
Software Project Simulator

for Effective Software Process Improvement

Osamu Mizuno

June 2001

Dissertation submitted to the Graduate School of Engineering Science of

Osaka University in partial fulfillment of the requirements

for the degree of Doctor of Engineering

Abstract

Assuring software quality and productivity is a major problem facing software

engineering. In general, software quality affects productivity, since software prod-

ucts with higher quality require less rework and maintenance. To develop and

maintain the software products, developers may use various activities, methods,

practices and transformations. A software process is defined as a set of such

activities, methods, practices and transformations that people use to develop and

maintain software and the associated products, e.g., project plans, design doc-

uments, code, test cases, and user manuals. Software process improvement is

a deliberate methodology for improving software processes, and it includes un-

derstanding, definition, measurement, and optimization of the processes. Process

improvement is indispensable for improving the quality of software products and

the productivity of the development process.

In a certain company (hereafter, called Company A) that develops software

embedded in social infrastructure systems, low quality and low productivity be-

came major problems about 10 years ago. Since such problems were primarily

caused by disorganized projects, that is, the projects were executed under loose

management, the company recognized the necessity of improving the software

process for such disorganized projects. To promote process improvement, Com-

pany A then established a group called the Software Engineering Process Group

(SEPG). The SEPG collected data on software metrics from software development

projects, and faced the challenge of identifying disorganized projects based on

the statistical analysis of the collected data. By means of such activities, the SEPG

i

succeeded in clearly identifying disorganized projects. As a result, the SEPG’s

objective was shifted from the identification of disorganized projects to the im-

provement of their processes. However, even if process improvement activities

were devised, they were seldom applied to actual projects, since those activities

require a large amount of resources, and software developers were skeptical about

the effectiveness of improvement activities.

This kind of problem is common to other software organizations, and a cost-

effective approach for software process improvement is strongly required. Simu-

lation techniques have been introduced to answer such a requirement, and soft-

ware process simulation is known to be one of the most cost-effective solutions

for facilitating process improvement activities. Our goal has been to establish a

new software simulation technique with a high simulation accuracy. We have also

aimed at investigating its applicability to actual software process improvement

in Company A.

In this paper, we propose a new model for describing software processes

and a simulation method for software projects that aims at effective software

process improvement. A formal model is developed based on experience and

data from software development processes at Company A. The model consists

of a Project model and a Process model. The Project model focuses on three key

components: activities, products, and developers of a project. The Process model

includes a set of Activity models, each specifying design, coding, review, test, and

debug activities using a Generalized Stochastic Petri Net (GSPN). The new model

handles the effect of human factors by introducing the concept of “workload”.

Next, we develop a simulator that supports the description of a software process,

and executes the software process according to the description. As a result of its

execution, we obtain estimated values for the quality, cost and delivery date of

the target process. Experimental results show the applicability of the proposed

simulator.

Based on the developed simulator, we simulate 3 process improvements: (1)

ii

improvement of parallel execution of activities, (2) improvement of test phase

planning, and (3) application to risk prediction.

First, we investigate experimentally the influence of “parallel execution” of

activities in a development process. Parallel execution is a situation where an

activity, such as coding, begins before the previous activity, such as module design,

finishes. In a standard waterfall model, the situation should be avoided because

it tends to cause confusion in a project. However, in actual development projects

in Company A, such parallel executions frequently occur in order to reduce the

development schedule. We thus try to show the effect of the parallel execution,

and to improve parallel execution in Company A. To do so, we simulate two cases:

a case without any parallel execution and a case with parallel execution between

module design and coding activities. The results of two cases are compared and

evaluated.

Next, we try to apply the proposed simulator to update a project plan. Gener-

ally, a development plan should be updated according to the actual progress of a

project. However, some of the solutions for updating a development plan are less

than optimal. Hence, project plans are updated based on the experience and intu-

ition of developers. We thus apply the proposed simulator to support updating a

development plan. To do so, we consider a simple development process consist-

ing of design and debug phases, which is derived from the actual development

process in Company A. We then propose a two-phase project control method that

examines the initial development plan at the end of the design phase, updates it

to current status of the development process, and executes a debug phase under

a new (updated) plan. In order to show its usefulness, we define 3 imaginary

projects: a project that executes the debug phase under the initial plan, a project

that applies the proposed approach, and a project that follows a uniform (that is,

trivial) plan.

Finally, we present an extension of the proposed simulator in order to ap-

ply risk prediction with a cost estimating capability. We have developed a risk

iii

predicting system to find “risky” projects by statistical analyses on risk question-

naires from project managers in Company A. In this approach, only a probability

of riskiness was calculated for a project. The managers, however, wanted to be

given concrete proof why a software project becomes risky. To present proof that

a software project is becoming risky, we try to extend the simulator so that it can

deal with risk factors. To do so, fluctuation in skill level and deadline pressure

are represented by modifying parameters in the simulator. A case study confirms

that the extended simulator can estimate the development cost under some typical

risks.

This dissertation is organized as follows: The first and second chapters are

introductory. In Chapter 1, we briefly summarize related progress and topics

in software process simulation and describe the outline of the dissertation. In

Chapter 2, we describe the background for software process improvement and we

also show process improvement activities performed in the targeted organization.

In Chapter 3, we define a model to describe a software process using Gener-

alized Stochastic Petri Nets (GSPN). Examples describing typical activities in a

development process are also shown. we then implement a simulator based on

the proposed model, and evaluate the simulator experimentally based on actual

project data.

In Chapter 4, we describe the first application of the simulator to process

improvement. In this chapter, we show that the parallel execution of development

activities (such as executing module design and coding activities simultaneously)

increase project costs and residual faults.

In Chapter 5, we show the second process improvement example. In this ap-

plication, we use several simulations to investigate the effect of dynamic updating

of a project plan.

In Chapter 6, we extend the application of the simulator to risk prediction.

We adopt some extensions to the simulator to manage risk factors in software

projects.

iv

Finally, I conclude this dissertation with a summary and directions for future

work in Chapter 7.

v

List of Major Publications

(1) Yuji Hirayama, Osamu Mizuno, Shinji Kusumoto, and Tohru Kikuno, “Hier-

archical project management model for quantitative evaluation of software

process,” Proc. of International Symposium on Software Engineering for the Next

Generation, pp.40–49 (February 1996).

(2) Osamu Mizuno, Yuji Hirayama, Shinji Kusumoto, and Tohru Kikuno, “Ap-

plication of generalized stochastic Petri net to quantitative evaluation of

software process,” Proc. of 1996 IEEE International Conference on Systems,

Man and Cybernetics, pp.3192–3197 (October 1996).

(3) Shinji Kusumoto, Osamu Mizuno, Yuji Hirayama, Tohru Kikuno, Yasunari

Takagi, and Keishi Sakamoto, “A new project simulator based on general-

ized stochastic Petri net,” Proc. of 19th International Conference on Software

Engineering (ICSE’97), pp.293–303 (May 1997).

(4) Katsumi Inagaki, Yasunari Takagi, Keishi Sakamoto, and Osamu Mizuno,

“Analyzing the cost estimation accuracy in software project respect to pro-

ductivity and quality,” Proc. of International Symposium on Future Software

Technology ’97, pp.372–377 (October 1997).

(5) Osamu Mizuno, Shinji Kusumoto, Tohru Kikuno, Yasunari Takagi, and

Keishi Sakamoto, “Estimating the number of faults using simulator based on

generalized stochastic Petri net,” Proc. of 6th Asian Test Symposium, pp.269–

274 (November 1997).

vii

(6) Osamu Mizuno, Shinji Kusumoto, Tohru Kikuno, Yasunari Takagi, and

Keishi Sakamoto, “Experimental evaluation of two-phase project control

for software development process,” IEICE Trans. on Fundamentals of Elec-

tronics, Communications and Computer Sciences, vol.E81-A, no.4, pp.605–614

(April 1998).

(7) Osamu Mizuno, Tohru Kikuno, Katsumi Inagaki, Yasunari Takagi, and

Keishi Sakamoto, “Analyzing effects of cost estimation accuracy on quality

and productivity,” Proc. of 20th International Conference on Software Engineer-

ing (ICSE’98), pp.410–419 (April 1998).

(8) Osamu Mizuno, Shinji Kusumoto, and Tohru Kikuno, “Customization of

software project simulator for improving estimation accuracy,” Proc. of 9th

International Symposium on Software Reliability Engineering, Fast Abstracts &

Industrial Practices, pp.47–48 (November 1998).

(9) Satoru Uehara, Osamu Mizuno, Yumi Itou, and Tohru Kikuno, “An MVC-

based analysis of object-oriented system prototyping for banking related

GUI applications — Correlationship between OO metrics and efforts for

requirement change —,” Proc. of 4th International Workshop on Object-Oriented

Real-time Dependable Systems, pp.91–104 (January 1999).

(10) Osamu Mizuno and Tohru Kikuno, “Empirical evaluation of review process

improvement activities with respect to post-release failure,” Proc. of Empirical

Studies of Software Development and Evolution, ICSE’99 Workshop, pp.50–53

(May 1999).

(11) Satoru Uehara, Osamu Mizuno, and Tohru Kikuno, “A straightforward ap-

proach to effort estimation for updating programs in object-oriented proto-

typing development,” Proc. of 6th Asia-Pacific Software Engineering Conference,

pp.144–151 (December 1999).

(12) Osamu Mizuno, Tohru Kikuno, Katsumi Inagaki, Yasunari Takagi, and

viii

Keishi Sakamoto, “Statistical analysis of deviation of actual cost from es-

timated cost using actual project data,” Information and Software Technology,

vol.42, pp.465–473 (May 2000).

(13) Osamu Mizuno, Tohru Kikuno, Yasunari Takagi, and Keishi Sakamoto,

“Characterization of risky projects based on project managers’ evaluation,”

Proc. of 22nd International Conference on Software Engineering (ICSE2000),

pp.387–395 (June 2000).

(14) Nahomi Kikuchi, Osamu Mizuno, and Tohru Kikuno, “Identifying key at-

tributes of projects that affect the field quality of communication software,”

Proc. of 24th Annual International Computer Software & Applications Conference

(COMPSAC2000), pp.176–178 (October 2000).

(15) Masayuki Hirayama, Tetsuya Yamamoto, Takuya Kishimoto, Osamu Mizuno,

and Tohru Kikuno, “Systematic generation of software test items based on

system behavior from user’s viewpoint,” Proc. of 5th International Conference

on Probabilistic Safety Assessment and Management (PSAM5), pp.2377–2382

(November 2000).

(16) Masayuki Hirayama, Tetsuya Yamamoto, Takuya Kishimoto, Osamu Mizuno,

and Tohru Kikuno, “Generating test items for checking illegal behavior in

software testing,” Proc. of 9th Asian Test Symposium (ATS2000), pp.235–240,

(December 2000).

(17) Satoru Uehara, Osamu Mizuno, and Tohru Kikuno, “An implementation of

electronic shopping cart on the Web system using component-object tech-

nology,” Proc. of 6th Workshop on Object-oriented Real-Time Dependable Systems

(WORDS2001), pp.85–92, (January 2001).

(18) Shinji Kusumoto, Osamu Mizuno, Tohru Kikuno, Yuji Hirayama, Yasunari

Takagi, and Keishi Sakamoto, “Software project simulator for effective pro-

cess improvement,” Trans. of Information Processing Society of Japan, vol.42,

ix

no.3, pp.396–408, (March 2001).

(19) Satoru Uehara, Osamu Mizuno, and Tohru Kikuno, “Design of New Mecha-

nism for Context Data Storing on Web System and Its Implementation using

Component-Object Technology,” Trans. of IEICE (in Japanese), vol.J84-D-I,

no.6, pp.713–722 (June 2001).

(20) Osamu Mizuno, Daisuke Shimoda, Tohru Kikuno, and Yasunari Takagi,

“Enhancing software project simulator toward risk prediction with cost es-

timation capability,” IEICE Trans. on Fundamentals of Electronics, Communica-

tions and Computer Sciences, vol.E84-A, no.11 (To appear in November 2001).

(21) Satoru Uehara, Osamu Mizuno, and Tohru Kikuno, “A new approach to

estimate effort to update object-oriented programs in prototyping develop-

ment,” IEICE Trans. on Information and Systems (Conditionally accepted).

x

List of Figures

2.1 Risk investigation questionnaire . 15

3.1 Structure of the proposed model . 20

3.2 Project template . 21

3.3 Example of project description . 22

3.4 Activity model . 23

3.5 Design/coding activity model . 28

3.6 Review activity model . 29

3.7 Test activity model . 31

3.8 Debug activity model . 32

3.9 System architecture . 34

3.10 Example of simulation . 37

3.11 Development process of target projects 41

3.12 Outline of experiment . 42

4.1 Parallel execution in the development process 49

4.2 Variations of cumulative efforts . 50

4.3 Variations of residual faults . 51

4.4 Variations of efforts and durations according to degree of paral-

lelization. 54

5.1 Simple development process . 58

5.2 Single-phase control . 60

5.3 Two-phase control . 60

xi

6.1 Project description for the simulator 72

6.2 Extended description of activity model 74

6.3 Example of deadline pressure . 76

xii

List of Tables

3.1 Analysis result of simulation . 43

4.1 Comparison of simulation results of before parallel execution (100

simulations) . 52

4.2 Comparison of simulation results at the point of process completion

(100 simulations) . 53

5.1 Target projects . 62

5.2 Assignment of workload . 64

5.3 Values of quality metrics . 65

6.1 Risk factors to be used in extended simulator 73

6.2 Adjustment of parameters according to evaluation result 78

6.3 Estimated costs of 3 projects (person-days) 81

6.4 Two cases in the case study . 82

6.5 Comparison of development costs 83

xiii

Acknowledgments

During the course of this work, I have been fortunate to have received assistance

from many individuals. I would especially like to thank my supervisor Professor

Tohru Kikuno for his continuous support, encouragement, and guidance for this

work.

I am also very grateful to the members of my thesis review committee: Pro-

fessor Katsuro Inoue and Professor Toshinobu Kashiwabara for their invaluable

comments and helpful criticisms of this thesis.

Many of the courses that I have taken during my graduate career have been

helpful in preparing this thesis. I would like to acknowledge the guidance of Pro-

fessors Toru Fujiwara, Ken-ichi Hagihara, Akihiro Hashimoto, Teruo Higashino,

Masaharu Imai, Tadahiro Kitahashi, Toshimitsu Masuzawa, Hideo Miyahara,

Masayuki Murata, Shinji Shimojo, Shin-ichi Tamura, Haruo Takemura, and Ken-

ichi Taniguchi.

I would like to express my special thanks to Associate Professor Shinji Kusumoto

for his assistance and invaluable advice.

I also would like to thank Mr. Yuji Hirayama and Mr. Kouichi Furusawa,

who were engaged in previous studies in our laboratory. Their works help my

dissertation so much.

I wish to thank Dr. Keishi Sakamoto, an SPI consultant, for his kind coopera-

tion and insightful advice for my study. I also wish to thank Mr. Yasunari Takagi

of OMRON Corporation for his helpful advice and support in this research. I

also would like to express my thanks to Mr. Katsumi Inagaki, Mr. Naoki Niihara,

xv

Mr. Toshiki Niki, Mr. Yoshifumi Sakakiya, and Mr. Toshifumi Tanaka of OM-

RON corporation for their cooperation with data collection from actual software

development field.

I would like to acknowledge Dr. Dee Worman of EditScience, Inc. I also would

like to thank Mr. John Mackin of Fujitsu Corporation for editing English of a draft

of this dissertation. His editing greatly helps me to complete my dissertation.

Thanks are also due to many friends in the Department of Informatics and

Mathematical Science at Osaka University who gave me many useful comments.

xvi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Software Project Simulation . 3

1.3 Main Results . 5

1.3.1 Development of a software project simulator 5

1.3.2 Improvement of parallel execution of activities 6

1.3.3 Improvement of test process planning 7

1.3.4 Extension to risk prediction 7

1.4 Overview of the Dissertation . 8

2 Software Process Improvement Activity 11

2.1 Background on Software Process Improvement 11

2.2 Process Improvement Activities in Company A 12

2.2.1 Brief introduction of Company A 12

2.2.2 Identification of software process and process improvement 13

2.2.3 Improvement of the planning process 14

2.2.4 Risk investigation and prediction 14

3 Development of Software Project Simulator 17

3.1 Proposed Model . 17

3.1.1 Overview . 17

3.1.2 Key concept “Workload” . 18

3.1.3 Structure of the new model 20

xvii

3.1.4 Project model . 21

3.1.5 Activity model . 24

3.2 Examples of modeling . 27

3.2.1 Design and coding activities 27

3.2.2 Review activity . 29

3.2.3 Test activity . 30

3.2.4 Debug activity . 32

3.3 Simulation Environment . 33

3.3.1 System architecture . 34

3.3.2 Behavior of the simulator . 36

3.4 Experimental Evaluation . 37

3.4.1 Assumptions . 37

3.4.2 Characteristics of the target projects 40

3.4.3 Outline of the experiment . 40

3.4.4 Simulation results . 42

3.5 Discussions . 43

3.5.1 Analytic solutions of GSPN model 43

3.5.2 Parameter setting of the proposed model 44

3.5.3 Tailoring the proposed model to other software organizations 45

4 Improvement in Parallel Execution 47

4.1 Parallel Execution of Activities . 47

4.2 Case Study . 48

4.2.1 Two cases for parallel execution 48

4.2.2 Target project . 49

4.3 Experiment using Simulation . 50

4.3.1 Result of the simulation . 50

4.3.2 Statistical analysis . 51

4.4 Discussions for Practical Use (Another Experiment) 53

xviii

5 Improvement in Test Process Planning 55

5.1 Dynamic Project Control . 55

5.2 Software Process Model . 56

5.2.1 Actual software process . 56

5.2.2 Simple software process model 57

5.2.3 Project plan . 58

5.3 Project Control Methods . 59

5.3.1 Single-phase control . 59

5.3.2 Two-phase control . 60

5.4 Case Study . 61

5.4.1 Characteristics of target project 61

5.4.2 Experimental projects . 61

5.5 Experiment using Simulation . 64

5.5.1 Preparation . 64

5.5.2 Results of simulation . 65

5.5.3 Discussions . 66

6 Extension for Risk Prediction 69

6.1 Application to Risk Management . 69

6.2 Needs for Extension . 70

6.2.1 Cost estimation of risky project 70

6.2.2 An approach for cost estimation considering risks 71

6.3 Extension of Project Simulator . 71

6.3.1 Selected risk factors . 72

6.3.2 Parameters to represent the risk factors 72

6.3.3 Confusion by fluctuating skill level 74

6.3.4 Confusion by the deadline pressure 76

6.4 Implementation of Extended Simulator 77

6.4.1 Adjusting parameters for risk factors 77

6.4.2 Procedure of application . 80

xix

6.5 Case Study . 80

6.5.1 Target projects . 81

6.5.2 Estimation by previous simulator 81

6.5.3 Estimation by extended simulator 82

6.5.4 Discussions . 82

7 Conclusion 85

7.1 Achievements . 85

7.2 Future Work . 87

xx

Chapter 1

Introduction

1.1 Background

Assuring software quality and productivity is a major problem facing software

engineering. In general, software quality affects productivity, since software prod-

ucts with higher quality require less rework and maintenance. To develop and

maintain the software products, developers may use various activities, methods,

practices and transformations. A software process is defined as a set of such

activities, methods, practices and transformations that people use to develop and

maintain software and the associated products, e.g., project plans, design docu-

ments, code, test cases, and user manuals [17]. Software process improvement is a

systematic methodology for improving software processes, and it includes under-

standing, definition, measurement, and optimization of processes [46]. Process

improvement is indispensable for improving the quality of software products and

the productivity of the development process.

For the improvement of software development processes, a number of studies

and reports have been proposed [3, 6, 7, 13, 20, 28], and they all stress the impor-

tance of the following two key activities: (1) to understand and analyze the current

status of the software development process, and (2) to construct and execute an

improvement plan for the process, based on the results of the analyses. In order

1

2 CHAPTER 1. INTRODUCTION

to promote process improvement activities, Humphrey proposed the process ma-

turity model [24]. Based on the process maturity model, Paulk et al. proposed the

Capability Maturity Model (CMM) [57]. The CMM has been widely accepted and

applied to actual software development organizations.

A certain company (hereafter, called Company A) was influenced by the

process maturity model and established a Software Engineering Process Group

(SEPG) in 1992 to promote process improvement. Since its establishment, the

SEPG has collected data on software metrics from software projects in the com-

pany. We have been participating in the process improvement activities of the

SEPG.

An actual example of software process improvement activity in Company A is

described in [60]. In order to improve the software process, a process improvement

procedure, which describes a current process using Petri nets and estimates the

benefits gained by the improvement, was proposed. In the procedure, the current

software process is described accurately and in detail, and then a feasible action

plan is presented to developers. Also, benefits were estimated to evaluate the

impacts of the action plan before the action plan is actually implemented. In [60],

the proposed procedure was applied to an actual project. By applying the action

plan to other projects, it was estimated that 10% of the total effort/KLOC would be

reduced in the test phases. The estimated effort reduction was actually attained.

Their experience with the above study encouraged the SEPG, and then our re-

search objective shifted to applying process improvement systematically in Com-

pany A focusing on quality, cost and delivery date. However, even if activities

for process improvement were devised by the SEPG, they were seldom applied

to actual projects, since those activities required much resources.

This kind of problem is common to other software organizations, and a cost-

effective approach to software process improvement is strongly required. Simula-

tion techniques have been introduced to answer such a requirement, and software

process simulation is known to be one of the most cost-effective solutions to facil-

1.2. SOFTWARE PROJECT SIMULATION 3

itate such process improvement activities.

Numerous studies on the simulation of software processes have been proposed

[4, 5, 10, 12, 14, 15, 21, 29,30,34,35,48–53, 56, 62–64]. However, those methods were

not powerful enough to apply to the software process in Company A, because

we intended to estimate the cost, quality, and duration of software development

as well as showing the effectiveness of the process improvement. Our goal was

to establish a new software simulation technique that can estimate cost, quality,

and duration using highly accurate simulation. We also aimed at investigating its

applicability to actual software process improvement in Company A.

1.2 Software Project Simulation

As the importance of software process improvement increases, the improvement

activity costs become a more critical problem. The process improvement activities

(usually including changes to the software process) require a large amount of

resources to implement. However, its impact is difficult to predict. Thus, the

following question arises: “How can we predict the future impact of theoretically

useful methods for process improvement?”

One area of research to answer that question is the software process simulation

technique. Using software process simulation, quite feasible answers for some

complex situations can be obtained at a reasonable cost. Therefore the software

process simulation technique is drawing interest from academic researchers and

practitioners alike as an approach for analyzing complex business and policy

questions.

Several methods have already been proposed to model and evaluate the soft-

ware development process. Kellner has proposed the method of evaluating

software processes that are described by the modeling tool STATEMATE [29].

This method has demonstrated how process models could be applied to soft-

ware project management. Next, Lee and Murata have proposed a β-distributed

4 CHAPTER 1. INTRODUCTION

stochastic Petri net model for software project management [34]. This model is

an integrated model using the program evaluation and review technique (PERT)

and Petri nets, and is suitable to deal with uncertainty and concurrency problems

in large software project management. FUNSOFT Nets [12] and SPADE [4, 5] are

also models based on Petri nets and are more oriented to process enactment than

to process analysis and simulation. They are mainly focused on the evaluation of

the time constraints of the process.

Tvedt and Collofello have also evaluated the effectiveness of process improve-

ment on software inspections using the system dynamics model [62]. This method

makes it possible to predict the impact of process improvement through the cause-

effect relationships of software development. These methods evaluate only the

cost and delivery date. They thus cannot evaluate all the important factors of

software project: quality, cost and delivery date. Raffo has extended Kellner’s

method in order to evaluate the quality of software, and applied it to Kellner’s

Software Process example [51]. This method, however, has not been applied to

real software development processes.

Recently, software process simulation is increasingly used to address a variety

of issues from the strategic management of software development, to supporting

process improvement [30]. For instance, in order to achieve higher levels of CMM,

Raffo et al. introduced a framework for using process simulation to make decisions

about process changes [52]. Their approach is intended to be a key to successful

achievement of CMM levels 4 and 5. Christie also showed how simulation can

be of significant benefit at all levels of the CMM [10]. Drappa et al. proposed

the SESAM model, which is expressed in a rule-based modeling language, and

applied the SESAM model to the training of software project management [14,15].

They also reported that the SESAM model helped the students in their department

to easily understand the problems in the software development process. Pfahl et

al. used a system dynamics-based simulator to refine requirements in a software

development [48, 49].

1.3. MAIN RESULTS 5

1.3 Main Results

The situation in Company A was almost the same, that is, the impact of process

improvement activity had to be analyzed in advance. Since then, we have started

research to simulate the software process. Although many simulation techniques

had been proposed, they were not applicable to Company A. Thus the main

objective is to develop a software project simulator that is applicable to software

process improvement activities at Company A. The main results to be described

in this dissertation are as follows:

1. Development of a software project simulator

2. Improvement of parallel execution of activities

3. Improvement of test process planning

4. Extension of simulator to risk prediction

1.3.1 Development of a software project simulator

First, we propose a new model based on Generalized Stochastic Petri Nets(GSPN)

[36] for software projects. The model consists of a Project model and a Process

model. The Project model focuses on three key components: activity, product and

developer of the project. The Process model includes a set of Activity models, each

of which specifies design, coding, review, test, and debug activities respectively

using GSPNs. The model can handle the effect of human factors by introducing

the concept of “workload”. The workload of an activity is defined as the total

time needed for a developer with the average capability to complete the activity.

The workload can reflect the necessity of communication and the performance

of CASE tools, and thus the simulator can evaluate the dynamic aspects of the

software project.

Next, in order to support description and execution of the processes described

by the Activity model, we develop a software project simulator. The kernel part

6 CHAPTER 1. INTRODUCTION

of the simulator is developed using the C++ language and the display and the

editing functions are developed using the Tcl/Tk. As a result of the simulation,

we get estimated values for the quality, cost and completion date of the target

process. We then conduct an empirical evaluation. In the experiment, we apply

the simulator to real software projects at Company A and compare the estimated

values with actual data. The experimental results show that the estimated values

are quite close to the actual value. As the result, we can show the applicability of

the proposed simulator to improve real software projects in the future.

1.3.2 Improvement of parallel execution of activities

The parallel execution of activities is a common problem in software projects,

especially in the waterfall-model-based development [58]. An example of parallel

execution would be when a coding activity starts before previous module design

activity finishes. This technique is usually introduced to reduce development

duration when a deadline of a project approaches. However, this technique is not

recommended in waterfall-model-based development, since it may increase the

development effort. It is important to make the developers recognize the potential

problems.

We describe a real software development process with parallel execution of

both design and coding activities, and evaluate the process from the viewpoints of

quality, cost, and completion date. Furthermore, by using the proposed method,

we can analyze how parallel execution of design and coding activities affect the

overall development process.

As a result, we observe that parallel execution increases both development

effort and duration in experimental simulations. The results were convincing to

actual developers in Company A.

1.3. MAIN RESULTS 7

1.3.3 Improvement of test process planning

The test phase in a development process encounters the following problems or

difficulties with respect to controlling the progress of the test phase [22, 44].

– Determining the amount of effort needed for the test phase

– Estimating the quality of the delivered code

These problems are tightly coupled. If the effort is too small, the quality will de-

crease. Even if the effort is more than necessary, the quality may not be improved

very much.

Based on these observations, we propose a new method for controlling the

progress of software development projects. The key idea is to update or modify

the initial plan at intermediate stages in the development project, and to apply the

updated plan to the succeeding stages. We then propose to control the progress of

the design and coding phases using the initial plan, and then control the progress

of the test and debug phases using the updated plan. We call this method two-

phase project control.

The updating of the plan should reflect the results of the development project

using the initial plan. For instance, data to be considered should include the

number of faults introduced into the product and the number of residual faults

from the design and coding phases.

We confirm the usefulness of two-phase project control using the proposed

simulator. Additionally, in our evaluation, we apply real data to the simulator,

collected from actual software development projects in Company A.

1.3.4 Extension to risk prediction

Thirdly, we try to estimate the development costs for risky projects [65], which is

an important measure to determine risky projects. To do so, the project simulator

must have capability to deal with risk factors in a risk questionnaire [41] and to

estimate development costs under risk factors.

8 CHAPTER 1. INTRODUCTION

The initial simulator cannot simulate a project under risks, because it cannot

represent risk factors. In an extended simulator, we implement a mechanism

that adjusts parameters to deal with the influence of risk factors. As a result, the

following typical causes of disorder in risky projects can be represented in the

simulator: disorder caused by fluctuation in developer’s skill levels and disorder

caused by deadline pressure [19].

Finally, we perform a case study to confirm whether a risky project can be

simulated. The results show that the enhanced simulator can estimate the devel-

opment costs for both ideal case and risky case. As a result, we confirm that the

simulator shows how much the development cost of a risky project exceeds an

estimate.

1.4 Overview of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 addresses the

process improvement activities and shows past activities in Company A.

Chapter 3 proposes the new model for project simulation based on the GSPN

model, and shows examples to describe typical activities in a development pro-

cess. We then implement a project simulator based on the proposed model, and

the implemented simulator is applied to several actual project data.

Chapter 4 describes the first application to the process improvement. In this

chapter, we show that the parallel execution of development activities (such as

executing module design and coding activities simultaneously) increases project

costs and residual faults.

Chapter 5 shows a second process improvement example. In this applica-

tion, we investigate the effect of dynamic updating of a project plan by several

simulations.

Chapter 6 presents an application of the simulator to risk prediction. We adopt

some extensions to the simulator to manage risk factors in software projects.

1.4. OVERVIEW OF THE DISSERTATION 9

Finally, Chapter 7 concludes this dissertation with a summary and directions

for future work.

Chapter 2

Software Process Improvement

Activity

2.1 Background on Software Process Improvement

A software process can be defined as a set of activities, methods, practices and

transformations that developers use to develop and maintain software and the

associated products [17]. Viewing software development as a process has signifi-

cantly helped identify the problems that need to be addressed in order to establish

effective practices. Because software processes are complex entities, researchers

have created many languages and modeling formalisms (such as SPADE [5],

FUNSOFT [12], and so on [29, 34].).

As in other human-related activities, software processes can exhibit unex-

pected or undesired behaviors and performance. So practitioners have realized

that those processes cannot be defined and frozen definitively. Software processes

need to be continuously changed and refined to enhance their ability to handle

various requirements from customers.

Quality models and methods for software process improvement thus have

been proposed. The Capability Maturity Model (CMM) [57] and ISO 9001 stan-

dard [26] have been proposed as quality models. In the Software Engineering

11

12 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT ACTIVITY

Institute(SEI) at Carnegie Melon University, Humphrey has proposed a frame-

work of software process maturity [24]. After several years of experience with

the software process maturity framework, the SEI evolved Humphrey’s frame-

work into the CMM. Both the CMM and ISO 9001 standard have been adopted by

many organizations to assess their software capability and to provide a pathway

for their efforts to improve their processes. As for process improvement methods,

SPICE [27], IDEAL [38], Personal Software Process (PSP) [25], and so on have

been proposed. They suggest the steps to be accomplished to improve the quality

of the software development process.

In the recent years, research in empirical software engineering has also in-

creased. There have been numerous empirical studies and reports [3,6,7,13,20,28]

regarding the improvement of software processes, and they have provided many

useful insights for practitioners and academic people.

2.2 Process Improvement Activities in Company A

2.2.1 Brief introduction of Company A

Company A is a software development company, whose main product is software

embedded in social infrastructure systems (such as ticket vending machines, au-

tomated teller machines(ATMs), and point of sales (POS) terminals). Just as such

embedded software has grown in size, the development projects have also become

large. Since the embedded software is tightly coupled with the functionality of the

hardware systems and must meet their release schedules, the quality and timeli-

ness of software availability is critical. Therefore, the need for efficient software

project management has increased.

The SEPG (Software Engineering Process Group) is one of groups within the

Development Division in Company A. The SEPG was established in 1992 to

improve the software development process of the development departments,

each of which belongs to a different division. The SEPG has been cooperating

2.2. PROCESS IMPROVEMENT ACTIVITIES IN COMPANY A 13

with several universities to facilitate this process improvement. They defined

their development process, and they have performed exhaustive collection of

software metrics [16, 43].

The SEPG has applied the following actual process improvement activities to

the processes in Company A.

2.2.2 Identification of software process and process improvement

Actual experiences of software process improvement at Company A were reported

in [18,55,59,60]. For effective technology transfer, the SEPG had set three principal

goals: (1) motivate developers to improve on their process, (2) describe and define

the current software development process correctly and in detail, (3) present a

feasible action plan for developers to follow. To attain these goals, the SEPG

proposed a process improvement procedure by describing the current process

and estimating the benefits gained by an improvement.

The project to be improved was one of a series of embedded software devel-

opment projects. “Series” implies that there exist multiple projects where similar

products are developed in succession. Conventionally, these projects continue

for at least three years. When the process improvement started, two projects had

already been finished. The next project would start in four months.

First, the SEPG held a series of interviews with developers and drew a flow

map in the form of a Petri net [47] describing the current software development

process. Next, the group constructed an action plan based on an in-depth analysis

of the current flow map, and estimated the benefits to be obtained if this plan were

to be rigorously followed. As a result, both the action plan and the benefit esti-

mation were accepted by the developers as a feasible action plan. Applying the

action plan to a practical project confirmed that, compared to similar projects, ap-

proximately 10% of the total effort/KLOC was reduced in the test phases. We then

could suggest that the principal goals and the proposed procedure are effective

in reducing the development effort at Company A.

14 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT ACTIVITY

2.2.3 Improvement of the planning process

In [39,42], we analyzed the association between a deviation in the actual cost (mea-

sured by person-month) from the estimated cost and the quality and productivity

of software development projects. Although the obtained results themselves may

not be new from the academic point of view, they can motivate developers to join

process improvement activities in a software company and thus become a driving

force for promoting process improvement.

To be precise, we showed that if a project is performed faithfully under a

well organized project plan (that is, the plan is first constructed according to

the standards of good writing and then a project is managed and controlled to

comply with the plan), then the deviation in actual cost from estimated cost is

small. Next, we show statistically that projects with a small deviation in the cost

estimate tend to achieve high quality in the final products and high productivity

for the development teams. This analysis makes extensive use of actual project

data for 37 projects at Company A.

2.2.4 Risk investigation and prediction

We have tried to predict the final status of software development projects by

statistical methods [41]. The proposed method was based on a questionnaire for

the risk factors in software development.

First, we defined a “risky project” from the viewpoint of development cost

and duration. We then designed a questionnaire that includes the risk factors

that occur in software development. We designed the questionnaire shown in

Figure 2.1 to be distributed to software project managers. The questionnaire

includes 23 risk factors, which are classified into 5 major categories: Requirements,

Estimation, Team organization, Project plan, an Project management. Project

managers then returned evaluations on each risk factor as shown in Figure 2.1.

The evaluations are of an ordinal evaluation (For example, for evaluations ‘High’,

‘Relatively high’, ‘Relatively low’, and ‘Low’, the values 3, 2, 1, and 0 are assigned,

2.2. PROCESS IMPROVEMENT ACTIVITIES IN COMPANY A 15

Evaluation

1.

1.1 Unreasonable customers.

1.2 Developers could not elucidate sufficient requirements.

1.3 Developers misunderstood the requirements of the customer.

1.4 Lack of interactive agreement regarding requirement specifications between the customer and the developer.

2.

2.1 There were missing items to be estimated; these items were included in the implicit requirements.

2.2 The importance of estimations was not well recognized.

2.3 Non-technical pressure rendered estimates of costs and/or schedules unrealistic.

2.4 Over-optimism in estimating technical issues.

2.5 Insufficient estimations were carried out using the results of successful projects in the past.

3.

3.1 Wrong people available (lack of skills, lack of training, lack of expertise).

3.2 Incorrect staffing (too few people for current task).

4.

4.1 Unclear responsibilities and authorities.

4.2 Inadequate specifications regarding the work product.

4.3 Inadequate or excessive planning or scheduling of the review process.

4.4 Lack of commitment on the part of all of the developers with regard to the project plan.

4.5 Lack of review for the project plan by senior managers.

4.6 Inadequate control of the development process.

5.
5.1 Lack of risk management on technical matters.

5.2 Low morale on the part of the developers.

5.3 Lack of perception on the part of the managers to ensure a concerned effort.

5.4 Requirement or specification changes were not managed sufficiently.

5.5 Lack of progress reporting.

5.6 Lack of data needed to keep track of a project.

Project Management Activities

Items
Requirements

Estimations

Team Organization

Planning Capability

Figure 2.1: Risk investigation questionnaire

respectively).

Based on the responses to the questionnaire, we collected risk assessment data

and applied the following logistic model to them:

P(Y|x1, · · · , xn) =
eb0+b1x1+···+bnxn

1 + eb0+b1x1+···+bnxn

where x1, · · · , xn are explanatory variables in the model, and Y is a binary depen-

dent variable that represents whether a project is risky or not. P is the conditional

probability that Y = 1(i.e. a project is risky) when the values of x1, · · · , xn are deter-

mined. We selected the risk factors in the questionnaire as potential explanatory

variables, and estimated the coefficients bi’s using the risk assessment data ob-

tained from the responses to the questionnaire. The following is a logistic model

constructed for the risk data at Company A [41]:

P(Y|x1, x2) =
e−5.251+2.727x1+3.984x2

1 + e−5.251+2.727x1+3.984x2

where x1 and x2 are the risk factors “Estimation” and “Planning Capability” in

Table 2.1, respectively∗.
∗In [41], the risk factors were chosen from the categories in Figure 2.1.

16 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT ACTIVITY

We carried out an effectiveness analysis of the model. The results showed that

the model can nicely predict risky projects for new data sets with the probability

P(Y|x1, x2).

Chapter 3

Development of Software Project

Simulator

3.1 Proposed Model

3.1.1 Overview

It is necessary to evaluate software processes from the viewpoints of quality, cost,

and duration. At first, following the policy in [60] (A brief introduction of [60]

was explained in subsection 2.2.2.), we decided to develop the model based on

Petri nets. Among many kinds of Petri net models, we selected the Generalized

Stochastic Petri Net(GSPN) [36].

Fundamental activities in software development processes in [60] can be de-

scribed by introducing the probability of the injection and removal of a fault as

the firing rate of transitions, in order to estimate the number of residual faults in

the products.

The concept of “workload” was then introduced in order to describe the fluctu-

ations in development duration and product size. The interpretation of workload

will be given in the next subsection.

There also exist several dynamic factors as follows, which affect the behavior

17

18 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

of the developers in software development:

1. Communication overheads [9].

2. Difference in experience [37, 54].

3. Confusion caused by incompleteness in documentation [11].

4. Stress due to tight schedules [19].

Since these factors change the development project duration dynamically in

an actual project, it is very difficult to estimate the duration precisely. So three

attributes — developers’ experience level, product completion rate, and deadline

for activities — are incorporated to handle the dynamic effects of human factors.

In particular, the “completion rate” of products makes it possible for developers

to start concurrently a successive (and thus the next) activity based on incomplete

documents developed by the current activity. The degree of incompleteness is

controlled by the completion rate. All these attributes will be taken into the Project

model later.

3.1.2 Key concept “Workload”

Generally speaking, effort is used to measure the amount of an activity. But the

effort does not become clear until the activity is over, and thus the effort is not

suitable to determine the amount of not-finished activity. Also, the effort includes

not only the amount of work needed purely for execution of the activity, but

also the amount of communication among the developers. For example, let us

consider an activity of 10 person-days. Even if a single developer could perform

this activity in 10 days, 10 developers could not perform it in a single day. One of

the main reasons is that the time needed to communicate among the developers

increases as the number of the developers increases.

Here, we define the term “workload” for an activity as the total time needed

to complete the activity for a developer who has an average capability. A con-

3.1. PROPOSED MODEL 19

cept similar to workload has been presented in [1]. Our “workload” could be

considered as an actual instance of the concept in [1]. Furthermore, the efficiency

of the activity under such a condition is quantified as 1. The value of efficiency

depends on the environment, such as the number of developers, the necessity of

communication and the performance of CASE tools. The development time is

calculated as the result of dividing the workload by the efficiency of the activity.

[Example 1] Consider the following two cases of an activity whose workload is

20 hours.

Case 1: Two developers with standard capability execute the activity and ten

percent of the total development time is spent for communication.

For this case, if each developer takes part in the activity for 10 hours, then

the resulting workload becomes 18 (=10×2×0.9).

Case 2: Four developers with standard capability execute the activity and twenty

percent of the total development time is spent for communication.

For this case, if each developer takes part in the activity for 5 hours, then

the resulting workload becomes 16 (=5×4×0.8).

If we get the workload of an activity, then we can estimate a development

time appropriately for several specific activity conditions dependent on a given

environment.

In the proposed model, the workload is assigned to each activity depending

on the input products for the activity. That is, for example, the workload for the

design activity (Wdesign) is defined in the following formula:

Wdesign = sdesign × Kdesign.

Here, sdesign denotes the size of the input product for the design activity and

Kdesign denotes the workload parameter for the design activity. Before simulation,

a workload parameter must be assigned to each activity in the target project.

20 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

Process Model

Project Model

Design Activity

Deliver firing rates

for transitions

Update attribute

values Ai, Pi, Di

Coding Activity

Review Activity

Test Activity

Debug Activity

Activities {Ai}

Products {Pi}

Developers {Di}

Figure 3.1: Structure of the proposed model

Consumption of the workload assigned to an activity is related to the progress

of the activity in the development. Growth in the product can be modeled by

changing the size values or the number of faults in the output product.

3.1.3 Structure of the new model

The proposed model consists of a Project model and a Process model. Figure 3.1

shows the structure of the proposed model.

The Project model includes three key components: activities, products and

developers. Some attributes are attached to each of them, as shown in Figures 3.2.

The Process model includes a set of Activity models, which include activities

3.1. PROPOSED MODEL 21

Attributes of an activity Ai

type
entry condition
exit condition
input products
output products
workforce
workload

Attributes of a product Pi

size
number of faults
completion rate

Attributes of a developer Di

experience level

Figure 3.2: Project template

like designing specifications, coding, reviewing, testing, debugging activities.

3.1.4 Project model

The Project model focuses on three key components: activities, products and

developers, and attaches several attributes to each of them (See Figure 3.2).

An activity has eight kinds of attributes: type, entry/exit conditions, input/output

products, workforce, deadline, and workload. (1) The type shows which of the activities

it corresponds to and currently refers to either of design, coding, review, test, or

debug. (2) The entry condition and (3) the exit condition specify conditions for

beginning and ending the activity, respectively. (4) The input products describe the

products given to the activity as the input products and the degree of contribution

of each input products to workload of the activity. (5) The output products describe

the output products that are developed in the activity and the weight assigned

to each product. Variation in the product size and the number of faults are

distributed to the products according to weights. The sum of each of those

weights must be one. (6) The workforce specifies tuples of the developers who

22 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

P1

size 8

number of faults 0

completion rate 1.0

A1

type FD

entry condition (A1,non-executed)

exit condition (A1,consumed)

input products (P0,7.0)

output products (P1,0.3), (P2,0.5), (P3,0.2)

workforce (M1,1.0)

workload 20

A2

type PG

entry condition (A1,done)

exit condition (A2,consumed)

input products (P1,1.2)

output products (P4,1.0)

workforce (M2,1.0), (M3,1.0)

workload 35

A3

type PG

entry condition (A1,done)

exit condition (A3,consumed)

input products (P2,1.1)

output products (P5,1.0)

workforce (M1,1.0)

workload 35

D1

experience level 3

D2

experience level 2

D3

experience level 1

Figure 3.3: Example of project description

engage in the activity and the ratio of time in which each developer can engage in

the activity with respect to his or her business hours. (7) The deadline represents

the date appointed for completion of the activity, which is set in the development

plan. (8) The workload represents a tuple of the workload assigned to the activity

and the amount completed.

A product has three kinds of attributes, which are size, the number of faults

and completion rate. (1) Size represents the product size in document pages or

the lines of source code. (2) Number of faults counts faults in the product. (3)

Completion rate represents the ratio of the completed workload to the assigned

workload.

A developer has an attributes experience level that is determined according

to his/her length of service. We classify developers’ experience levels into the

following three levels: novice, standard and expert levels. They are quantified as

3.1. PROPOSED MODEL 23

t1

t2 t3

P1
P2

rth rwr

rcm

Transition

Execution
function

t1

-

t2

w=w+1

t3

s=s+1

f=f+1 (pin)

Attributes of a Token

s : Size of output product
w : Consumed workload
f : Residual faults in output product

Figure 3.4: Activity model

discrete values 1, 2 and 3, respectively.

[Example 2] Figure 3.3 shows an example of the Project model description. This

project is composed of three activities (A1, A2, and A3), six products and three

developers. Now, let us explain the description of activity A1. Type shows that

the activity A1 is a design activity. Entry condition (the condition for starting the

activity) shows that A1 can be started at any time, provided that it has not already

been started. Exit condition (the condition for ending the activity) shows that if

all of the workload assigned to A1 is completed, its execution ends. Input product

(= (P0, 7.0)) represents that the product P0 is given to A1 as an input product,

and the workload, which is equivalent to seven times as much as the size of the

product P0, is assigned to A1. Output product (= (P1, 0.3), (P2, 0.5), (P3, 0.2)) shows

that A1 develops three products P1,P2 and P3, and the increase or decrease of the

size and faults is distributed to P1, P2, and P3 in a three-five-two ratio, respectively.

24 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

Workforce shows that developer M1 engages in A1 at the full rate of his/her business

hours. Deadline(the appointed date for the completion of the activity) shows that

the deadline of A1 is specified to be 20 days after the beginning of the project.

The description of product P0 shows that the size of P0 is 8 pages, no fault exists

in it, and development of P0 is fully completed, that is, there are no omission in

the description.

The descriptions of developers M1, M2, and M3 show that their experience

levels are 3(expert), 2(standard), and 1(novice), respectively.

Note that workloads of activities A1, · · · ,A3 and the attributes of all products

except for the initial input product P0 are determined during the execution of the

model. Thus, they are not yet specified in Figure 3.3.

3.1.5 Activity model

An activity model is prepared for each type of activity such as design, coding,

review, test, and debug. The descriptions of the Activity models are given using

an extended GSPN. In this study, we only used the notation of GSPN, and thus

we did not use the GSPN’s computational power very much. Figure 3.4 shows

an example of the description of the design activity. In the extended GSPN, a

token has three attributes: the product size s, the number of faults f , and the

consumed workload w. These attributes are used to represent the current status

of development, which varies over the execution of each Activity model. This

extension of GSPN is mainly for simplicity of description.

Transitions used here are timed transitions. The firing delay of each transition

is exponentially distributed and the average firing delay of a transition is specified

by a firing rate assigned to it. In Figure 3.4, the firing rate rcm of transition t1 means

that the average firing delay of transition t1 is 1/rcm.

In addition, each transition has a function (called the execution function) to be

evaluated on its firing. Executing the function updates the attribute values of the

token. Intuitively speaking, each transition corresponds to a developer behavior

3.1. PROPOSED MODEL 25

such as thinking, writing, or communicating, or an event that occurs during

execution of the activity. Places correspond to waiting states for occurrences of

behaviors or events.

[Example 3] Figure 3.4 shows a description of the design activity. Here, we

consider three kinds of developer behaviors in the design activity: communicating

among developers, thinking of a problem solution, and writing down the solution

in documents. Transitions t1, t2, and t3 in Figure 3.4 correspond to communicating,

thinking and writing and are given the firing rates rcm, rth, and rwr, respectively.

The firing rates of the transitions are formulated by the following ten functions

fcm, fth, fwr, fpr, frd, fdt, fmd, fps, flc, and fin. These functions should be actually

specified based on the properties of the target project.

In the following, M is the number of the developers who engage in the activity,

L is developer’s experience level, ΣL is the sum of each developer’s experience,

S is the total size of the input products, R is the completion rate of the input

products, F is the number of faults in the input products, D is the number of the

days from the current date to the deadline of the activity. Kcm, Kth, Kwr, and Kin

are parameters given to each activity and specify the communicating, thinking,

writing and fault injection rate, respectively∗.

(1) Communicating rate rcm

rcm = fcm(M,ΣL,R)

(2) Thinking rate rth

rth = fth(M,ΣL)

(3) Writing rate rwr

rwr = fwr(M,ΣL)
∗The parameters Kcm, Kth, Kwr, and Kin should be given actual values based on the characteristics

of the project to which they are applied.

26 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

(4) Preparing rate rpr

rpr = fpr(M,ΣL, S)

(5) Reading rate rrd

rrd = frd(M,ΣL)

(6) Fault detecting rate rdt

rdt = fdt(M,ΣL, S, F)

(7) Fault modifying rate rmd

rmd = fmd(M,ΣL)

(8) Test case passing rate rps

rps = fps(M)

(9) Fault localizing rate rlc

rlc = flc(M,ΣL, S, F)

These parameters make it possible to dynamically determine the frequency of

communication or the difficulty in thinking and writing depending on the number

of developers, experience levels of developers and/or completion rates of input

products.

In addition, the increase in product size s at every firing of writing transition t3

and the consumption of workload at every firing of thinking transition t2 are de-

scribed by the corresponding execution functions. At each firing of the transition,

the values of the token’s attributes can be changed by evaluating its execution

function.

The activity model handles fault injections in the design activity as stochastic

events whose occurrences depend on the fault injection rate pin. In general, pin is

formulated by the following function:

(10) Fault injection rate pin

pin = fin(M,ΣL,R)

3.2. EXAMPLES OF MODELING 27

This function enables handling of a dynamic effect on the fault injection rate

caused by completion rate of input products and by developers’ experience levels.

Though the functions (1)–(3) are used in Figure 3.4, the rest (4)–(9) are not

included in Figure 3.4. Figure 3.4 shows an example of design and coding activities

and any further improvement in the model should be conducted through case

studies. But we also modeled other activities(review, test, and debug), in which

the functions (4)–(9) are used.

[Example 4] In the design Activity model depicted in Figure 4, for example,

transitions t1 and t2 which represent communicating and thinking behavior, re-

spectively, can fire when a token exists in the place P1. If the communicating

transition t1 fires, it has no effect on the attributes values, and the token returns to

the place P1 and only time elapses by the firing delay. On the other hand, if the

transition t2 fires by evaluating its execution function, then the consumed work-

load w is increased by one, and the token moves to the place P2. When the token

exists in the place P2, only the transition t3 which represents writing behavior is

enabled. If the transition t3 fires, then product size s is increased by one, and the

number of faults f are increased according to the fault injection rate pin. After the

firing of t3, the token moves back to the place P1.

3.2 Examples of modeling

3.2.1 Design and coding activities

Figure 3.5 shows a description of the design activity. Here, we consider three

kinds of developers’ behaviors in the design activity: communicating among

developers, thinking of problem solutions, and writing for putting down the

solution in documents. Transitions t1, t2, and t3 in Figure 3.5 correspond to

communicating, thinking and writing and are given the firing rates rcm, rth, and

rwr, respectively. The firing rates of the transitions are formulated by the following

28 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

t1

t2 t3

P1
P2

rth rwr

rcm

Transition

Execution
function

t1

-

t2

w=w+1

t3

s=s+1

f=f+1 (pin)

Figure 3.5: Design/coding activity model

functions:

(1) Communicating rate rcm

rcm = fcm(the number of developers,

experience levels of developers,

completion rates of input products)

(2) Thinking rate rth

rth = fth(the number of developers,

experience levels of developers)

(3) Writing rate rwr

rwr = fwr(the number of developers,

experience levels of developers)

These functions make it possible to dynamically determine the frequency of

communications or the difficulty in thinking and writing according to the number

of developers, experience levels of developers and/or completion rates of input

products.

3.2. EXAMPLES OF MODELING 29

t1

t2 t5

P1
P3

rmd

rcm

Transition

Execution
function

t1

-

t3

w=w+1

t5

f=f-1
update(rdt)

t4

P2

rpr rdt

t3
rrd

t2

-

t4

-

Figure 3.6: Review activity model

Increases in product size s at every firing of writing transition t3 and con-

sumption of workload at every firing of thinking transition t2 are described by the

corresponding execution functions. At each firing of the transition, the values of

token’s attributes can be changed by evaluating its execution function.

The Activity model handles fault injections in the design activity as stochastic

events whose occurrences depend on the fault injection rate pin. In general, pin is

formulated by the following function:

(4) Fault injection rate pin

pin = fin(the number of developers,

experience levels of developers,

completion rates of input products)

This function enables the handling of dynamic effects on the fault injection

rate caused by incomplete input product and developers’ experience levels.

3.2.2 Review activity

Figure 3.6 shows a description of the review activity. The review activity includes

five kinds of developer behavior: communicating among developers, preparing

30 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

for the review, reading the documents to check them, detecting faults in the

documents, and modifying the detected fault. Transitions t1, t2, t3, t4, and t5

in Figure 3.6 correspond to communicating, preparing, reading, detecting and

modifying are given the firing rates rcm, rpr, rrd, rdt, and rmd, respectively. The firing

rates of the transitions are formulated by the following functions:

(1) Communicating rate rcm

rcm = fcm(the number of developers,

experience levels of developers,

completion rates of input products)

(2) Preparing rate rpr

rpr = fpr(the number of developers,

experience levels of developers,

size of input products)

(3) Reading rate rrd

rrd = frd(the number of developers,

experience levels of developers)

(4) Detecting rate rdt

rdt = fdt(the number of developers,

experience levels of developers,

size and the number of faults of

input products)

(5) Modifying rate rmd

rmd = fmd(the number of developers,

experience levels of developers)

3.2. EXAMPLES OF MODELING 31

t1

t2 t5

P1
P3

rwr

rcm

Transition

Execution
function

t1

-

t3

w=w+1

t5

s=s+1

t4

P2

rpr rdt

t3
rps

t2

-

t4

update(rdt)

Figure 3.7: Test activity model

3.2.3 Test activity

Figure 3.7 shows a description of the test activity. The test activity includes three

kinds of developers’ behaviors: communicating among developers, preparing for

test, and writing down a detected failure in report documents, and two events

during the test activity: passing the test case without error and detecting a failure

during the test execution.

Transitions t1, t2, t3, t4, and t5 in Figure 3.7 correspond to communicating,

preparing, passing, detecting and writing are given the firing rates rcm, rpr, rps,

rdt, and rwr, respectively. The firing rates of the transitions are formulated by the

following functions:

(1) Communicating rate rcm

rcm = fcm(the number of developers,

experience levels of developers,

completion rates of input products)

(2) Preparing rate rpr

rpr = fpr(the number of developers,

32 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

t1

t2 t3

P1
P2

rlc rmd

rcm

Transition

Execution
function

t1

-

t2

w=w+1

update(rlc)

t3

f=f -1

Figure 3.8: Debug activity model

experience levels of developers,

size of input products)

(3) Passing rate rps

rps = fps(the number of developers)

(4) Detecting rate rdt

rdt = fdt(the number of developers,

experience levels of developers,

size and the number of faults of

input products)

(5) Writing rate rwr

rwr = fwr(the number of developers,

experience levels of developers)

3.3. SIMULATION ENVIRONMENT 33

3.2.4 Debug activity

Figure 3.8 shows a description of the debug activity. The debug activity includes

three kinds of developers’ behaviors: communicating among developers, local-

izing a fault associated with the reported failure and modifying the localized

fault.

Transitions t1, t2, and t3 in Figure 3.8 corresponding to communicating, local-

izing and modifying are given the firing rates rcm, rlc, and rmd, respectively. The

firing rates of the transitions are formulated by the following functions:

(1) Communicating rate rcm

rcm = fcm(the number of developers,

experience levels of developers,

completion rates of input products)

(2) Localizing rate rlc

rlc = flc(the number of developers,

experience levels of developers,

size and the number of faults of

input products)

(3) Modifying rate rmd

rmd = fmd(the number of developers,

experience levels of developers)

3.3 Simulation Environment

In order to quantitatively evaluate software processes described by the proposed

model, a simulation environment that executes the process automatically is in-

dispensable. We have designed and implemented a simulator that supports

description of the target process, executes the processes described by the activity

model, and analyzes the simulation results statistically. In this Section, we give

34 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

Project manager

User Interface Unit

Simulation
DB

Project
DB

Project
Description

Data flow

Control flow

Simulation
results

Description of
Activity model

Editor

Project Control Unit Activity Simulator

Petri-net
DB

Project
Description

Display Unit

Simulation
results

Figure 3.9: System architecture

an overview of the simulator. The experimental evaluation of the simulator will

be described in Section 3.4.

3.3.1 System architecture

Figure 3.9 shows the system architecture of the simulator. The system consists of

five functional units: project control unit, activity simulator, user interface unit,

display unit and editor. In Figure 3.9, the solid lines represent data flows and the

dotted lines represent control flows, respectively.

The function of each unit is as follows:

(1) Project control unit: The project control unit decides which Activity model

is to be simulated by the activity simulator in accordance with the project

3.3. SIMULATION ENVIRONMENT 35

description. It defines the relationship among activities, products and de-

velopers of the Project model, and sets the values for the attributes of each

activity, product and developer. Next, it delivers the name of the Activ-

ity model and the values of parameters to the activity simulator. When it

receives the results of simulation, it updates the values of the attributes.

(2) Activity simulator: The activity simulator simulates activities specified by the

Activity model using data such as the name of the Activity model and the

parameters given from project control unit. First, it gets an Activity model

with the same name from the Petri net database. Next, it simulates activities

— specified by the model using the given parameter values. The results of

simulation are returned to project control unit at regular intervals and are

stored in the simulation database.

(3) User interface unit: The user interface unit manages exchanges of data or

commands between the user and the system (editor, project control unit,

and display unit).

(4) Display unit: The display unit displays the data received from the activity

simulator. It can also provide data on the previous simulation results stored

in the simulation database. The data include graphical information and

statistical analysis of the simulation results.

(5) Editor: The editor supports the creation of the project description that is input

to the project control unit. This editor enables us to describe a project and set

up all parameters needed in the proposed model. The output of the editor

is stored in the project database.

Since high-speed computation is necessary for the project control unit and

activity simulator, we implemented them using C language. Conversely, the

display unit and the editor, for which user-friendliness is strongly desired, are

implemented using Tcl/Tk [45]. The program size is about 3500 lines (C language:

1000 lines, Tcl/Tk: 2500 lines).

36 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

3.3.2 Behavior of the simulator

Simulations proceeds at the intervals of unit time†. First, the project control

unit determines the activities to be executed, based on the current status of the

simulation and the entry/exit conditions of each activity. Next, for each executable

activity, the project control unit delivers the parameters to the activity simulator

and directs it to execute the activities for a day. The activity simulator then

executes all of the activities specified by the project control unit, using the provided

parameters and the extended GSPN. The execution of an activity is expressed by

the consumption of its workload. When an activity consumes all of assigned

workload, the activity is regarded as completed.

The execution of a simulation can be suspended or restarted at any time.

Intermediate simulation results can be stored in the simulation database at every

unit time in the simulation. The intermediate simulation results are stored in the

same format of the original project description. It is thus possible to restart the

simulation using the intermediate simulation results as input. It is also possible

to change the values of parameters (attributes of project) at any time during the

simulation. For example, we can modify the number of developers at any time

during the simulation and simulate that change immediately.

Figure 3.10 shows an example of a simulation execution that is in progress.

(This figure shows a situation near the end of the coding activities.) In the

main window, we can see the progress of the simulation. We can also get

various information from the window such as control flow between activities,

consumed/assigned workload for each activity, developers assigned to an activ-

ity, the size of the product, the number of residual faults in the product, and so

on. This information supports an investigation of the progress of simulation in

various ways. In Figure 3.10, another window graphically shows the change in

the number of residual faults.

†Currently, one unit time is a day (8 hours).

3.4. EXPERIMENTAL EVALUATION 37

Figure 3.10: Example of simulation

3.4 Experimental Evaluation

In order to evaluate the usefulness of the proposed method, we conducted an

experimental evaluation. In the experiment, we applied the simulator to three

similar software development projects PR1, PR2, and PR3 in Company A.

3.4.1 Assumptions

We formulated each firing rate and fault injection rate in the design and coding

Activity models on the following assumptions (H1)–(H3). In the following for-

mulas, M is the number of the developers engaged in the activity, ΣL is the sum

38 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

of each developer’s experience level, and R is the completion rate of the input

products. Kcm, Kth, Kwr, and Kin are parameters given to each activity and define

the communicating, thinking, writing, and fault injection rate, respectively.

(H1) The communicating rate rcm is proportional to the square of the number of

developers and inversely proportional to the developers’ experience levels

and the completion rates of the input products.

rcm = Kcm × M2

ΣL × R

The validity of (H1) comes from the following: (1) The number of commu-

nication paths among M developers is M(M − 1)/2, and a novice developer

needs more communication because of his/her immature knowledge, and

(2) incomplete input products induce frequent inquiries about the omissions

in the description [11].

(H2) The thinking rate rth and writing rate rwr are proportional to the average

developer’s experience and the number of developers. This assumption

is based on the assertion that the individual capability of the developer is

strongly related to productivity in the software development process [37,54].

rth = Kth × ΣL
M
×M = Kth × ΣL

rwr = Kwr × ΣL
M
×M = Kwr × ΣL

(H3) The fault injection rate pin is proportional to the number of developers and

inversely proportional to the average experience level of the developers and

the completion rate of the input products.

pin = Kin × M
ΣL × R

×M

The validity of (H3) comes from the following: (1) The individual capabil-

ities of developers are also related to the quality of software [37, 54], and

3.4. EXPERIMENTAL EVALUATION 39

(2) incompleteness of products prevents developers from performing their

work correctly.

In a similar way, each firing rate used in other activity models such as review,

test and debug are formulated based on the following assumptions (H4)–(H7). In

the following formulas, S is the total size of the input products, F is the number

of faults in input products, and Kpr, Krd, Kmd, Kps, Kdt, and Klc are parameters

given to each activity and define the preparing, reading, modifying, passing,

fault detecting, and fault localizing rate, respectively.

(H4) The preparing rate rpr used in the review and test activities is proportional

to the average developer’s experience, number of developers, and the total

size of input products. (Preparation time for review or test is expected to

increase according to the size of input products.)

rpr = Kpr × S × L
M
×M = Kpr × S × L

(H5) The reading rate rrd and the modifying rate rmd are proportional to the

average developer’s experience and the number of developers as well as the

thinking and writing rates.

rrd = Krd × L
M
×M = Krd × L

rmd = Kmd × L
M
×M = Kmd × L

(H6) The passing rate in the test activity is proportional to the multiple degree

of the test execution, which is assumed to be the same as the number of

developers who engage in the test activity. (In a real situation, the multiple

degree of the test involves the number of hardware systems executing the

programs.)

rps = Kps ×M = Kps ×M

40 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

(H7) The detecting rate rpr in the review and test activity and the localizing

rate rlc in the debug activities are proportional to the average developer’s

experience, number of developers, and the fault density in the products that

are objects in the activity. (The frequency of the detection of failure or faults

and localization of faults increases in accordance with the number of faults

per unit size of the product.)

rdt = Kdt × F
S
× L

M
×M = Kdt × L × F

S

rlc = Klc × F
S
× L

M
×M = Klc × L × F

S

3.4.2 Characteristics of the target projects

The main characteristics of the projects are summarized as follows:

(1) Development effort is 170–330 person-days per project.

(2) The size of the system is about 15KLOC.

(3) Project members are almost unchanged throughout all projects.

(4) Each project uses the standard waterfall model shown in Figure 3.11.

3.4.3 Outline of the experiment

In order to execute the process specified by the process description, it is necessary

to determine the values of parameters for every activity based on the collected

data of projects PR1 and PR2. Since we could not obtain all of the necessary

data, we initiated the simulation of the development process using virtual data

for some parameters. For example, with respect to the parameters Kcm, Kth, Kwr,

and Kin of the design activity, we assigned reasonable values at first and then

changed the values so that the simulated results of the design activity at PR1 and

PR2 matched as the actual data for that activity. We also calculated the value of

3.4. EXPERIMENTAL EVALUATION 41

A1

A2

A3 A4

A5 A6

A7 A8

A10 A11

A9

A12

A15 A16

A19 A20

A13 A14

A17 A18

A23 A24A21 A22

A27 A28A25 A26

A31 A32A29 A30

A35 A36A33 A34

A39A37 A38

A40 A41
A42

A43

A45

A44

A46

A47

A48

Concept Design (CD)

Concept Design Review (CDR)

Functional Design Review (FDR)

Functional Design (FD)

Structure Design Review (SDR)

Structure Design (SD)

Module Design Review (MDR)

Module Design (MD)

Coding Review (PGR)

Coding (PG)

Unit Debug (UB)

Unit Test (UT)

Functional Debug (FB)

Functional Test (FT)

Integration Debug (IB)

Integration Test (IT)

Verification Debug (VB)

Verification Test (VT)

Figure 3.11: Development process of target projects

some parameters deterministically using actual input data. For example, we can

calculate the input product rate parameter for each activity using the actual data for

effort and product size in PR1 and PR2. We then get a common project description

for projects similar to PR1 and PR2.

After calibrating the parameters, we described the project PR3 by adding to

the common project description some attributes that are unique to PR3 (e.g. the

number of developers). We simulated it repeatedly on the simulator and got the

estimated values for PR3 with respect to the development duration, development

effort, and residual faults. In the case study, we repeated the simulation one

hundred times and calculated the average values for the development duration,

42 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

Model for
PR3

Model for
PR3

Estimated result
of PR3

Estimated result
of PR3

Actual result
of PR3

Actual result
of PR3

Actual data
of PR1

Actual data
of PR1

Plan of PR3
Plan of PR3

Actual data
of PR2

Actual data
of PR2

Determination of
Model parameters

Simulation

Analysis

Figure 3.12: Outline of experiment

development effort, and residual faults of PR3.

Finally, we compare these estimated values for PR3 with the actual values for

PR3. The outline of experiment is also shown in Figure 3.12.

3.4.4 Simulation results

Table 3.1 shows both the estimated and the actual values for project PR3. In Table

3.1, the estimated values for development duration, development effort, and the

number of residual faults are 242 (days), 312 (person-days), and 15, respectively.

On the other hand, the actual values for them are 248 (days), 329 (person-days),

and 26, respectively.

For the development duration and development effort, the estimated values

are quite close to the actual values. On the other hand, for the number of residual

faults, the difference (= 11) is about three times as large as the standard deviation

(= 4.21).

3.5. DISCUSSIONS 43

Table 3.1: Analysis result of simulation

Development Development Residual

duration effort faults

Simulation 242 312 15

(Std. dev.) (6.54) (12.08) (4.21)

Actual value 248 329 26

Thus, we investigated the reason why an error occurs in estimating the residual

faults. As a result of examining the data of PR1, PR2, and PR3, we found that for

projects PR1 and PR2 the average number of developers allocated to the test and

debug activities was 10.5. On the other hand, for project PR3, the average number

of developers in the activities was 20. We consider that this developer allocation

plan induced the error in estimating the residual faults. Though we discussed

the bad effect of communication overhead in the earlier Sections, the good effect

of increasing the number of developers in test and debug had a remarkable effect

on the simulation results. We expect that the accuracy of the estimation can be

improved by revising the equation of the fault injection rate. This revision is an

important area for future research.

3.5 Discussions

3.5.1 Analytic solutions of GSPN model

Generally, the original GSPN model [36] has both high computation capability

and high description capability. Its computational capability is equivalent to the

Markov chain. The expected value for each resultant metric (such as effort, dura-

tion, and the number of residual faults) can be calculated analytically. However,

in this model, we did not compute expected values analytically but by simulation.

44 CHAPTER 3. DEVELOPMENT OF SOFTWARE PROJECT SIMULATOR

The main reason was to avoid a state explosion problem. In the proposed

model, the descriptions of activities are simple. However, the descriptions will

become more complex as the details of an activity are investigated. A huge

number of states will have to be enumerated to calculate the result of a simulation.

Another reason is related to extension of the simulator. We do not have to

persist in the GSPN model. If we find a reason that the firing rate of developers’

behavior is not exponentially distributed, the analytic solution of GSPN model is

no longer used. The simulator, however, can be used by changing firing rules of

transitions.

Thus, at this stage, we chose the simulation technique. The possibility of

analytic calculation remains as future area of research.

3.5.2 Parameter setting of the proposed model

Before simulating the target project, we had to customize the simulator by tuning

the values of the parameters so that each activity in the project can simulate the

actual situation. It is generally very hard to determine these parameters, however,

since they are tightly interrelated. Therefore, in this paper, we used heuristic

values in Section 3.4. It is necessary to develop a systematic method or algorithms

to determine the parameters. We feel that the parameter values can be determined

by a stepwise method. In [39], we empirically found certain relationships between

the parameters. We then chose several projects for the parameter determination,

and determined the values of parameters for each project so that the results of the

simulation became the same as the actual results. We are going to generalize the

stepwise method to efficiently determine the parameters for the proposed model.

3.5. DISCUSSIONS 45

3.5.3 Tailoring the proposed model to other software organiza-

tions

Currently, the proposed model has been built for the software development pro-

cess in Company A. Based on the data and experience from Company A, we

determined the details of the model (For example, the various attributes of the

project template in Figure 3.2 and the description of the activity model in Figure

3.4). In order to apply the model to software development processes in other

organizations, we have to tailor the model. For example, we prepared five kinds

of the activity models (design, coding, review, testing, and debug). If necessary,

we should reconstruct them and add other kinds of the activity models. Also, in

the activity models, the firing delay of each transition is exponentially distributed.

Although this is a property of the GSPN model, our simulator does not utilize the

analytic power of the GSPN model as explained above. It might be appropriate

to modify the distribution to a normal distribution or some other distributions.

Chapter 4

Improvement in Parallel Execution

4.1 Parallel Execution of Activities

The standard waterfall process model presents each activity as usually being

executed sequentially one after another. It makes the specification of each activity

clear. If an activity has to start before the products from a previous activity are

sufficiently completed, the following problems may occur:

• Usually, since incomplete specifications include many inconsistencies and

mistakes, they are more difficult to read and understand than complete

ones. Thus, the more incomplete specifications are, the more effort needed

to understand them.

• Furthermore, such incomplete specifications may not be well reviewed. So,

they may include a great many faults. Faults included in specifications may

cause an additional injections of faults in successive activities.

Thus, in the waterfall model, activities in a process should be executed succes-

sively, not in parallel.

However, based on the data collected from not only the target project but also

most other previous projects in Company A, it seems that there are times when

some activities are executed in parallel with others.

47

48 CHAPTER 4. IMPROVEMENT IN PARALLEL EXECUTION

One of the major reasons for parallel execution is insufficient development

time. Software projects are usually executed on tight schedules, and thus the

easiest way to recover the delay in a schedule is parallel execution of activities.

Basically, developers and managers do not want to perform parallel execution

at the beginning of an activity. The parallel execution usually occurs when an

activity should to finish in a few days, but the deadline is today!

Such a situation can be avoided by making an adequate and flexible plan. To

do so, we have to improve the developers’ awareness of parallel execution. So, we

tried to show the developers the flaws in parallel execution by project simulation.

4.2 Case Study

4.2.1 Two cases for parallel execution

We considered the following two cases that are likely in the same target project:

• Case 1: Activities in the process are executed sequentially one after another

except for the test and debug activities. This is an ideal execution of the

process according to the waterfall model.

• Case 2: Each coding activity in the process is forced to start its executing

if 70% of the previous design activity is completed as shown in Figure 4.1

(Other conditions are the same as Case 1). This is an exceptional case that

could occur because of a severe workforce and time schedule.

In Case 2, each coding activity is started with an incomplete design specification,

and executed in parallel with remaining 30% of the previous design activity. These

cases are constructed based on interviews with actual developers in Company A.

So, the degree of parallelization, 70%, is usual value in this company.

4.2. CASE STUDY 49

A1

A2

A3 A4

A5 A6

A7 A8

A10 A11

A9

A12

A15 A16

A19 A20

A13 A14

A17 A18

A23 A24A21 A22

A27 A28A25 A26

A31 A32A29 A30

A35 A36A33 A34

A39A37 A38

A40 A41
A42

A43

A45

A44

A46

A47

A48

Concept Design (CD)

Concept Design Review (CDR)

Functional Design Review (FDR)

Functional Design (FD)

Structure Design Review (SDR)

Structure Design (SD)

Module Design Review (MDR)

Module Design (MD)

Coding Review (PGR)

Coding (PG)

Unit Debug (UB)

Unit Test (UT)

Functional Debug (FB)

Functional Test (FT)

Integration Debug (IB)

Integration Test (IT)

Verification Debug (VB)

Verification Test (VT)

Figure 4.1: Parallel execution in the development process

4.2.2 Target project

The project targeted for the evaluation is one of a series of embedded software

development projects in Company A. The main characteristics of the projects are

summarized as follows:

1. The development effort is 5–50 (30 on average) person-months per project.

2. The development duration is 5–15 (7 on average) months per project.

3. The project members are almost unchanged throughout the all projects.

4. Each project uses a standard waterfall model.

50 CHAPTER 4. IMPROVEMENT IN PARALLEL EXECUTION

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

E
ffo

rt
 (

m
an

-d
ay

s)

Elapsed Duration (days)

"Case1"
"Case2"

Figure 4.2: Variations of cumulative efforts

4.3 Experiment using Simulation

The simulations were iterated 100 times, and we tracked their execution. We first

showed the result of a typical execution in order to see the behaviors of simulated

projects in both cases. We then showed the statistical results of 100 executions.

4.3.1 Result of the simulation

Figures 4.2 and 4.3 show the results of simulating two cases in the same process

described in the proposed model. The simulation results of Case 1 and Case 2 are

plotted out with diamonds and pluses, respectively.

The variation in the cumulative efforts is shown in Figure 4.2. At the starting

of the parallel execution of both coding and module design activities in Case 2,

the difference of effort between Case 1 and Case 2 appears and the result is that

the development duration of Case 2 is 9 days longer than that of Case 1 and the

total effort of Case 2 is 74 person-days larger than that of Case 1.

The variation of the residual faults is shown in Figure 4.3. Just as for the

variations in the cumulative efforts, the difference of residual faults in the two

4.3. EXPERIMENT USING SIMULATION 51

0

50

100

150

200

250

300

0 50 100 150 200

R
es

id
ua

l F
au

lts

Elapsed Duration (days)

"Case1"
"Case2"

Figure 4.3: Variations of residual faults

cases appears at the start of the parallel execution in Case 2, and the number of

residual faults in Case 2 is more than those of Case 1 ever after. At the point of

process completion, a difference of 23 faults remains.

The causes of these results are as follows: The incomplete input products of

the coding activities in Case 2 induces (1) an increase in injected faults in source

code (as a result, the total workload of the activities in the lower stream of the

process increases), and (2) an increase in communication overheads in the coding

activities.

As mentioned above, the proposed model makes it possible to quantitatively

evaluate a real software development process with severe constraints on resources,

from the viewpoints of the quality, cost, and duration.

4.3.2 Statistical analysis

In order to verify that the proposed model definitely handles the effect of parallel

execution, this section shows statistical analyses of the simulation results. We con-

52 CHAPTER 4. IMPROVEMENT IN PARALLEL EXECUTION

firmed that the model handles the effect of incomplete products in the following

way.

1. We confirmed that the difference between Case 1 and Case 2 is not seen until

parallel execution of both design and coding activities start in Case 2.

2. We examined the difference in the cumulative efforts, project duration, and

the number of residual faults between Case 1 and Case 2 at the point of

process completion.

Table 4.1: Comparison of simulation results of before parallel execution (100

simulations)

Point of before parallel execution Case 1 Case 2

Average duration 84 84

Standard deviation of durations 3.4 2.9

Average Effort 202 201

Standard deviation of efforts 7.7 7.5

Average # of Faults 89 91

Standard deviation of # of faults 8.7 10.0

Table 4.1 shows that there is no difference in simulation results between Case 1

and Case 2 until the parallel executions start in Case 2. (The statistical test shows

that there are no significant differences in both average periods and average efforts

between Case 1 and Case 2.) Next, Table 4.2 shows that there exists a difference in

simulation results between Case 1 and Case 2 at the point of process completion.

(The differences are shown to be significant by the statistical test.)

Note that “Effort” in the simulator means “the time in which developers actu-

ally work.” So, the results in Table 4.2 do not imply that additional person-power

was invested in Case 2.

4.4. DISCUSSIONS FOR PRACTICAL USE (ANOTHER EXPERIMENT) 53

Table 4.2: Comparison of simulation results at the point of process completion

(100 simulations)

Point of process completion Case 1 Case 2

Average duration 212 201

Standard deviation of durations 9.4 6.5

Average Effort 751 771

Standard deviation of Efforts 22.0 24.8

Average # of Faults 49 48

Standard deviation of # of Faults 7.5 5.7

Since the parallel executions of both design activities (A7, · · ·, A10) and coding

activities (A11, · · ·, A14) are the only difference in process description between Case

1 and Case 2, we can consider that the difference in the simulation results of Case

1 and Case 2 are caused by the effect of the parallel executions, that is, by the

incomplete input products.

4.4 Discussions for Practical Use (Another Experiment)

Finally, another simulation result for another project is shown here. In this exper-

iment, a project with a rather small product size was chosen (The size of product

was about 10KLOC and development effort was 68 person-days.). Simulations

were performed by changing the degree of parallelization c (such as c = 70% in

Case 2). We changed the value from c = 100% (it is in Case 1) to c = 10% (very

heavy parallel execution). Figure 4.4 shows variations of effort and durations for

these cases.

Figure 4.4 shows an interesting finding. As shown in the graph, the project

duration drastically decreases in cases of rather “lightly” parallel executions(such

as 60% ≤ c < 100%). However, for cases of “heavily” parallel execution (such

54 CHAPTER 4. IMPROVEMENT IN PARALLEL EXECUTION

58

59

60

61

62

63

c=100 c=80 c=70 c=60 c=50 c=40 c=30 c=20 c=10

Ideal Parallel Parallel Parallel Parallel Parallel Parallel Parallel Parallel

Conditions

D
ur

at
io

n
(d

ay
s)

62

64

66

68

70

72

74

76

78

80

E
ffo

rt
 (

P
er

so
n-

da
ys

)

Duration
Efforts

Figure 4.4: Variations of efforts and durations according to degree of paralleliza-

tion.

as 10% ≤ c ≤ 50%), durations do not decrease. The increase in effort for lightly

parallel execution is rather small. It drastically increases in heavily parallel exe-

cution.

The initial objective of this experiment was to avoid the parallel executions in

Company A. However, this result implies that there is a possibility of utilizing

our simulator for more practical use. That is, we might find an optimal degree of

parallel execution by simulations (that is, a relatively low increase in effort and

high reduction in duration.).

In order to use the simulator for such practical work, there are many problems

remaining at this point (mainly related to the accuracy, validity, and so on).

However, this topic continues as an area for future work.

Chapter 5

Improvement in Test Process

Planning

5.1 Dynamic Project Control

Generally speaking, a real software development process is a concurrent process

in the sense that many activities are executed in parallel by team members. For

example, (as was explained in Chapter 4) both the module design activities for

subsystems and the coding and the coding review are executed concurrently. The

former is for efficiency, but the latter may be due to a slippage in the schedule.

Therefore, it is not easy to manage the progress of a development project with

such concurrent processes [24]. In particular, it is very difficult to control the

process of development using a development plan initially constructed on insuf-

ficient data for the target project. It is also difficult to estimate the development

cost. Many typical failures are found in so-called death march projects [65].

The test phase, especially, has the following problems or difficulties in control-

ling the progress of the test phase [22, 44].

– Determining the amount of effort for the test phase

– Estimating the quality of the delivered code

55

56 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

These problems are tightly coupled. If the effort is too small, the quality will

become very poor. Even an excessively large effort may not improve the quality

very much.

Based on these observations, we proposed a new method for controlling the

progress of software development. The key idea is to update or modify the initial

plan at an intermediate stage in the development, and to apply the updated plan

to the succeeding stages. We then proposed to control the progress of the design

and coding activities using the initial plan, and then control the progress of the

test and debug activities using the updated plan. We call this method two-phase

project control.

The plan update should reflect the results of development using the initial

plan. For instance, the plan must consider the number of faults introduced into

the product and the number of residual faults in the design and coding activities.

In this chapter, we confirm the usefulness of the two-phase project control

using the project simulator proposed in Chapter 3. Additionally, in the evaluation

we use real data in the simulation, which was collected from actual software

development projects in Company A.

5.2 Software Process Model

5.2.1 Actual software process

An example of the actual software process was shown in Figure 3.11. That pro-

cess is currently used in Company A. However, this actual development process

is too complicated for further discussions in this chapter. We use instead a simple

process model, shown in Figure 5.1, which maintains the fundamental flow struc-

ture in Figure 3.11. In this simplification, for example, the four module design

activities A13, A14, A15, and A16 in Figure 3.11 are merged into one module design

activity (MD) in Figure 5.1. (The simple process in Figure 5.1 is only used to

clearly define the proposed methods. The actual simulation in Section 5.4 uses

5.2. SOFTWARE PROCESS MODEL 57

the actual process in Figure 3.11.)

Additionally, we logically divided the whole process into two phases from the

viewpoint of faults: a design phase and a debug phase. The reason is that the

activities in the design phase are primarily oriented toward increasing the size of

the product and thus introducing faults, but the activities in the debug phase are

for detecting and removing faults from the product.

5.2.2 Simple software process model

We assumed that software development process consists of two successive phases:

a design phase and a debug phase. The design phase includes ten activities:

(Concept Design (CD), Concept Design Review (CDR), Function Design (FD),

Function Design Review (FDR) Structure Design (SD), Structure Design Review

(SDR), Module Design (MD), Module Design Review (MDR), Coding (PG) and

Code Review (PGR)). The debug phase includes eight activities: (Unit Test (UT),

Unit Debug (UDB), Integration Test (IT), Integration Debug (IDB), Function Test

(FT), Function Debug (FDB), Verification Test (VT) and Verification Debug (VDB)).

As shown in Figure 5.1, we introduced several parameters to make the discus-

sions clear. Let ei be the number of faults introduced into the product developed

in design/coding activity i. Let dj be the number of detected and removed faults

in reviews/debug activity j. Let ddesign be the total of dCDR, dFDR, dSDR, dMDR, and

dPGR. Let rdesign be the number of residual faults in design phase and be calculated

by Σei − ddesign. Also, let ddebug be the total of dUDB, dIDB, dFDB, and dVDB. Let rdebug be

the number of residual faults in debug phase and be calculated by rdesign − ddebug.

Strictly speaking, official acceptance testing and debugging are executed after

VDB. Since these are not activities of the development team, we omit them from

Figure 3.11 and Figure 5.1. Let rlast be the number of residual faults in the accep-

tance test and debug. Thus we can consider that rlast is the number of residual

faults in the last product(usually program codes).

However, as a matter of fact, we could not collect all the values for the above

58 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

��������	
�

������
�

����

���������

�����

������	���� ��
�

����

������	���� �����

�����

����������
�

����

�������� �����

�����

�����	������
�

����

�����	���� �����

�����

����

����

����

����

��
�����	
�

�������� ��
��

����

����������
��������

�����

�������� ��
��

����

���������
��� �����

�����

���������� ��
��

����

������������
��������

�����

 �!�"���
��

� ��

 �!�"����
��������

� ���

��!��

��#�

��!��� �����

��#��

���	

���	

�
�	

���	

��	

�����������	����	��
�	����	���	 ��������������������������

���

���

�
�

���

��

�����������������
������������������ �����������������������

Figure 5.1: Simple development process

parameters. Thus, in this paper, we estimate the values for ddesign, rdesign, ddebug,

rdebug, and rlast. In Section 5.4, we evaluate the usefulness of the proposed project

control method by comparing the estimated values of ddesign, rdesign, ddebug, rdebug,

and rlast with the actual ones.

5.2.3 Project plan

The initial project plan consists of the assignment of both developers and sched-

ule of each activity. The assignments are determined at the beginning of project

based on documents such as WBS(Work Breakdown Structure) charts, organi-

zation charts for the project, PERT charts, and a list of software products to

5.3. PROJECT CONTROL METHODS 59

be developed. Simultaneously, the initial plan also reflects the experience and

knowledge of the project manager.

First, we performed an estimation using the initial plan. However, some

difference usually occur between the initial plan and the actual progress of the

project. If the developers follow the initial plan regardless of the existence of these

differences, then fatal confusion may be caused. On the contrary, if we can take

the progress into consideration and reconstruct a new plan, then we should get

a more accurate estimation. In Section 5.3, we will propose such a new project

control method.

5.3 Project Control Methods

In this Section, we explain about proposed project control methods and project

plan. The details of the project plan will be explained in subsection 3.1.4.

5.3.1 Single-phase control

Using single-phase control of a software development process, we constructed

the initial project plan p at the beginning of project, and executed whole project

under the initial project plan p (See Figure 5.2).

In the following, pdesign and pdebug denote the project plan for the design and

debug phases, respectively. We often use p = (pdesign, pdebug) to denote a whole plan

for the project.

Let the pinit
design and pinit

debug denote the initial plans of design and debug phases,

respectively. We assume that both pinit
design and pinit

debug are constructed at the beginning

of the project. The project plan of the single-phase controlled project is described

as follows:

p = (pinit
design, p

init
debug)

60 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

��
�����!��
���������	"��"	� � ����

������

��������!��
���������	"��"	� � ����

�����

��
�����	
� ��������	
�

Figure 5.2: Single-phase control

��
�����!��
���������	"��"	� � ����

������

��������!��
�������!	��!��"	� � ���

�����

��
�����	
� ��������	
�

Figure 5.3: Two-phase control

5.3.2 Two-phase control

Next, using two-phase control of software development process, we constructed

two versions of the project plans, p = (pinit
design, p

init
debug) and p′ = (pinit

design, p
upd
debug). At the

beginning of the project, we constructed the project plan p = (pinit
design, p

init
debug) and

executed the design phase under pinit
design. We then stopped the execution of the

project at the end of design phase, and updated the plan for the debug phase,

pinit
debug, into a new plan, pupd

debug, taking the development situation into account. After

that, we continued the project under the updated new project plan pupd
debug (See

Figure 5.3).

For simplicity, we represented the project plan of the two-phase controlled

project as follows:

p = (pinit
design, p

upd
debug)

As already mentioned, in the project plan p for two-phase control, pinit
design is the

initial project plan for design phase and pupd
debug is the updated plan for the debug

phase, which is constructed at the end of design phase.

5.4. CASE STUDY 61

5.4 Case Study

In order to evaluate the usefulness of the proposed project control method, we

applied the simulator to similar software development projects, which were con-

structed based on the actual project data in the Company A. In the following,

we call all of software development projects thus constructed imaginary software

development projects.

5.4.1 Characteristics of target project

The main characteristics of the target project (it was rather a small project) are

summarized as follows:

(1) Development effort of the project was 62 (man-days).

(2) The size of the system developed in the project was about 6.9 (KLOC).

(3) The project uses a standard waterfall model.

5.4.2 Experimental projects

Next, we considered five development projects: Project 0, Project 1, Project 2,

Project 3, and Project 4, based on the development data of the actual project.

Table 5.1 summarizes the characteristic attributes of these projects. Project 1 and

Project 2 correspond to the project that executes debug phase under initial plan.

Project 3 applies the proposed approach and Project 4 follows a uniform plan.

Project 0 is the only actual project; Project 1 through Project 4 are imaginary

projects. All imaginary projects are executed by the project simulator mentioned

in Chapter3. Since we evaluate all imaginary projects by comparing them to

Project 0(for which we have data collected from actual project in Company A),

we assume that the design phase of any imaginary project (except for Project 1) is

executed under the actual plan Pactual
design. With this assumption, we can get highly

62 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

Table 5.1: Target projects

Type of Project Project Plan

Project 0 Actual p1 = (Pactual
design,P

actual
debug)

Project 1 Imaginary p0 = (Pinit
design,P

init
debug)

Project 2 Imaginary p2 = (Pactual
design,P

init
debug)

Project 3 Imaginary p1 = (Pactual
design,P

actual
debug)

Project 4 Imaginary p3 = (Pactual
design,P

uni f orm
debug)

accurate simulation results for the debug phase, and can compare in detail the

resulting data among the five development projects.

Actual development

This is the actual development executed in Company A. Let Pinit
design and Pinit

debug denote

the initial project plans for the design and debug phases, respectively, which were

actually constructed at the beginning of the project in Company A. On the other

hand, let Pactual
design and Pactual

debug denote specific project plans for the design and debug

phases, which we constructed based on the records and the data collected at the

completion of the target project.

In summary, the project was originally planned to be executed under the

following initial plan p0:

p0 = (Pinit
design,P

init
debug)

Using the actual data resulting from the project, we can interpret that the project

was executed under the following project plan p1:

p1 = (Pactual
design,P

actual
debug)

Thus, we call this actual project (which was executed by the developers under the

project plan p1) as Project 0.

5.4. CASE STUDY 63

Imaginary projects(single-phase control)

Here, we defined two imaginary development projects that were executed under

single-phase controlled plan.

At first, we defined an imaginary project, Project 1. In Project 1, the design and

debug phases are executed under the initial plan Pinit
design and Pinit

debug, respectively.

That is, the whole project is executed by project simulator under the initial plan

p0.

Next, we defined an imaginary project, Project 2, in which design phase is

executed under the actual plan Pactual
design and debug phase is executed under the

initial plan Pinit
debug. This pattern enables us to create a case in which the plan for the

design phase in Project 2 was not updated (which is the difference from Project 0).

Thus, Project 2 is executed under the following plan p2 of single-phase control:

p2 = (Pactual
design,P

init
debug)

Note that two projects Project 1 and Project 2 have the same project plan Pinit
debug

for the debug phase, and that they have the different plans for the design phase.

Imaginary projects(two-phase control)

Now, we defined two imaginary development projects Project 3 and Project 4,

under the two-phase project control method. As mentioned before, we assume

that the design phase of Project 3 and Project 4 is executed under the actual plan

Pactual
design.

First, we designed an imaginary project, Project 3, in which the design phase is

executed under the actual plan Pactual
design, and its debug phase is also executed under

the actual plan Pactual
debug. That is, Project 3 is executed under the project plan p1.

Note that Project 3 is very close to Project 0, since Project 3 is entirely simulated

by using actual data of Project 0. The difference is that Project 0 was executed by

the developers, while Project 3 is executed by the project simulator.

64 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

Table 5.2: Assignment of workload

UT & IT & FT & VT &

UDB IDB FDB VDB

Pinit
debug 44 44 80 56

Pactual
debug 45 27 96 64

Puni f orm
debug 52 52 52 52

Finally, we designed another imaginary project, Project 4, in which design

phase is executed under the actual plan Pactual
design, and its debug phase is executed

under the virtual uniform plan Puni f orm
debug . We constructed the uniform plan Puni f orm

debug

as follows: First, we obtained the total time to debug from the debug plan data.

Next, each debug activity in this project was uniformly assigned the same amount

of workload to be consumed. The values for all other attributes used in Puni f orm
debug

were derived from Pinit
debug. Thus, Project 4 is executed under the following uniform

project plan p3.

p3 = (Pactual
design,P

uni f orm
debug)

5.5 Experiment using Simulation

5.5.1 Preparation

Next, we assigned workload to each activity. As we mentioned before, we used

five project plans, Pinit
design, Pactual

design, Pinit
debug, Pactual

debug, and Puni f orm
debug . Table 5.2 shows a part

of these project plans and summarizes the assignment of workload to each ac-

tivity(UT and UDB, IT and IDB, FT and FDB, and VT and VDB)(see Figure 5.1).

For Pinit
debug, the workload is obtained from the plan of the project. For Pactual

debug, the

workload is obtained from the actual project data. For Puni f orm
debug , the same amount

of workload is assigned uniformly to each activity.

5.5. EXPERIMENT USING SIMULATION 65

Table 5.3: Values of quality metrics

Acceptance

Executor Plan Design Phase Debug Phase Test

ddesign rdesign ddebug rdebug rlast

Project 0 developers p1 = (Pactual
design,P

actual
debug) 19 — 16 — 1

Project 1 simulator p0 = (Pinit
design,P

init
debug) 22.80 25.39 17.97 7.42 0.82

Project 2 simulator p2 = (Pactual
design,P

init
debug) 19.14 19.83 13.79 6.04 0.94

Project 3 simulator p1 = (Pactual
design,P

actual
debug) 19.23 19.71 15.02 4.69 1.16

Project 4 simulator p3 = (Pactual
design,P

uni f orm
debug) 19.58 19.87 12.90 6.97 1.13

5.5.2 Results of simulation

Using the project simulator, we iterated the simulations 100 times for each project

and calculated the average value of the quality metrics.

Project 0 (actual development) had no information about residual faults at the

end of the design/debug phase. We can find the value for the residual faults in

the last product(rlast) from faults detected during the acceptance test, we cannot

obtain data for the residual faults in other products from Company A.

As for Project 1, rdebug became 7.42. It was the worst value among all the

projects. One of the reason is that Project 1 was executed using the initial project

plan p0 with no check points. (In some sense, Project 1 is essentially the same as

Project 0. However Project 0 can be interpreted as if a check point was prepared

at the end of the design phase.)

In Project 2, the design phase is executed under the actual plan Pactual
design, and the

debug phase is executed under the initial plan Pinit
debug. The result rdebug(= 6.04) is

better than that of Projects 1 and 4, but worse than that of Project 3. Due to the

definition of Project 2, the project plan Pinit
debug never reflects the situation at the end

of the design phase, and thus it could not remove faults sufficiently.

The value of rdebug(= 4.69) in Project 3 is the best in this experiment. Regarding

66 CHAPTER 5. IMPROVEMENT IN TEST PROCESS PLANNING

rdebug, we can say that the debug phase works very effectively under the project

plan Pactual
debug. Since the plan for the debug phase was updated from the initial one

in consideration of the situation at the end of the design phase, the updated plan

seems to give adequate control for the succeeding debug phase (as shown in

Table 5.2), and improve the value of rdebug compared with Project 2.

To tell the truth, we predicted that Project 4 would not show a good perfor-

mance because we constructed the debug plan without considering the situation

of at the end of the design phase. The result, rdebug = 6.97, is better than that of

Project 1, but is worse than that of Projects 2 and 3.

As explained in subsection 5.4.2, the design phases of Projects 2, 3 and 4 were

executed under the same actual project plan. That is, the values of ddesign and rdesign

in Table 5.3 are almost the same for Projects 2, 3, and 4.

From the viewpoint of residual faults in all products (that is, the value of rdebug)

after the debug phase, Project 3 has the least faults, and is superior to the Projects

1, 2 and 4. But, judging from residual faults in the last product (the value of rlast)

after acceptance testing and debugging, there is no essential difference among the

four projects.

5.5.3 Discussions

We investigated the reason why differences appear in the five experimental

projects. From further investigations of the actual development data of Project 0,

we conducted that the time assignment in the project plan Pactual
debug for the debug

phase was rather reasonable. In particular, the data of Project 0 implies that if

the concept design takes longer than the estimated time in the initial plan, then

developers need to spend longer time in the verification test and debug.

Of course, there are many other factors, such as the developers’ skill and the

fault density, that affect the fault injection and removal in the projects. So we can-

not conclude that the time assignment (that is, workload assignment) to each ac-

tivity in debug phase is the key factor affecting to the number of detected/residual

5.5. EXPERIMENT USING SIMULATION 67

faults. However, as far as the simulation results are concerned updating the time

assignment in the project plan for the debug phase will effectively improve the

number of detected/residual faults and quality of the products at the end of debug

phase.

Chapter 6

Extension for Risk Prediction

6.1 Application to Risk Management

We have statistically analyzed the project data collected from a number of projects.

During the analysis, we have noticed that there were projects that appeared to be

out of control from the project managers’ viewpoint. We called such projects “risky

projects” [65]. We then tried to develop a risk predicting system that calculates

the risk probabilities based on risk questionnaires for project managers and finds

such risky projects based on those probabilities. An experimental application

showed that most of risky projects can be detected by those probabilities [41].

The project managers were, however, still skeptical because the probability itself

does not provide concrete proofs why a project becomes risky. The managers in

Company A wanted such concrete proofs.

In this chapter, we try to estimate development costs, which are an impor-

tant metric to determine risky projects. To do so, the project simulator must

have capability to deal with risk factors in the risk questionnaire and to estimate

development costs.

It is impossible for the initial simulator (proposed in Chapter 3) to simulate

a project under risks, because the previous simulator cannot represent the risk

factors. In the extended simulator, we implemented a mechanism that adjusts

69

70 CHAPTER 6. EXTENSION FOR RISK PREDICTION

parameters to deal with the influence of the risk factors. As a result, the following

typical disorders in risky projects can be represented in the simulator: disorder

caused by fluctuation in developer’s skill level and disorder caused by deadline

pressure [19].

Finally, we performed a case study to confirm whether a risky project can be

simulated. The results show that the extended simulator can estimate the devel-

opment costs for both an ideal case and a risky case. As a result, we confirmed that

the simulator shows how much the development cost of a risky project exceeds

the estimate.

6.2 Needs for Extension

6.2.1 Cost estimation of risky project

As mentioned in Chapter 2, the prediction of the final status of a project (risky or

not) using the probability was successfully applied to actual projects. However,

the project managers were still skeptical because they were provided with only

the probabilities of risk. They actually wanted to know exactly what will happen

in such risky projects.

We therefore tried to provide more concrete proof of risky projects. In more

detail, we estimated the development cost of such risky projects, since the devel-

opment cost is one of the important criteria to determine risky projects.

One of the possible ways to estimate the cost is to execute the project simulator

under software risks. However, the simulator shown in Chapter 3 did not take

the influence of software risks into account. Thus, in order to estimate the cost of

risky projects, we extended the project simulator so that the software risks can be

considered.

6.3. EXTENSION OF PROJECT SIMULATOR 71

6.2.2 An approach for cost estimation considering risks

As a result of our investigation, we found that the following two disorders, which

are closely related to the risk factors in Figure 2.1, will have a effect on the cost.

Disorder caused by a risky project: In a risky project, developers cannot bring

their ability into full play [65]. That is, in a risky project, the skill level

of a developer is reduced from his/her original level. It is known that

the skill level of a developer significantly influences the cost of software

projects [37, 54]. In the extended simulator, the developer’s skill level can

fluctuate according to the risks.

Disorder caused by deadline pressure: The deadline pressure causes many in-

jected faults [19, 20], and thus increases the cost of the latter phases of a

project. In a risky project, since the schedule is frequently delayed [65],

the influence of the deadline pressure increases greatly. If the development

duration of an activity is 90% completed and the assigned workload is not

completed 90%, then the developers feel deadline pressure. In the extended

simulator, the deadline pressure is represented as a parameter in the fault

injection rate.

As will be described in the next section, these situations are implemented by

adjusting the parameters in the project simulator according to evaluation results

for risk factors. As a result, we expect that the cost of risky projects can be

estimated more correctly.

6.3 Extension of Project Simulator

In this section, we try to extend the previous simulator so that the simulator can

deal with the risk factors.

72 CHAPTER 6. EXTENSION FOR RISK PREDICTION

ID Type
Assigned
workload

Consumed
Workload Deadline

Injected
faults

Detecte
d faults

Input
product(s)

Output
product(s) Developer(s)

Current
condition Start condition

0 FD 128 0 24 0 0 0 1 0,1 WAIT_START 0-NOT_START
1 FDR 16 0 0 0 0 1 1 0,1,2 NOT_START 0-FINISHED
2 PG 72 0 37 0 0 1 2 0,2 NOT_START 1-FINISHED
3 PGR 9 0 0 0 0 2 2 0,1,2 NOT_START 2-FINISHED
4 MT 48 0 45 0 0 1,2 3 0 NOT_START 3-FINISHED
5 MDB 0 0 45 0 0 3 1,2 0 NOT_START 4-FINISHED
6 FT 40 0 51 0 0 2 4 0 NOT_START 5-FINISHED
7 FDB 0 0 51 0 0 4 1,2 0 NOT_START 6-FINISHED

Activities’ Definition

ID Name Skill WorkTime
0 Willium 1 0
1 Richard 1 0
2 John 1 0

Developers’ Definition

ID Size
Injected
faults

Detected
faults Completion

0 10 0 0 1.0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

Products’ Definition

Figure 6.1: Project description for the simulator

6.3.1 Selected risk factors

Based on Figure 2.1, we selected risk factors to be added to the simulator. We

identified and deleted several risk factors for which there are was insufficient

data for analysis. However, since important risk factors may be included in

these deleted factors, we consider further analysis of them as an important future

work. As a result, 15 risk factors in Table 6.1 remain to be selected and added to

the extended simulator. In the new questionnaire, responses should be filled in

either binary, ordered, or absolute scales.

6.3.2 Parameters to represent the risk factors

In order to represent the risk factors in Table 6.1, we used the parameters in the

project simulator. In the project simulator, the following parameters are used in

the firing rate functions:

• The skill level of developers (L)

• The mental stress caused by deadline pressure (D)

• The completion rate of the input products (R)

6.3. EXTENSION OF PROJECT SIMULATOR 73

Table 6.1: Risk factors to be used in extended simulator

Risk factors Evaluation
Requirements specification review Done | Not
Number of requirements changes #
Resultant products in the project plan Described | Not
Project plan review Done | Not
Project plan review by the manager Done | Not

Optimism for the technical issues Exists | Not
Appropriate estimation Done | Not
Needed time to make estimate Days
Unclear project management method Unclear 3 - 0 Clear
Review effort ratio %
The morale of developers Strong 3 - 0 Weak
Experience of the requirement describer High 3 - 0 Low
Average experience of the developer High 3 - 0 Low
Responsive person for each activity in the WBS Specified | Not

External Risks Untechnical pressure Exists | Not

Requirements

Project Plan

Estimation

Project
Management

Developers

• The number of faults in the input products (F)

• The number of developers in an activity (M)

• The constant for each developer’s behavior (K∗)

• The assigned workload by the development plan (WL)

For example, the firing rate functions of transitions in Figure 6.2 are as follows∗:

rcm = Kcm × M × (M − 1)
L × R

rth = Kth × L
D

rwr = Kwr × L ×D

rin = Kin × F + 1
R ×D

The initial values of these parameters must be given in a project description.

An example is shown in Figure 6.1. It shows the specified values for the activities

such as FD, FDR, PG, and so on (As shown in Figure 5.1). The number of

developers(M) for Activity 0 is 2, the initial skill levels(L) of all developers in this
∗The definitions of firing rate functions are slightly extended from that of Chapter 3.

74 CHAPTER 6. EXTENSION FOR RISK PREDICTION

tthtcm

twr

tin

rcm

rth

rin

rwr

s : size of product
w : consumed workload

f : number of faults

tcm tth tintwr

Communication Think Write
Write with

a fault

- w = w + 1 s = s + 1
s = s + 1
f = f + 1

Execution
function

Meaning

Figure 6.2: Extended description of activity model

project are 1, the completion rate(R) of Product 0 is 1.0, and the workload(WL) for

the Activity 0 is 128.

In the extended simulator, the values of parameters are adjusted according

to the given software risks. (The details for the adjusting parameters will be

explained in Section 6.4.) In the following subsections 6.3.3 and 6.3.4, we will

explain how the risky situations in subsection 6.2.2 are represented by adjusting

the parameters.

6.3.3 Confusion by fluctuating skill level

In risky projects, the skill of a developer can fluctuate (for instance, it falls down

from 1.0 to 0.7). However, in the previous simulator, the value of the skill level L

was a constant determined before a simulation begins. In the extended simulator,

we adjust the value of L to represent a risky situation in a project.

Let us explain an example of a risky situation in a design activity. As shown

in Figure 6.2, transitions tcm and tth fire selectively according to the firing rates

6.3. EXTENSION OF PROJECT SIMULATOR 75

rcm and rth. Consider the following two cases. Assume that Kcm = 0.1, Kth = 0.2,

M = 2, R = 1, and D = 1. Assume that the assigned workload is 80 hours.

Case 1 (Ideal Case): Consider a case of no risk, in which the skill level L = 1.

Firing rates rcm and rth are calculated as follows:

rcm = 0.1 × 2 × 1
1 × 1

= 0.2

rth = 0.2 × 1
1
= 0.2

These two equations simulate a situation where communication occurs as

frequently as the thinking (rcm/rth = 0.2/0.2 = 1.0).

In our simulator, the communication among developers is treated as a ver-

bose behavior in the activity. So, communication is modeled as a wasting

of time, that is, it does not consume any workload but only takes time. The

cost of an activity increases according to the increase of time.

From the definition of Activity model in Figure 6.2, tth fires 80 times during

the activity, because the execution of an activity finishes when w = 80. Thus,

tcm also fires 80 times. Since the time needed for a communication behavior

is 5 minutes, it takes 400 minutes (= 6.6 hours) more than expected.

Case 2 (Risky Case): Consider a case of a risky project, where the skill level of

developers becomes L = 0.7. rcm and rth are then calculated as follows:

rcm = 0.1 × 2 × 1
0.7 × 1

= 0.29

rth = 0.2 × 0.7
1
= 0.14

In this case, the frequency of communication is about 2.1 times (rcm/rth =

0.29/0.14 = 2.1) more frequent than thinking. Thus, tcm fires 168 times, and

it takes 840 minutes (= 14 hours) more than expected.

As a result, since there are 2 developers(M = 2) in this activity, the cost of Case

2 is (14 − 6.6) × 2 = 14.8 person-hours more than Case 1.

76 CHAPTER 6. EXTENSION FOR RISK PREDICTION

Consumed WL : 80 x 0.9 = 72

Consumed WL.: 80 x 0.8 = 64

9 days

Case 1

Case 2
Residual
WL: 16

Residual
WL: 8

9 days

with deadline pressure (D=0.5)

without pressure (D=1.0)

without pressure (D=1.0)

Figure 6.3: Example of deadline pressure

6.3.4 Confusion by the deadline pressure

As mentioned earlier, in risky projects, the influence of deadline pressure may

increase greatly. The value of D in the previous simulator was also a constant

determined when a simulation begins. In the extended simulator, we adjust the

value of D to represent deadline pressure.

Consider the following two cases in a design activity. Assume that Kwr = 1.0,

Kin = 0.1, R = 1, F = 0, and L = 1. Assume that assigned workload WL is 80 hours,

and scheduled duration to complete the activity is 10 days.

Case 1 (Ideal Case): Assume that 90% of workload(WL) is consumed when 9

days elapse. Since consumption of WL is on schedule, deadline pressure

does not happen(See Case 1 in Figure 6.3). So, D = 1.0 holds during the

activity.

In this case, firing rates for transitions twr and tin are calculated as follows:

rwr = 1.0 × 1 × 1 = 1.0

rin = 0.1 × 0 + 1
1 × 1

= 0.1

According to Figure 6.2, the number of faults injected in current product is

calculated as follows:

f = 80 × 0.1
0.1 + 1.0

= 7.3

6.4. IMPLEMENTATION OF EXTENDED SIMULATOR 77

Case 2 (Risky Case): Assume that 80% of WL is consumed when 9 days elapse. In

this case, consumption of WL is behind schedule, and thus deadline pressure

occurs† (See Case 2 in Figure 6.3). To represent the deadline pressure, the

value of D is decreased from 1.0 to 0.5. During the consumption of the

residual 20% of WL, the firing rates are changed as follows:

rwr = 1.0 × 1 × 0.5 = 0.5

rin = 0.1 × 0 + 1
1 × 0.5

= 0.2

The number of faults injected in the current product is calculated as follows:

f = (80 × 0.8) × 0.1
0.1 + 1.0

+ (80 × 0.2) × 0.2
0.2 + 0.5

= 10.4

Faults will be removed in successive review or debug activities. If faults are

detected in the review activity, it will take extra 30 minutes to remove each fault.

That is, additional 1.5 person-hours are needed to remove the faults.

Furthermore, suppose that such faults are not detected in the review, and

instead are detected in the test and debug activities. The activities are modeled to

take 1 workload to detect a fault, and 1 workload to remove a fault. This implies

that more than 6 person-hours (2 workloads × 3 faults) are needed to detect and

remove such faults.

6.4 Implementation of Extended Simulator

6.4.1 Adjusting parameters for risk factors

In order to determine how to adjust the parameters, we interviewed the devel-

opers in Company A. As a result of the interviews, we finally determined the
†The reason why such delay occurs is out of the scope of this example, but we can assume that

a certain risk has already existed in the activity.

78
C

H
A

PTER
6.

EX
TEN

SIO
N

FO
R

R
ISK

PR
ED

IC
TIO

N

Table
6.2:A

djustm
entofparam

eters
according

to
evaluation

result

Description of risk factors Evaluation results

Requirements specification review Not done
Deadline pressure(D): decrease by 0.1.
Completion rate(R) for initial product: decrease by 0.05.
Injected faults(F) in initial product: increase by 2.

Number of requirements changes # of changes (a)

Workload for the project: increase by w1(a) [max. 10%].
Deadline pressure(D): decrease by d1(a) [max. 0.1].
Completion rate(R) for initial product: decrease by r1(a) [max. 0.05].
Injected faults(F) in initial product: increase by f1(a) [max. 3].

Resultant products in the project plan Not described Completion rate(R) for initial product: decrease by 0.05.
Project plan review Not done Completion rate(R) for initial product: decrease by 0.05.
Project plan review by the manager Not done Completion rate(R) for initial product: decrease by 0.05.

Optimism for the technical issues Exists
Workload for the project: decrease by 5%.
Deadline pressure(D): increase by 0.1.

Appropriate estimation Not done
Communication rate(Kcm) in the design and coding: increase by 0.05.
Thinking rate(Kth): decrease by 0.05.

Needed time to make estimate days (b)

Workload for the project: decrease by w2(b) [max. 5%].
Communication rate(Kcm) in design & coding: increase by r2(b) [max. 0.05].
Deadline pressure(D): decrease by d2(b) [max. 0.1].

Unclear project management method
Unclear 3 - 0 Clear

(d)
Communication rate (Kcm) in all activities: increase by 0.01 x d.
Thinking rate(Kth): decrease by 0.01 x d.

Review effort ratio Ratio in % (c)
Workload for the review:
 set to c% of corresponded activity’s effort.

The morale of developers
Strong 3- 0 Weak

(e)
Skill level(L) of all developers: decrease by 0.03 x (3-e).

Experience of the requirement describer
High 3 - 0 Low

(f)

Skill level(L) of requirement describer: decrease by 0.03 x (3-f).
Completion rate(Kcm) for initial product: decrease by 0.02 x (3-f).
Injected faults(F) in initial product: increase by 1 if f = 3.

Average experience of the developer
High 3 - 0 Low

(g)
Skill level(L) of all developers: decrease by 0.03 x (3-g).

Responsive person for each activity in the WBS Not specified Skill level(L) of all developers: decrease by 0.05.

External Risks Untechnical pressure Exists
Workload for the project: decrease by 10%.
Deadline pressure(D): decrease by 0.2.

Risk factors
Adjustments of parameters

Developers

Requirements

Project Plan

Estimation

Project
Management

6.4. IMPLEMENTATION OF EXTENDED SIMULATOR 79

parameters to represent the risk factors. Table 6.2 shows how the risk factors are

implemented by the adjustment of parameters.

The left side of Table 6.2 shows the risk factors, and the right side shows the

adjustment of parameters in the simulator to represent corresponding risk factors.

Most adjustments are specified by differences (plus or minus) with respect to

the current values.

(1) For risk factors with a binary evaluation, we changed the values for the

parameters according to one of the evaluations. For example, if the evalu-

ation of “Requirement specification review” is “Not done”, the parameters

for ‘deadline pressure’ and ‘completion rate’ are decreased by 0.1 and 0.05,

respectively, and ‘injected fault’ is increased by 2.

(2) For risk factors with an ordinal evaluation, we changed the values of param-

eters according to the corresponding order. For example, if the evaluation

of “The morale of developers” is ε (0 ≤ ε ≤ 3), the skill level of developers

are decreased by 0.03 × (3 − ε).

(3) For risk factors with evaluations using an absolute value, we changed the

values according to step functions such as w1(α), d1(α), and so on. For

example, if the evaluation of “Number of requirements changes” is α, the

workload for the project is decreased by step function w1(α) where w1(α)

generates values from 0 to 3 according to α.

The “review effort ratio” is the only exception. The value of the parameter “work-

load for the review activity” is set to χ% of the corresponding design/coding

activity according to the evaluation. The value of a parameter is cumulatively

increased or decreased if several risk factors influence the parameter.

Let us explain an implementation of a risk factor. If the risk factor “Require-

ment specification review” is “Not done,” then the corresponding parameters in

the simulator are changed. Because of the incompleteness of the requirements

specification, the completion rate R is decreased by 0.05. The incompleteness of

80 CHAPTER 6. EXTENSION FOR RISK PREDICTION

the requirements also influences the deadline pressure because such incomplete-

ness is usually revealed in the final phase of an activity. The value of deadline

pressure D is also decreased by 0.1. Since the lack of review implies several

residual faults, injected faults F in the initial product are increased by 2‡.

6.4.2 Procedure of application

Here, we explain the procedure of application of the extended simulator to an

actual project.

In order to estimate costs of projects, we prepared inputs for the extended

simulator. The inputs for the simulator are a “project description” (See Figure

6.1) and “evaluations of risk factors.” The project description is constructed from

the plan of the target project. It specifies the initial assignment of workload,

assignment of developers, initial parameters in the simulator, and so on.

The evaluations of risk factors are collected from project managers of the target

projects. The parameters in the simulator are adjusted by the evaluations of risk

factors according to Table 6.2. The simulator then calculates the resultant cost

for the project under the risk factors. By comparing the resulting cost in a risky

situation with an initial estimate, we can see how much the cost exceeds the

estimate under specified risks.

6.5 Case Study

In order to show the effectiveness of the extended simulator, we made a case study.

The objective of this case study is to show that the new simulator can estimate the

cost according to the applied risk factors.

‡Note that the values shown in Table 6.2 are heuristic ones based on our experience in Company

A. The generalization of such parameter setting remains as a future work.

6.5. CASE STUDY 81

6.5.1 Target projects

In the case study, we use three projects (PR1, PR2, and PR3), each of which is

a typical development of embedded software for ticket vending machines in

Company A. They were executed in 1997. The development process of these

projects was the standard waterfall model, as shown in Figure 5.1.

6.5.2 Estimation by previous simulator

First, we simulated the 3 projects with the previous simulator so that the estimated

costs reflect the planned costs§ as correctly as possible. The estimated costs,

calculated by the simulator, for the projects PR1, PR2, and PR3 are shown in Table

6.3. For comparison, the planned cost and the actual resulted cost for each project

are also shown. By comparing the planned cost and estimated cost in Table 6.3,

we can see that the simulator can estimate the development cost quite correctly

in terms of the project plan for each project.

Table 6.3: Estimated costs of 3 projects (person-days)

CD FD–PG MT–VDB Total

PR1 Planned cost 31 73 41 145

Estimated cost 34 78 50 162

Actual cost 31 84 46 161

PR2 Planned cost – 78 14 92

Estimated cost – 72 37 109

Actual cost – 99 19 118

PR3 Planned cost 76 33 30 139

Estimated cost 70 42 31 143

Actual cost 108 81 57 246

§The planned costs were calculated using conventional cost estimating method, such as CO-

COMO [8] or FPA [2], by the developers.

82 CHAPTER 6. EXTENSION FOR RISK PREDICTION

Table 6.4: Two cases in the case study

Risk factors Ideal Case Risky Case
Requirements specification review Done Not done
Number of requirements changes 0 10
Resultant products in the project plan Described Not described
Project plan review Done Not done
Project plan review by the manager Done Not done
Optimism for the technical issues Not Exists Exists
Appropriate estimation Done Not done
Needed time to make estimate 5 0
Unclear project management method 0 (Clear) 3 (Unclear)
Review effort ratio 20 3
The morale of developers 3 (Strong) 0 (Weak)
Experience of the requirement 3 (High) 0 (Low)
Average experience of the developer 3 (High) 0 (Low)
Responsive person for each activity
in the WBS

Specified Not specified

External Risks Untechnical pressure Not exists Exists

Developers

Requirements

Project Plan

Estimation

Project
Management

6.5.3 Estimation by extended simulator

We regret to say that we do not have actual evaluations for the risk questionnaire

for the 3 projects, PR1, PR2, and PR3, since these projects had already been com-

pleted in 1997. We therefore tried to see the effect of the implemented risk factors

by constructing virtual situations.

We constructed two cases of risks: “Ideal (no risk) Case” and “Risky Case.”

The evaluations of two cases are shown in Table 6.4. The evaluations for “Risky

Case” are entirely bad, and for “Ideal Case” are entirely good. The probabilities

of being risky are calculated by the risk prediction model [41] for the cases “Ideal

Case” and “Risky Case.” They are 0.8% and 95.6%, respectively.

6.5.4 Discussions

Table 6.5 shows the estimated costs calculated by the extended simulator. In

Table 6.5, “Decision by [41]” shows the evaluation of being risky or not, based

on the risky project’s decision criteria in reference [41] for the resultant project

documents. Since there are no serious problems in the documents for the projects

PR1 and PR2, they are considered as “Non-risky.” On the other hand, in the

6.5. CASE STUDY 83

Table 6.5: Comparison of development costs

Decision Actual Estimated cost

by [41] cost Ideal Case Risky Case

PR1 Non-Risky 161 149 230

PR2 Non-Risky 118 118 149

PR3 Risky 246 123 207

resulting documents of PR3, the following descriptions remain:

• At the beginning, a certain part of the system was expected to be reused

from other systems. However, it became clear during the functional design

that that part must be modified.

• An experienced developer who knows that part of the system well was not

available.

• As a result, the planned delivery date of the system was delayed twice.

The problem clearly corresponds to the risk factors in Table 6.1. From these facts,

we consider that PR3 was a “Risky” project.

The results of the “Ideal Case” for projects PR1 and PR2 show that they are

close to the actual costs. On the other hand, estimated costs are relatively high

in the case of the “Risky Case.” Among them, the results for the “Risky Case” of

PR3 (that is, 207) is close to the actual cost (that is, 246).

As a result of this case study, we validated the execution of the extended

simulator under risks at Company A.

Chapter 7

Conclusion

7.1 Achievements

In this dissertation, we have proposed a new method to simulate a software

development project in order to apply software improvement activities in a certain

company. The simulation model was described using a GSPN model, and a

software project simulator was developed based on the model. It can simulate

software projects from three viewpoints: development cost, project duration, and

residual faults. An experimental evaluation showed that the simulator has high

accuracy in estimation of cost, duration, and residual faults.

We then tried to apply the simulator to actual process improvement activities.

To show its effectiveness, we performed three experiments: (1) Investigation

of parallel execution of activities in a development process, (2) Evaluation of

dynamic updating of project plans, and (3) Application to prediction of risky

projects.

First, we performed an experiment to investigate the effect of “parallel execu-

tion” of activities in a development process. We simulated two cases: a case that

does not include any parallel execution and a case that includes parallel execu-

tions between module design and coding activities. The result of the simulation

showed that parallel execution actually reduces development duration, but it also

85

86 CHAPTER 7. CONCLUSION

increase the development effort.

Next, we tried to apply our simulator to update a project plan. We proposed

a two-phase project control method that examines the initial development plan

at the end of design phase, updates it to the current status of the development

process and executes the debug phase under the new plan. In order to show its

usefulness, we define three imaginary projects based on actually executed projects

in Company A: a project that executes the debug phase under the initial plan, a

project that applies the proposed approach, and a project that follows a uniform

plan. The result of this experiment showed that considering the actual situation

of projects improves the resulting cost and quality.

Finally, we presented an extension of the software project simulator to perform

risk prediction with a cost estimating capability. To consider the risk factors, we

modified the previous simulator so that both the fluctuation of skill level and

the deadline pressure can be represented by parameters in the simulator. By

using a case study, we confirmed that the enhanced simulator can estimate the

development cost under some typical risks. As a result, we confirmed that the

simulator shows how much the development cost of a risky project exceeds an

estimate.

Up to the present, numerous studies in software engineering have developed

new methods, tools, or techniques to improve some aspect of software develop-

ment or maintenance. However, it has been very difficult to introduce them into

the actual software development. One of the reasons is that relatively little evi-

dence has been gathered on which of these new developments are effective [61].

We consider that collaborative research between industry and academia in soft-

ware engineering may be one solution to that problem and our results give a

good suggestions for efficiently introducing software engineering techniques into

an actual software organization. We would like to continue this collaborative

research to develop a framework for effective technology transfer.

7.2. FUTURE WORK 87

7.2 Future Work

Future works include the following:

(1) Generalization of the proposed model

This research was based on the data of Company A. We would like to apply

the proposed simulator to other software developing organizations. To do so, a

more general framework or environment should be prepared for the simulator.

Also, the process model targeted in the simulator was a standard waterfall model.

Other process models such as prototyping or incremental development, have

recently been used in various software development fields. Thus we would like

to investigate the applicability of the simulator to such process models.

(2) Analytic solution

As mentioned in Chapter 3, we did not utilize the analytic power of a GSPN

model in the proposed simulator. In future research, we will try to investigate an

analytic solution based on the original GSPN model. The state explosion problem

in reachability analysis will be one of the most difficult problems to solve. If

we can solve the GSPN model of process activity mathematically, many useful

insights will be obtained from the analysis.

(3) Application to process patterns

In recent years, the notion of process patterns, which are identical to design

patterns but applied to processes, has been introduced. The concept of the Activity

model and Process model shown in Chapter 3 are exactly a pattern of processes

and a database of patterns, respectively. We will investigate applicability of

simulation technique to the field of process patterns.

Bibliography

[1] T. K. Abdel-Hamid, “The dynamics of software project staffing: A system

dynamics based simulation approach,” IEEE Trans. on Software Engineering,

vol.15, no.2, pp.109–119 (1989).

[2] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code,

and development effort prediction: a software science validation,” IEEE

Trans. on Software Engineering, vol.9, pp.639–648 (1983).

[3] M. Aoyama, “Agile software process model,” Proc. of 21th Annual Interna-

tional Computer Software and Applications Conference(COMPSAC97), pp.454–

459 (1997).

[4] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti, “Software processes

representation languages: Survey and assessment,” Proc. of 4th Conference

Software Engineering and Knowledge Engineering, pp.455–462 (1992).

[5] S. C. Bandinelli, A. Fuggetta, and C. Ghezzi, “Software process model

evolution in the SPADE Environment,” IEEE Trans. on Software Engineering,

vol.19, no.12, pp.1128–1144 (1993).

[6] V. R. Basili and H. D. Rombach, “The TAME project: Towards improvement-

oriented software environment,” IEEE Trans. on Software Engineering, vol.14,

no.6, pp.758–773 (1988).

[7] V. R. Basili and J. D. Musa, “The future engineering of software: A man-

agement perspective,” IEEE Computer, vol.14, no.9, pp.91–96 (1991).

89

90 BIBLIOGRAPHY

[8] B. W. Boehm, Software Engineering Economics, Prentice-Hall (1981).

[9] F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, MA (1975).

[10] A. M. Christie, “Simulation in support of CMM-based process improve-

ment,” Journal of Systems and Software, vol.46, pp.107–112 (1999).

[11] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software de-

sign process for large systems,” Communications of the ACM, vol.31, no.11,

pp.1268–1287 (1988).

[12] W. Deiters and V. Gruhn, “The funsoft net approach to software process

management,” International Journal of Software Engineering and Knowledge

Engineering, vol.4, no.2, pp.220–256 (1994).

[13] M. Diaz and J. Sligo, “How software process improvement helped Mo-

torola,” IEEE Software, vol.14, no.5, pp.75–81 (1997).

[14] A. Drappa and J. Ludewig, “Quantitative modeling for the interactive sim-

ulation of software projects,” Journal of Systems and Software, vol.46, pp.113–

122 (1999).

[15] A. Drappa and J. Ludewig, “Simulation in software engineering train-

ing,” Proc. of 22nd International Conference on Software Engineering(ICSE2000),

pp.199–208 (2000).

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics : A Rigorous & Practical

Approach, PWS Publishing (1997).

[17] A. Fuggetta, “Software process: A road map,” The Future of Software Engi-

neering, pp.27–34, Publication Dept. ACM (2000).

[18] K. Furusawa, Y. Hirayama, S. Kusumoto, and T. Kikuno, “Modeling and

quantitative evaluation of software process based on a Generalized Stochas-

tic Petri-net,” Proc. of 15th Software Reliability Symposium (in Japanese), pp.99–

104 (1994).

BIBLIOGRAPHY 91

[19] T. Furuyama, Y. Arai, and K. Iio, “Fault generation model and mental stress

effect analysis,” Journal of Systems and Software, vol.26, pp.31–42 (1994).

[20] M. V. Genuchten,“Why is software late? An empirical study of reason for

delay in software development,” IEEE Trans. on Software Engineering, vol.17,

no.8, pp.582–590 (1991).

[21] N. Hanakawa, S. Morisaki, and K. Matsumoto, “A lerning curve based

simulation model for software development,” Proc. of 20th International

Conference on Software Engineering(ICSE98), pp.350–359 (1998).

[22] F. J. Heemstra, “Software cost estimation,” Information and Software Technol-

ogy, vol.34, pp.627–639 (1992).

[23] Y. Hirayama, O. Mizuno, S. Kusumoto, and T. Kikuno, “Hierarchical project

management model for quantitative evaluation of software process,” Proc.

of International Symposium on Software Engineering for the Next Generation,

pp.40–49 (1996).

[24] W. S. Humphrey, Managing the Software Process, Addison-Wesley, MA (1989).

[25] W. S. Humphrey, A Discipline for Software Engineering, Addison-Wesley, MA

(1995).

[26] International Standards Organization, ISO 9001: Quality Systems – Model for

Quality Assurance in Design, Development, Production, Instllation and Serving,

International Standards Organization (1987).

[27] International Standards Organization, SPICE Baseline Practice Guide, Product

Description, Issue 0.03 (Draft) (1987).

[28] A. Johnson,“Software process improvement experience in the DP/MIS func-

tion,” Proc. of 16th International Conference on Software Engineering(ICSE94),

pp.323–329 (1993).

92 BIBLIOGRAPHY

[29] M. I. Kellner, “Software process modeling support for management plan-

ning and control,” Proc. of 1st International Conference on Software Process,

pp.8–28 (1993).

[30] M. I. Kellner, R. J. Madachy, and D. M. Raffo, “Software process simulation

modeling: Why? What? How?,” Journal of Systems and Software, vol.46,

pp.91–105 (1999).

[31] M. S. Krishnan and M. I. Kellner, “Measuring process consistency: Impli-

cations for reducing software defects,” IEEE Trans. on Software Engineering,

vol.25, no.6, pp.800–815 (1999).

[32] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno, Y. Takagi, and K.

Sakamoto, “A new software project simulator based on generalized stochas-

tic petri-net,” Proc. of 19th International Conference on Software Engineer-

ing(ICSE97), pp.293–302 (1997).

[33] S. Kusumoto, O. Mizuno, T. Kikuno, Y. Hirayama, Y. Takagi, and K.

Sakamoto, “Software project simulator for effective process improvement,”

Trans. of Information Processing Society of Japan, vol.42, no.3, pp.396–408

(2001).

[34] G. Lee and T. Murata, “A β-distributed stochastic Petri net model for soft-

ware project time/cost management,” Journal of Systems and Software, vol.26,

pp.149–165 (1994).

[35] M. M. Lehman and J. F. Ramil, “The impact of feedback in the global

software process,” Journal of Systems and Software, vol.46, pp.123–134 (1999).

[36] M. A. Marsan, G. Balbo, and G. Conte, “A class of generalized stochastic

Petri nets for the performance evaluation of multiprocessor systems,” ACM

Transactions on Computer System, vol.2, no.2, pp.93–122 (1984).

BIBLIOGRAPHY 93

[37] K. Matsumoto, S. Kusumoto, T. Kikuno, and K. Torii, “An experimental

evaluation of team performance in program development based on model

– Extension of programmer performance model,” Trans. of Information Pro-

cessing Society of Japan, vol.15, no.3, pp.466–473 (1992).

[38] R. McFeeley, “IDEAL: A User’s Guide for Software Process Improvement,”

CMU technical report, CMU/SEI-96-HB-001 (1996).

[39] O. Mizuno, S. Kusumoto, and T. Kikuno, “Customization of software

project simulator for improving estimation accuracy,” Proc. of 9th Interna-

tional Symposium on Software Reliability Engineering, vol.2, pp.47–48 (1998).

[40] O. Mizuno, S. Kusumoto, T. Kikuno, Y. Takagi, and K.Sakamoto, “Experi-

mental evaluation of two-phase project control for software development

process,” IEICE Trans. on Fundamentals of Electronics, Communications and

Computer Sciences, vol.E81-A, no.4, pp.605–614 (1998).

[41] O. Mizuno, T. Kikuno, Y. Takagi, and K. Sakamoto, “Characterization of

risky projects based on project managers’ evaluation,” Proc. of 22nd Inter-

national Conference on Software Engineering(ICSE2000), pp.387–395 (2000).

[42] O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi, and K. Sakamoto, “Statistical

analysis of deviation of actual cost from estimated cost using actual project

data,” Information and Software Technology, vol.42, pp.465–473 (2000).

[43] K. H. Möller and D. J. Paulish, Software Metrics : A Practitioner’s Guide to

Improved Product Development, IEEE Press, Chapman & Hall Computing

(1993).

[44] J. D. Musa, A. Iannino, and K. Okumoto, Software reliability: measurement,

prediction, application, McGraw-Hill (1987).

[45] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley (1994).

94 BIBLIOGRAPHY

[46] M. C. Paulk, W. S. Humphrey, and G. J. Pandelios, “Software process assess-

ments: Issues and lessons learned,” Proc. of International Software Quality

Exchange, pp.4B41–4B58 (1992).

[47] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall

(1981).

[48] D. Pfahl and K. Lebsanft, “Integration of system dynamics modelling with

descriptive process modelling and goal-oriented measurement,” Journal of

Systems and Software, vol.46, pp.135–150 (1999).

[49] D. Pfahl and K. Lebsanft, “Using simulation to analyse the impact of soft-

ware requirement volatility on project performance,” Information and Soft-

ware Technology, vol.42, pp.1001–1008 (2000).

[50] A. Powell, K. Mander, and D. Brown, “Strategies for lifecycle concurrency

and iteration – A system dynamics approach,” Journal of Systems and Soft-

ware, vol.46, pp.151–161 (1999).

[51] D. M. Raffo, “Evaluating the impact of process improvements quantitatively

using process modeling,” Proc. of CASCON93, vol.1, pp.290–313 (1993).

[52] D. M. Raffo, J. V. Vandeville, and R. H. Martin, “Software process simulation

to achieve higher CMM levels,” Journal of Systems and Software, vol.46,

pp.163–172 (1999).

[53] I. Rus, J. Collofello, and P. Lakey, “Software process simulation for reliability

management,” Journal of Systems and Software, vol.46, pp.173–182 (1999).

[54] H. Sackman, W. J. Erickson, and E. E. Grant, “Exploratory experimental

studies comparing online and offline programming performance,” Com-

munications of the ACM, vol.11, no.1, pp.3–11 (1968).

[55] K. Sakamoto, “A study of software process improvement and quality con-

trol based on analyses of actual project data,” Doctor’s thesis, Department

BIBLIOGRAPHY 95

of Information Systems, Graduate School of Information Science, Nara In-

stitute of Science and Technology, NAIST-IS-DT9861009 (2000).

[56] W. Scacchi, “Experience with software process simulation and modeling,”

Journal of Systems and Software, vol.46, pp.183–192 (1999).

[57] Software Engineering Institute, Carnegie Mellon University, The Capabil-

ity Maturity Model: Guidelines for Improving the Software Process, Addison-

Wesley, MA (1995).

[58] I. Sommerville, Software Engineering, 4th edition, Addison-Wesley, MA

(1992).

[59] Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto, S. Kusumoto, and T. Kikuno,

“Analysis of review’s effectiveness based on software metrics,” Proc. of 6th

International Symposium on Software Reliability Engineering, pp.34–39 (1995).

[60] T. Tanaka, K. Sakamoto, S. Kusumoto, K. Matsumoto, and T. Kikuno, “Im-

provement of software process by process description and benefit estima-

tion,” Proc. of 17th International Conference on Software Engineering(ICSE95),

pp.123–132 (1995).

[61] W. F. Tichy, N. Harbermann, and L. Prechelt, “Future directions in soft-

ware engineering,” ACM SIGSOFT, Software Engineering Notes, vol.18, no.1,

pp.35–48 (1993).

[62] J. D. Tvedt and J. S. Collofello, “Evaluating the effectiveness of process

improvements on software development cycle time via system dynamics

modeling,” Proc. of 19th Annual International Computer Software and Applica-

tions Conference, pp.318–325 (1995).

[63] P. Wernick and M. M. Lehman, “Software process white box modelling for

FEAST/1,” Journal of Systems and Software, vol.46, pp.193-201 (1999).

96 BIBLIOGRAPHY

[64] J. Williford and A. Chang, “Modeling the FedEx IT division: a system

dynamics approach to strategic IT planning,” Journal of Systems and Software,

vol.46, pp.203-211 (1999).

[65] E. Yourdon, Death March : The Complete Software Developer’s Guide to Surviv-

ing ‘Mission Impossible’ Projects, Prentice-Hall Computer Books (1997).

