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Abstract—Code search plays a role in bridging code and query.
However, recent code search studies mainly rely on affinity-
matrix-based cross-modal attention to learn the word alignments
between code and query, which may lead to incorrect alignments.
In this paper, we propose a Global Alignment Learning Model
(GALM) to learn global alignments and demonstrate that better-
learned correct alignments can significantly improve code search
performance. Specifically, GALM characterizes the query and
code embedding into an alignment graph to enhance the feature
representation and further learns global alignments by a dense
graph convolutional network. To evaluate the performance of
GALM, we compared it with several baseline models on two pop-
ular datasets. The results demonstrate that GALM outperforms
the best baseline models by 9.8% and 6.8% with the Top@1
accuracy of 0.601 and 0.671 on two datasets, respectively.

Index Terms—code search, deep learning, graph neural net-
work

I. INTRODUCTION

Code search is an essential task in software engineering
that aims to retrieve the most relevant code for a given query.
Learning correct word alignments between code and query
is the key to improving code search performance, similar to
automatic code generation [1–3] and code summarization [4–
6], while ccurately retrieving relevant code can provide valu-
able inspiration for writing and reusing code, thus improving
software development efficiency.

Recently, code search has benefited much performance from
deep-learning technology. Deep-learning-based code search
can accurately retrieve the most relevant code and effectively
handle unseen tokens by comparing code and query embed-
ding. However, recent deep learning-based code search models
face a challenge in using affinity-matrix-based cross-modal
attention, as most of these studies [7–12] rely on it to facilitate
the model’s learning of the alignment between code and query.
The affinity-matrix-based cross-modal attention can direct
attention between code and query by utilizing the affinity
matrix. It comprises crucial word alignment information for
word alignment learning and bridges the gap between code
and query. On the other hand, it may be unable to learn
the differences between the relevant code and similar codes
since they might differ only by a few words. Specifically, the
affinity-matrix-based cross-modal attention utilizes the max-
pooling operation to transform the affinity matrix into the
attention weights, which can capture the most salient align-
ments. However, it may also discard other word alignments
and cause the model to learn incorrect alignments since the low

co-occurrence frequency of crucial words may be swamped by
irrelevant words exhibiting a high co-occurrence frequency.

To address the problem of that incorrect alignment caused
by the affinity-matrix-based cross-modal attention, we propose
a novel code search model, namely the Global Alignment
Learning Model (GALM), which can learn better global
alignments. Specifically, GALM first characterizes code and
query embeddings into an alignment graph through the cross-
modal attention and computes multiblock similarity. Then, in-
stead of using the affinity-matrix-based cross-modal attention,
GALM applies a dense graph neural networks (DGCN) on the
alignment graph to further capture global alignments. Finally,
GALM integrates the global alignments to yield similarity
between code and query.

In this paper, based on dot-product attention and code fields
(Explained in Section II-A) used in the previous studies [11,
12], we further propose GALM with following contributions:

• GALM characterizes word embedding as an alignment
graph to efficiently represent the word alignments and
difference information between code and query.

• GALM utilizes dense graph neural networks to fur-
ther learn global word alignments instead of relying on
affinity-matrix-based cross-modal attention.

• We evaluate GALM by comparing it with baseline mod-
els. The results demonstrate that GALM outperforms the
best baseline models on two datasets.

This paper is organized as follows: Section II describes
the background of the technology used in GALM. Section III
presents the details of each module of GALM. Section IV
evaluates the performance of GALM. Section V summarizes
the work presented in this paper.

II. BACKGROUND

A. Code Fields

In previous studies [11, 12], code tokens are categorized
into different code fields instead of plain code. Each code field
is transformed into word embeddings by different embedding
layers and then concatenated to obtain a distinct code embed-
ding. For example, FcarCS, a code search model proposed
by Deng et al. [12], it categorizes code tokens into four code
fields, method name Cname (a list of tokens that split follows
camel case), tokens Ctoken (a bag of tokens in the method
body), API sequence Capi (a list of APIs in method body),
and AST fields Cast (a collection of a combination of AST
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nodes and content). These four code fields are transformed by
four different embedding layers and concatenated into a code
embedding as follows:

C = CoAtt(E(Cname), query)∥CoAtt(E(Ctoken), query)

∥CoAtt(E(Capi), query)∥CoAtt(E(Cast), query)
(1)

where C denotes the code embedding, CoAtt() means the
attention mechanism, E() means word embedding layer, and
∥ denotes concatenate operation.

Similarly, the query Q is also transformed by an embedding
layer into a word embedding as follows:

Q = E(Q). (2)

where the Q denotes the query embedding, E() denotes word
embedding layer.

B. Attention Mechanism

The attention mechanism’s role in the code search is to align
words between code and query cross-modally. It can usually
operate in two different approaches.

The first one is to utilize the affinity matrix with the pooling
operation, which can be formulated as follows:

Attentionc = maxpooling(Affinity(c, q)),

Attentionq = maxpooling(Affinity(c, q)⊤),

Affinity(c, q) = WQC⊤
(3)

where the Attentionc ∈ Rm×m and Attentionq ∈ Rn×n denote
the attention weights for code C and query Q, which are
transformed from the affinity matrix Affinity(c, q) ∈ Rn×m.
Here, maxpooling() means the max-pooling operation, ⊤
means the transpose operation, and W is the learnable variable.
The Q and C denote code and query embedding, respectively.
This approach involves utilizing the pooling operation to
transform the attention weights. It can filter out irrelevant word
alignments by discarding low-score alignments. However, it
may also incorrectly discard other essential word alignments.

Another approach is using dot-product attention [13], which
can retain whole alignment information. It can be formulated
as follows:

a = Softmax(QC⊤)

Cweighted = Q⊤a
(4)

where a ∈ Rn×m denotes the attention weights, m and n
denote the number of words of code and query, respectively.
The Cweighted ∈ Rm×dim refers the weighted code, ⊤ denotes
transpose operation. C ∈ Rm×dim and Q ∈ Rn×dim means
the query embedding and code embedding.

III. PROPOSED MODEL

The overview of our proposed model, GALM, is shown in
Fig. 1. To address the incorrect alignment caused by affinity-
matrix-based cross-modal attention, GALM computes global
alignment instead. GALM consists of the following three
modules:

• Word embedding module transforms the inputted uni-
fied code field and query into code and query embedding,
as described in Section III-A.

• Alignment graph construction module characterizes
the alignments between code and query as an alignment
graph, as described in Section III-B.

• Graph similarity measuring module further learns
the global alignment representations from the alignment
graph and integrates it into the global similarity, as
described in Section III-C.

In this section, we first explain the each module of GALM and
then introduce the objective function in Section III-D.

A. Word Embedding Module

This module transforms inputted code fields and query
into high-dimensional word embeddings. To this end, GALM
employs three code fields (method name, token, API), which
differs from previous studies [11, 12] using four code fields
(method name, token, API, AST). (Code fields are explained
in Section II-A) GALM concatenates these code fields to
create the unified code field and then transforms it into a
code embedding using an embedding layer. The embedding
procedure for code and query can be formulated as follows:

C = E(Cname∥Ctoken∥Capi),

Q = E(Qquery)
(5)

where the code embedding C is set of word embeddings C =
{c1, ..., cm}, C ∈ Rm×dim, m means the number of the word
embedding, ∥ denotes the concatenate operation.

Similarly, query embedding is also transformed by a query
embedding layer.

Q = E(Qquery) (6)

The query embedding Q is also a set of word embeddings Q =
{q1, ..., qn}, Q ∈ Rn×dim, n means the number of the word
embedding. The dim means the word embedding dimension.

B. Alignment Graph Construction Module

The objective of this module is to learn cross-modal word
alignments between code and query and represent these align-
ments as an alignment graph.

Cross-Modal Alignment: Cross-modal alignment submod-
ule plays a pivotal role in bridging the code and query at the
initial stage. It takes code embedding C and query embedding
Q as input and computes dot-product attention (Explained in
Section II-B) between them to acquire cross-modal weights in
cross-modal alignment submodule. These weights are applied
to the query to obtain the code-weighted query. The procedure
can be formulated as follows:

Q̂ = Softmax(QC⊤)C (7)

where the Q̂ ∈ Rn×d represents the code-weighted query, ⊤
denotes transpose operation.

Diverse Alignment Representation: This submodule
further enriches code-weighted query as diverse alignment
representation with the difference information between the
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Fig. 1: The overview of GALM, given code and query pair, GALM transforms them to word embeddings in the word embedding
module and then characterizes them as an alignment graph in the alignment graph construct module. Finally, the graph similarity
measuring module calculates and integrates the global alignments into global similarity.

code-weighted query and query embedding since the align-
ment information in the code-weighted query is insufficient
to fully express the difference for computing the similarity to
relevant code. Therefore, the diverse alignment representation
can express the difference between the code-weighted query
and query embedding while incorporating the code-query
alignments.

To this end, similar to Vaswani et al. [14] and Liu et al.
[15], the code-weighted query Q̂ and query embedding Q
are first divided into the multiblock representation to enhance
the feature representation. The dividing procedure can be
formulated as follows:

Q̂G = Q̂1∥Q̂2 . . . Q̂i,

QG = Q1∥Q2 . . . Qi

(8)

where the Q̂G ∈ Rn×i×k and QG ∈ Rn×i×k denote the
multiblock representation of code-weighted query Q̂ and query
embedding Q, composed of concatenation by Q̂i ∈ Rn×1×k

and Qi ∈ Rn×1×k, which the i-th blocks of Q̂G and QG, each
block has the dimension of k, and ∥ denotes the concatenation
operation.

Subsequently, this submodule calculates words cosine sim-
ilarity between of the multiblock representation of code-
weighted query Q̂ and query embedding Q to include the
difference information into the code-weighted query. The
procedure can be formulated below:

V = Cosine(Q̂G, QG) (9)

where the the V ∈ Rn×k denotes diverse alignment represen-
tation, the Cosine() denotes the cosine similarity function.
Note that the diverse alignment representation V is then treated
as the alignments graph with n nodes, where each node has k
dimensions. Within this graph, each query word is treated as
a node, and each node is densely connected.

C. Graph Similarity Measuring Module

This module takes alignment graph V as input. It utilizes a
Dense Graph Convolutional Network (DGCN), a variant of a
graph convolutional network (GCN) [16, 17], to learn global
alignments from alignment graph V and integrate them into
global similarity.

The initial edge weights of DGCN can be computed as
follows:

Eq = Softmax(Q⊤Q) (10)

where the Eq ∈ Rn×n denotes the initial edge weights for
DGCN. The ⊤ means the transpose operation.

Dense Graph Convolutional Network (DGCN): DGCN
updates the edge weights as follows:

ED = Softmax(Q̂d⊤Q̂d) (11)

where the ED ∈ Rm×m represents the updated edge weights,
which updated by the current global alignments Q̂d, the ⊤
denotes the transpose operation. Then, DGCN utilizes the edge
weights ED to update the alignments graph V to obtain the
global alignments. The process can be formulated as follows:

Q̂d =
L∏

l=1

Relu(V EDWd + bD) (12)

where Q̂d ∈ Rn×dim denote the global alignments, the l
represents the l-th layer and the L denotes the number of
iterates DGCN. The Wd ∈ Rdim×dim represents the trainable
parameter and bD ∈ Rdim denotes the bias.

To integrate the global alignment Q̂d to global similarity
Q̂df , DGCN employs a two-layer MLP and applies global
average pooling. The following illustrates the process:

similarity =
1

n
Wdo tanh(Q̂

dWdi + bdi) + bso (13)

where the similarity represents the global similarity, which the
similar between code and query. The n denotes the number of
nodes. The Wdo ∈ Rdim×dim and Wdi ∈ Rdim×1 denote the
trainable parameters, and the bdi ∈ Rdim and bso ∈ Rdim

D. Objective Function

We use Bi-directional ranking loss [18–20] as the objective
function to optimize GALM. The optimization goal is to have
the query closer to relevant code than irrelevant code. Bi-
directional ranking loss can be formulated as follows:

loss(C,Q) = max[0, λ− Sim(c, q) + Sim(c, q̂)]+

[0, λ− Sim(c, q) + Sim(ĉ, q)]
(14)
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where the λ denotes the margin, the Sim() refers to the
similarity function. Moreover, c, q denotes the relevant code
and query pair, c, q̂ denotes code and irrelevant query pair, and
ĉ, q denotes the irrelevant code and query pair.

IV. EXPERIMENTS

A. Evaluation Methodology

1) Dataset: We evaluate GALM on two popular java
datasets: CSN dataset and JCG dataset. CSN dataset, orig-
inally provided by CodeSearchNet [22] and preprocessed by
Xu et al. [11]1, is a multifield code search dataset containing
394,497 training code and query pairs. The JCG dataset,
originally provided by Hu et al. [5] and subsequently pre-
processed by Deng et al. [12]2, is another multifield code
search dataset containing 475,463 training code and query
pairs. Both datasets include 10,000 test code and query pairs,
each comprising a query field and four code fields: method
name, token, API and AST field. Note that this study uses the
data splits in the publicly accessible datasets. Furthermore,
we removed 30 code and query pairs from the test datasets
because several pairs had blank fields.

2) Parameters: We have set the hidden dimension to 256
and configured the alignment graph with 16 blocks, where
each block having a hidden dimension of 16. We employed
Adam as the optimizer, and the initial learning rate is set to
0.0003, which is reduced to 0.00005 after 15 epochs, iterating
in 30 epochs.

3) Measurements: We evaluate GALM using two metrics:
namely Top@K and Mean Reciprocal Rank (MRR), two
commonly used metrics for code search research.

Top@K can be formulated as follows:

Top@K =
1

Q

Q∑
q=1

{
1 Rankσ <= K
0 Rankσ > K

(15)

where K signifies whether the codes retrieved of rank K
contain the most relevant code, Q is the total number of code
and query pairs, Rankσ denotes the rank of retrieved code.

MRR is a metric that calculating average of the reciprocal
ranks of results for a set of queries. MRR can be formulated
as follows:

MRR =
1

Q

Q∑
q=1

1

Rankσ
(16)

where Q is the total number of code and query pairs, Rankσ
means the rank of retrieved code.

B. Comparison Experiments

To evaluate the code search performance of GALM, we
conduct competitive experiments with baseline models. We
referenced the results from TabCS and FcarCS on the CSN
and JCG datasets, respectively.

1https://github.com/cqu-isse/TabCS
2https://github.com/cqu-isse/FcarCS

TABLE I: Result on CSN dataset

Models Top@1 Top@5 Top@10 MRR
DeepCS 0.294 0.440 0.529 0.307

CARLCS-CNN 0.413 0.557 0.633 0.409
CARLCS-TS 0.439 0.580 0.656 0.426

UNIF 0.42 0.556 0.624 0.419
TabCS w/o AST 0.508 0.654 0.724 0.504

TabCS 0.547 0.683 0.748 0.539
GALM (Ours) 0.601 0.781 0.821 0.677

TABLE II: Result on JCG dataset

Top@1 Top@5 Top@10 MRR
DeepCS 0.278 0.434 0.516 0.282
UNIF 0.529 0.682 0.772 0.525
TabCS 0.550 0.719 0.792 0.544

FcarCS w/o AST 0.609 0.757 0.823 0.593
FcarCS 0.628 0.770 0.830 0.613

GALM (Ours) 0.671 0.853 0.894 0.751

1) Baseline Models: On CSN dataset, we compared GALM
with DeepCS, CARLCS-TS, UNIF [21], CARLCS-CNN
and TabCS. On JCG dataset, we compared GALM with
DeepCS, UNIF, TabCS, and FcarCS. In addition, we further
compared GALM with the models using same limited code
fields (i.e., method name, token, API), namely TabCS w/o
AST and FcarCS w/o AST. However, TabCS w/o AST is
specifically for the CSN dataset only, FcarCS w/o AST is
specifically for JCG dataset only.

2) Comparison Results: Comparison results on CSN
dataset. Table I shows the results of compared GALM with
baseline models. As can be seen, GALM achieves an MRR
of 0.677 and Top@1, Top@5, and Top@10 scores of 0.601,
0.781, and 0.821, respectively. GALM outperforms TabCS,
by 25.6%, 9.8%, 14.3%, and 9.7% in terms of MRR and
Top@1/5/10, respectively. These results illustrate that GALM
outperforms the best baseline model TabCS with limited code
fields, and the GALM’s features, the diverse alignment rep-
resentation, and global alignments can significantly enhance
code search accuracy.

Comparison results on JCG dataset. Table II illustrates
the results of GALM on the JCG dataset compared with
baseline models. As can be observed, GALM achieves an MRR
of 0.777 and Top@1/5/10 scores of 0.702, 0.873, and 0.908,
respectively. GALM outperforms the FcarCS by 26.7%, 6.8%,
10.7%, and 7.7% in MRR and Top@1/5/10. The experiments
on the JCG dataset show GALM demonstrated higher perfor-
mance than the best baseline model FcarCS with limited code
fields and GALM performed consistently on different datasets.

Comparison results using the same code fields. The
results that GALM compared with TabCS w/o AST and
FcarCS w/o AST are also shown in both Table I and II,
respectively. As can be seen, GALM outperforms TabCS
w/o AST in MRR by 34.3%, and Top@1/5/10 by 18.3%,
19.3%, and 13.3% on CSN dataset, respectively. Compared
to FcarCS w/o AST, GALM outperforms by 26.6% in MRR
and by 12.6%, 12.6%, and 8.6% in terms of Top@1/5/10 on
JCG dataset, respectively. GALM show a wider margin when
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compared to baseline models that use the same number of
code fields.

These results demonstrate our model architecture’s effec-
tiveness, and better learned alignments significantly improved
model performance. Moreover, these results show that the
advantage of a well-designed model architecture can bring
more significant potential for improved performance than the
use of additional inputs.

V. CONCLUSION

In this paper, we propose a novel code search model, namely
GALM. GALM characterizes the code and query embedding as
an alignment graph to enhance the code distinction and learn
better alignments. It further utilizes dense graph convolutional
networks for alignments learning to address the issue of
incorrect alignments caused by affinity-matrix-based cross-
modal attention. To evaluate the performance of GALM, we
conduct comparison experiments with several baseline models
on two datasets. The results show that GALM outperforms
best baseline models by a large margin.
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