. The SRGM has been used to
decide the release time of each testing activity. Debug ac-
tivity is the process to detect, locate, and correct faults [14].
The persons engaged in the test and debug phase are di-
rected to record all faults that are detected by the test activ-
ity and removed by the debug activity [19].

Concept Design & Review 

Module Design  & Review 

Function Design & Review

Coding  & Review

Structure Design  & Review 

Unit Test & Debug 

System Test & Debug 

Integration Test & Debug 

Function Test & Debug 

Design &

Coding phase

Test &

Debug phase

Acceptance Test  & Debug

Acceptance

Test & Debug

phase

Figure 4. Development process

4 BBN Model for Quality Prediction

4.1 Software Metrics

(A) Abstract development process

In subsection 3.2, we describe the precise software process
model. However, in order to construct the prediction model
using the BBN for software quality, we summarize the soft-
ware process. That is, we merge successive activities in
Figure 4 into a new activity. Then we obtain the abstract
development model shown in Figure 5.

• Design & review phase
In the abstract development model, design & review
phase consists of the one pair of design activity and
review activity as shown in Figure 5. Here, the value
of metric of a new activity is defined as the sum of the
values of the corresponding old activities in Figure 4.

• Test & debug phase
Precisely speaking, test & debug phase in Figure 4
consists of the test of developed software and the test
of software integrated with hardware. The former test
is carried out in unit and integration test & debug activ-
ities. On the other hand, the latter test is carried out in
function and system test & debug activities. Then we
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Design Activity                    (DS)

Review Activity                   (RV)

Software Test & Debug     (SDB)

Machine Test & Debug      (MDB)

Design &

Review phase

Test &

Debug phase

Acceptance Test & Debug  (AT)
Acceptance

Test & Debug

phase

Figure 5. Abstract development process

merge unit and integration test & debug activities into
software test & debug activity in Figure 5. Similarly,
we merge function and system test & debug activities
into machine test & debug activity.

• Acceptance test & debug phase
Obviously from Figure 4, this phase consists of a sin-
gle activity. Then this phase remains unmodified in
Figure 5.

(B) Collection of Metrics

The metrics used in the proposed model are classified into
five groups: S α, Eα , DFα , T Iα, and RFα where α denotes
an activity in Figure 5. The detailed definitions are given in
the followings:

• Product size (Kstep): S DS

• Effort (person-day): EDS , ERV , EDB(= ES DB + EMDB),
EAT

• Detected faults (number): DFRV , DFS DB , DFMDB ,
DFAT

• Test Items (number): T IS DB, T IMDB, T IAT

• Residual faults (number): RFDS , RFRV , RFS DB ,
RFMDB , RFAT

In the above list, product size S α, effort Eα , test items
T Iα, and detected faults DFα are observable in the sense
that these are recorded in the actual software development
projects. Precisely speaking, for α = DS , RV, S DB, and
MDB, the values of metrics S α, Eα , DFα , and T Iα are cal-
culated by summing up the values at the corresponding ac-
tivities. For example, effort EDS is calculated as the total
sum of efforts at concept design, function design, structure
design, module design, and coding. On the other hand, we

cannot record the metrics RFα in each activity α because
the number of injected faults cannot be counted a priori.

When we try to predict the software quality, the human
factor such as the ability, the expertise, etc. should be con-
sidered as one of the key metrics for the prediction. How-
ever, these are not recorded, and thus we do not consider
them in this paper. It is still remained as one of important
future works.

(C) Calculation of RF’s

It is a serious problem for the model construction that
amounts of residual faults of the product RFDS , RFRV ,
RFS DB , RFMDB , and RFAT are unknown.

In order to overcome this deficiency, we take the follow-
ing approach. At first, we assume that RFAT is equal to the
number of detected faults during six months after shipping.
Then, we can define the total number of faults RFDS (that
is, the residual faults in the design activity) to be the sum of
RFAT and the total number of faults detected in each activ-
ity of the software development process. Thus, we assume
the following equation:

RFDS = RFAT + DFRV + DFS DB + DFMDB + DFAT

According to this definition, the residual faults RFα af-
ter each activity α is calculated by subtracting the detected
faults DFα in each activity α from the residual faults in the
previous activity.

4.2 Approach to Model Construction

Based on the abstract model in subsection 4.1, we
construct the prediction model for software quality using
Bayesian belief network. For software quality, we should
consider various facet of a software because it consists of
various criteria. However, especially in testing phase, soft-
ware quality is verified how much a software is in keeping
with a specification. Then, the smaller inconsistency be-
tween the software and the specification is, the higher the
software quality is. From such viewpoint, the amount of
residual faults in the product, which turns out the inconsis-
tency, is important factor of software quality. In this paper,
we regard the software quality as the amount of residual
faults in the product. Then, we determine the following ap-
proach to model construction:

(1) Observe carefully the change in the amount of residual
faults at each activity and represent it as the main flow
of the model.

(2) Calculate the amount of residual faults in each phase
from the metrics recorded at activities in the same
phase.
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Design &

Review phase

Test &

Debug phase

Acceptance

Test & Debug

phase

Metrics
Residual

Faults

Review

Metrics
Total

Faults

Design

estimate 

Metrics
Residual

Faults

Software Test & Debug

Metrics
Residual

Faults

Machine Test & Debug

Metrics
Residual

Faults

Acceptance Test & Debug

estimate 

estimate 

estimate 

estimate 

Figure 6. Overview of the prediction model

According to this approach, we construct the overview of
prediction model shown in Figure 6.

Then, we consider that a final result of prediction by this
model is the amount of residual faults in the acceptance test
& debug activity.

4.3 Construction of DAG

We define a prediction model using the BBN, according
to Figure 6, for software quality. First, we construct five
kinds of DAGs for five activities: DS , RV, S DB, MDB, and
AT shown in Figure 5. Then, we integrate these five DAGs
into a DAG that represents the whole software development
process.

(1) DAG for DS Here, we assume that faults are intro-
duced by design activity, and that residual faults are re-
moved by other activities such as review, test & debug in
Figure 6. We assume that metrics S DS and EDS in design
activity affect the number of the faults introduced RFDS .
The larger the design effort EDS is, the larger the number
of introduced faults RFDS is. Similarly, the RFDS becomes
large in proportion to the size of the product S DS . As a
result, DAG shown in Figure 7 is obtained.

(2) DAG for RV Review is carried out in order to remove
faults remained or introduced in the earlier phase. In the
company, peer review [16] is carried out after the design
activity. In peer review, no explicit test case is prepared,
and thus T Iα is not recorded.

RFDS

SDS EDS

Figure 7. DAG for metric RFDS

RFRV

ERV DFRV

RFDS

Figure 8. DAG for metric RFRV

Obviously, the sum of the detected faults DFRV and the
residual faults RFRV is equal to the total number of faults
RFDS . Thus we obtain the following relation among these
metrics:

RFRV = RFDS − DFRV

Clearly, RFRV is depend on RFDS and DFRV .
Next, we consider on the DFRV in more detail. In review

activity, faults are discovered from the residual faults of the
product. Moreover, the number of detected faults is affected
by the review effort. Then, DFRV is affected by RFDS and
ERV .

Finally, we obtain DAG shown in Figure 8.

(3) DAG for S DB The activities in software test & debug
(S DB) are also for removing the residual faults. Then, the
structure of DAG for S DB is almost the same as that for RV.
The difference between two DAGs is that the number of the
test items T IS DB is recorded in the software debug activity
. Since metric T IS DB is related to the coverage of the test,
we consider that T IS DB affects the number of detected faults
DFS DB . Furthermore, it is clear that T IS DB affects the effort
EDB .

Finally, we obtain DAG shown in Figure 9.

(4) DAG for MDB The activities in hardware test & de-
bug (MDB) is also for removing the residual faults. By ap-
plying the similar disscussions in DAG for S DB, we can get
DAG shown in Figure 10 for MDB.

(5) DAG for AT The activities in acceptance test & debug
(AT ) also have the same properties as the software debug
activities. Thus, we obtain DAG shown Figure 11.
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SDS

RFDS

EDS

RFRV

DFRV

ERV

RFSDB

DFSDB

RFMDB

DFMDB
EDB

TISDB TIMDB

RFAT

DFAT

EAT

TIAT

Figure 12. DAG for prediction model

RFSDB

EDB DFSDB

RFRV

TISDB

Figure 9. DAG for metric RFS DB

RFMDB

EDB DFMDB

RFSDB

TIMDB

Figure 10. DAG for metric RFMDB

Finally, by integrating these five DAGs shown in Figure
7, 8, 9, 10, and 11, we get a new DAG shown in Figure 12.

4.4 Assignment of Probability Distribution

Next, we assign probability distribution to each variable
which exactly corresponds to a node in the integrated DAG.

However, there is a difficulty caused by smallness of the
number of data of past projects or the volume of knowledge
data, that are used to define probability distribution. In such
case, we cannot use the value of the metric itself directly.
Similarly, if the number of the project data that has a certain
value is small, then we cannot assign such distributions for
the variables that assures good prediction of final quality.

Then, we propose to group the values of metrics. How-

RFAT

EAT DFAT

RFAT

TIAT

Figure 11. DAG for metric RFAT

ever then we face the next difficulties: (1) how many groups
we define and (2) how we decide the range of the values for
each group.

For the first question, we decide the number of groups to
be three. Then, we call three groups of RFAT as “Good”,
“Average”, and “Poor”, respectively. For the other metrics,
we call three groups as “Small”, “Medium”, and “Large”,
respectively.

For the second question, we have two straightforward
methods. The one is to decide the range according to the
value (simply called, “range by value”). The other is to de-
cide the range according to the rank (simply called, “range
by rank”) in descending order of values.

Now, we consider the range for the metric RFAT . Since
the model is used for prediction of the amount of residual
faults, the value 0 should be a single group. The criterion
for “Poor” project is determined by the company according
to the expoerts’ opinion. Each dataset is collected from the
same department of development and then required reliabil-
ity is similar degree for all projects. Thus, for all projects,
we can determine the criteria for “Poor”. Thus, we finally
decide the range for RFAT as shown in Table 6.

For the other metrics such as S DS , EDS , and so on, “range
by value” is inadequate since the distributions of the values
are biased. Thus, we adopt “range by rank” for these met-
rics. In this paper, in order to avoid subjective division, we
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Table 6. The range of the values for RFAT

Name of groups Range of values

Good 0

Average 1

Poor >1

decide the range of the metrics such that each range contains
the same number of data according to the rank.

4.5 Application Procedure

Here, we show an outlines of procedure which applies
the BBN model to project data.

The procedure consists of two phases:

Phase 1: Construction of BBN Model

Step 1: Construction of DAG Based on abstract devel-
opment process and metrics, construct a DAG (as described
in subsection 4.3).

Step 2: Determination of Assignment Policy According
to the expert’s opinion and analysis result of the actual data,
determine the assignment policy (as decribed in subsection
4.4).

Step 3: Assignment of Probability Distribution By us-
ing the dataset of the past projects, assign the probability
distribution to the DAG. By this assignment, the prediction
model is complete.

Phase 2: Calculation of Target Metric

Step 4: Classification of Nodes in DAG According to
the requirement (that is, which metrics data can be collected
and which metrics is wanted to know), classifty the nodes
in the DAG into three types: �, �, and �. We must assign a
concrete value for �, but we don’t give any value for �. The
� represents a target metric (in our paper, RFAT corresponds
to �).

Step 5: Assignment of Value to Node � We assign a
value to each node � in the DAG. The value itself is speci-
fied in the requirement.

Step 6: Evaluation of Probability for � Based on BBN
model constructed in Phase 1 and assigned values in Step
5, we calculate the probability for RFAT . In order to per-
form such calculation, we use Netica, which is Bayesian

Table 7. Sample Probability Distribution
RFAT probability(%)

Good 30%

Average 50%

Poor 20%

network development software developed at Norsys Soft-
ware Corp. (http://www.norsys.com). Then, a group which
has the highest probability is determined.

For example, if the result of the probability distribution
is as shown in Table 7, then we decide “Average” as the
result of the prediction.

Example 1: Consider an example DAG in Figure 1 as the
result of Step 1. Then, we may assign probability dis-
tributions shown in Tables 1, 2, 3, 4, and 5 at Step 3.
Then at Step 4, we get a classification shown in Figure
3, and assign “T” to all nodes v1, v2, and v3 at Step 5.
Finally (as already mentioned in subsection 2.1), we
get P(v5 = T ) = 0.46 at Step 6.

5 Model Evaluation

5.1 Outline of Evaluation Procedure

In order to evaluate the proposed model, we conducted
two experimental evaluations (Preliminary and Specific
evaluations) by applying the following two datasets (See
Figure 14):

• DATA1
This dataset is used, at Step 3 of both evaluations, to
assign the probability distribution of the constructed
model (See Figure 14(a)). Then it is used at Phase 2 of
preliminary evaluation (See Figure 14(b)). The num-
ber of the data is 51.

• DATA2
This dataset is not used at Phase 1, but used at Phase 2
of specific evaluation (See Figure 14(c)). The number
of the data is 47.

By using these two datasets, we perform the following
two evaluations as follows:

1. Preliminary evaluation (See Figure 14(a) and 14(b))
At Step 1, for a given abstract development process
(shown in Figure 5) and a set of metrics (explained in
Section 4(B)), we construct a DAG shown in Figure 12.
Then at Step 3, we calculate probabilitydistribution for
each metric using DATA1, and assign it to each node
in the DAG. At the end of this step, CPTs are assigned
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RFDS (%)

SDS EDS Small Medium Large

Small Small 90.7 9.0 0.3

Small Medium 44.6 55.0 0.4

Small Large 30.4 35.9 33.7

Medium Small 31.9 67.7 0.4

Medium Medium 0.4 58.2 41.4

Medium Large 18.7 17.5 63.8

Large Small 0.2 99.7 0.2

Large Medium 0.4 76.1 23.5

Large Large 11.5 11.6 76.9

Figure 13. CPT for RFDS

to each node and probability distribution is obtained.
For example, we show the CPT for RFDS in Figure 13.

Next, at Step 4 we get a classification shown in Figure
15 (as Case Study 1). Then, we assign a value to � in
the DAG in Figure 15. Finally, we calculate probabil-
ity for the target node �, and compare the result with
DATA1. The analysis result is summerized in Table 8.

2. Specific evaluation (See Figure 14(a) and 14(c))
In this evaluation, we use the same model as Prelimi-
nary evaluation. That is, the prediction model is con-
structed by using DATA1.

Then we execute evaluation by using DATA2. At Step
4, we get a classification shown in Figure 16 (as Case
Study 2). Then, we assign a value to each node � in the
DAG in Figure 16. Finally, we calculate the probabil-
ity for the target node �, and compare the result with
DATA2. The analysis result is summarized in Table 9.

In order to perform evaluation, we use the following
three criteria:

• Error rate
It represents the ratio of the incorrect prediction. By
this criterion, we can calculate the accuracy of the pre-
diction also. Then, the smaller the error rate is, the
better the model is.

• Fisher’s exact test
This is the statistical test for verifying the correla-
tion between two variables. By using this testing, we
can verify whether there is the relationship between
the result of prediction and the actual result (which is
recorded as metric).

As mentioned, the purpose of this research is to detect
risky projects that contain many faults though SRGM as-
sures good quality of final products. Since all the projects
in both DATA1 and DATA2 are assured by the SRGM, pre-
dicting such risky projects is important to conclude that the

proposed model is applicable for the prediction. Then, we
also use the following criterion.

• Prediction for “Poor” projects
It evaluates the accuracy of the prediction for “Poor”
projects only (rather than all projects).

5.2 Experimental Evaluation

Preliminary Evaluation The result of prediction is
shown in Table 8. In this table, each row represents the
actual value of the data. On the other hand, each column
represents the predicted value of the model. For example,
there exist 22 projects which are estimated to be “Poor”.
Among them, 13 projects were really “Poor”. However, 5
projects are “Good”, and 4 projects are “Average”. Intu-
itively, the larger the number on the diagonal is, the more
precise the prediction is.

From this table, we calculate the error rate of the predic-
tion model (based on classification of nodes in Figure 15)
as follows:

error rate =
51 − (12 + 8 + 13)

51
× 100

= 35.29(%)

Thus, the model seems to predict relatively well.
Next, we apply Fisher’s exact test. Here, we assume the

null hypothesis H0 as follows:

“There is no correlation between the result of pre-
diction and the actual result”

As the result of this test, p-value is p = 0.0002 and then
the null hypothesis H0 is rejected at significance level α =
0.05. This implies that there is the correlation between the
prediction and the actual development.

Finally we evaluate the accuracy of the prediction for
“Poor” projects. As shown in the bottom row of Table 8, the
total number of real “Poor” project is 17. On the other hand,
the number of projects that are predicted to be “Poor” is 13.
Then, the accuracy of the prediction for “Poor” project is
calculated as follows:

accuracy rate =
13

2 + 2 + 13
× 100

= 76.47(%)

Observing Table 8 more precisely, we found that the con-
structed model predicts the amount of residual faults rather
excessively. For example, the number of projects that are
really “Good” but are predicted to be “Average” or “Poor”
is larger than the number of projects that are really “Poor”
but are predicted to be “Good” or “Average”.
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Figure 14. Outline of Evaluations

Table 8. The prediction result for Preliminary
Evaluation

Predicted

Good Average Poor Actual

12 4 5 Good

1 8 Average

2 2 Poor

4

13

This property is rather desirable and welcome to the
SEPG in the company. Since the purpose of the model pre-
diction is to assure the final software quality, we should not
miss the “Poor” projects as much as possible.

Table 9. The prediction result for Specific
Evaluation

Predicted

Good Average Poor Actual

15 2 5 Good

5 5 Average

1 2 Poor

5

7

Specific Evaluation The result is shown in Table 9. Com-
pared with the result of Table 8, the prediction accuracy
seems not well. Intuitively speaking, we can understand this
difference by comparing two DAGs in Figure 15 and Figure
16. That is, in Specific evaluation we try to predict the final
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Figure 16. Classification of Nodes for Preliminary Evaluation

quality by using very few metrics data (that are assigned to
node � in Figure 16).

Actually, the error rate is (47−(15+5+7))/47 = 20/47 =
42.55%. The error rate is increased by 7% compared with
the error rate of Table 8. However, the p-value of Fisher’s
exact test is 0.01. Then, we can say that there is still the cor-
relation between the result of the prediction and the actual
result.

There seem to be two detailed reasons for increase of
the error rate. The one is the difference of the departments,
for which DATA1 and DATA2 are collected. As shown in
Figure 14, Specific evaluation uses DATA1 in model con-
struction (Phase 1) and DATA2 in model evaluation (Phase
2).

The other is the lack of T Iαs in evaluation (that is, in
Figure 16, all T Is correspond to node �). T Is count the
number of test items, and thus they are considered to be
essential to estimate test efficiency. Therefore, by excluding
T Is in the classification shown in Figure 16, the accuracy of
the prediction may be decreased.

However, as shown in the bottom row of Table 9, the
accuracy of the prediction for “Poor” project is 70%. Then,
this result implies that the proposed model works well for
severe conditions.

Observing Table 9 in more detail, we found the similar

trends as in Table 8. That is, in this case the proposed model
also safely predicted in the sense that among 10 “Poor”
projects, only 3 projects are not correctly estimated. This
property is also acceptable to the SEPG in the company.

Considering these evaluation and observation, we can
say that the model works well as the complement of SRGM.
However, since one of purpose of the quality prediction is
the reduction of the development cost, the accurate predic-
tion is still important. This is one of the future works.

6 Conclusion

In this paper, we have proposed a new prediction model
based on the BBN for final software quality. This prediction
for final software quality is originated from the fact that the
final quality of a few software products is not necessarily
assured even if the SRGM is applied at the test.

The model construction based on the BBN consists of
definition of DAG and assignment of probability distribu-
tion. In more detail, DAG contains the relationship between
the metrics obtained from each activity in the software de-
velopment process. Next, the probability distribution is as-
signed to the nodes in DAG which correspond to the met-
rics.

Then, by applying datasets that are collected in the ac-
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tual project, we evaluate the proposed model with respect
to three criteria: error rate, Fisher’s exact test, and the accu-
racy for “Poor” projects.

As the results of these evaluations, we confirmed that the
proposed model can be applicable to the prediction of final
software quality.

In the future work, we must refine the model to improve
the accuracy of the prediction. For this purpose, we must
take the human factor into the model.

Additionally, the final goal of our research is the predic-
tion in the early phase of the development process. Thus,
we must investigate the property of the prediction with data
obtained from the early phase, and refine the model accord-
ing to the result of this investigation.
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