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In software development, developers frequently apply maintenance activities to the
source code that change a few lines by a single commit. A good understanding of the
characteristics of such small changes can support quality assurance approaches (e.g.,
automated program repair), as it is likely that small changes are addressing
deficiencies in other changes; thus, understanding the reasons for creating small
changes can help understand the types of errors introduced. Eventually, these reasons
and the types of errors can be used to enhance quality assurance approaches for
improving code quality. While prior studies used code churns to characterize and
investigate the small changes, such a definition has a critical limitation. Specifically, it
loses the information of changed tokens in a line. For example, this definition fails to
distinguish the following two one-line changes: (1) changing a string literal to fix a
displayed message and (2) changing a function call and adding a new parameter.
These are definitely maintenance activities, but we deduce that researchers and
practitioners are interested in supporting the latter change. To address this limitation, in
this paper, we define micro commits, a type of small change based on changed tokens.
Our goal is to quantify small changes using changed tokens. Changed tokens allow us
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to identify small changes more precisely. In fact, this token-level definition can
distinguish the above example. We investigate defined micro commits in four OSS
projects and understand their characteristics as the first empirical study on token-
based micro commits. We find that micro commits mainly replace a single name or
literal token, and micro commits are more likely used to fix bugs. Additionally, we
propose the use of token-based information to support software engineering
approaches in which very small changes significantly affect their effectiveness.
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Response to Reviewer Comments

Responses to Reviewers

EMSE-D-23-00166
submitted to
Empirical Software Engineering

M.Kondo, D.German, Y.Kamei, N.Ubayashi, and O.Mizuno
March 8, 2024

Dear Editor and Reviewers,

We would like to thank the editor and the three reviewers (i.e., R1, R2, R3) for all your comments,
which further improved our paper.

Response to the Editor

“E.1 Many thanks for your submission to ESE Journal. Based on reviewer feedback, I am recom-
mending a major revision with a focus on the following points:

1) Clarify the definition of the most essential construct, micro commits, and ensure its consistent
use throughout the analyses and reporting (R1 and R2) 2) Clarify methodological details, particularly
about the coding process (R1, R2, R3, confidence interval calculations (R2), and the effect of other
factors that may have impacted the results (R3) 3) Reconsider the presentation of results to improve
readability and comprehension (R2) 4) Clarify the novelty by contrasting the contribution with the
gap in existing work (R3) 5) Discuss mitigation strategies you have used, or recommend for others to
use, in addition to listing the validity threats (R3)

We would like to thank the editor and three reviewers (i.e., R1, R2, and R3) for your insightful and
useful suggestions. Below we summarize our changes to the paper and the links to specific comments:

1. Micro commit definition. The terminology related to micro commits in the paper has been
updated. We decided, for the sake of clarity, to define micro commit as a commit that adds at
most five tokens and removes at most five tokens of source code. We have revised and reorganized
our research questions accordingly. This addresses issues R1.1, R2.1, R2.2, R2.3, R2.5,
R2.6, R3.1

2. Coding process. We have updated the description to clarify the coding process. This addresses
issues R2.8, R2.9, R3.4.

3. Clarification of the presentation of the results. We have revised the result presentation.
For instance, we improved the contrast in Figure 3. Related to R2.7.

4. Clarification of the novelty. We have added “Section 9.3 Knowledge Gap in Previous Studies”
and discussed the novelty of this study. R3.3.
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Listing 1: An example micro commit in Linux

retrieved from: 092734b4bb227faddf241b116af14357645d963¢

@@ —385 +385 @@ EXPORT_-SYMBOL(bt878_device_control);
—struct cards card_list[] __devinitdata = {
+static struct cards card_list[] __devinitdata = {

5. Mitigation strategies for the threats. We have included mitigation strategies for each
threat. This addresses issues R3.6.

6. Other issues. Related to R1.2, R1.3, R1.4, R2.4, R2.10, R2.11, R3.2, R3.5.

Response to Reviewer R1

Summary In this paper, the authors conduct an empirical analysis of micro commits, defined as
commits that modify a maximum of five tokens. The authors justify this definition by analyzing
one-line commits and discovering that almost 90% of the studied systems’ commits add or remove no
more than five tokens. The authors then explore the characteristics of micro commits and the types of
changes made. They conducted this study on four large systems with development histories spanning
several years.

Strengths

- Interesting topic approached from a perspective that remained out of the focus of similar studies

- Well-written, easily readable paper

- Interesting findings and discussion of results

- Replication package with Python scripts and dataset

Weaknesses

- A small sample of four systems

- The maximum criterion of 5 tokens was determined based on one-line commits

- It seems that the manual classification could have been automatized to study the entire dataset of

micro commits

Summary: We thank Reviewer 1 for your constructive comments. Based on your comments,

we’ve updated the rationale behind the definition of micro commits. Additionally, we have
shared the results of automatically classifying micro commits instead of manual classification.
Finally, we have further discussed the threats to validity due to our selection of only 400 micro
commits from all projects. The details are described below.

R1.1 However, I see two major issues:

- There appears to be a flaw in establishing the maximum 5 tokens criterion. The paper argues that
relying on lines or churns may not accurately capture the extent of a change and therefore suggests
using tokens instead for micro commits. However, the paper then sets the upper limit for tokens in
micro commits at 5 based on the observation that 90% of one-line commits modify no more than
5 tokens. A better approach would have been to analyze the distribution of the number of tokens
in all commits to determine the maximum. Moreover, 5 tokens are unlikely to span multiple lines,
whereas 10 tokens may represent a small change that spans multiple lines. The paper acknowledges
this limitation in the Threats to Validity section. So I am pointing this out as a weakness of the
submission. I do not believe that additional analysis is necessary.

Response: Thank you very much for raising the concern about the definition of micro commits.
Similar concerns were raised by two other reviewers.
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Figure 1: Accumulated distribution of all commits in terms of the maximum number of added or
deleted tokens (up to 100 tokens)

Listing 2: An example micro commit with multiple changed lines
in Linux retrieved from: 0ce6e62bd6591777bd92873e2db93fdbc5228122

@@ —1143,2 +1143,3 @@ int path_lookup_open(const char *name, unsigned int lookup_flags,
—int path_lookup_create(const char *xname, unsigned int lookup_flags,

— struct nameidata *nd, int open_flags, int create-mode)

+static int path_-lookup-create(const char *name, unsigned int lookup-flags,

+ struct nameidata *nd, int open_flags,

+ int create_mode)




As suggested, we looked at the distribution of commits by the number of tokens added and
removed (Figure 1). We noted that this distribution (for a small number of tokens) grows in a
relatively stable manner.

Therefore we proceeded to define micro commits with a threshold of 5 tokens (as in the original
paper). This is similar to other papers that have arbitrarily defined small commits (e.g., Pu-
rushothaman et al. [5] defined small commits as those modifying less than 10 lines, and Alali et
al. [1] defined eztra-small commits as those adding at most 5 lines of code).

We support our decision as follows: (1) In the languages being studied (C and Java), it is
highly unlikely to add a new statement with only five tokens, suggesting that such commits
carry out minor modifications. For example, within five tokens, developers can only add a func-
tion call with one parameter and an ending semicolon: name (parm) ; includes two identifiers,
two parentheses, and one semicolon. (2) In the systems we studied, between 7.45 and 17.95% of
all studied commits add at most 5 tokens and remove at most 5 tokens.

Also, we have relocated the original RQ1 to RQ3 in the revised paper. RQ3 now compares
micro commits with one-line commits to clarify their differences. Lastly, we have expanded
the discussions in the threats to validity section. The important description from the paper
(Abstract, Section 1, and Section 3.2) is quoted below.

Abstract

To address this limitation, in this paper, we define micro commits, a type of small change based
on changed tokens. Our goal is to quantify small changes using changed tokens. Changed
tokens allow us to identify small changes more precisely. In fact, this token-level definition
can distinguish the above example.

Section 1 Introduction

While prior studies [2, 18, 37] use churn (number of lines added and removed) to identify
small changes (e. g., small commits and One-line commits [37], or extra-small commits [2]), it
has one significant limitation: they consider the line to be the finest-grained entity of changed
source code. More specifically, such a definition overlooks the details of what has changed in
a line [11, 34, 38]. For instance, when several lines have a small change (such as an identifier
being renamed in a few places), these modifications might appear as one line added and one
line removed for each change, rather than a single identifier change.

Another problem is that splitting or joining a line of code that is being modified can
result in noise. For example, splitting a line into two would be reflected as a change to
multiple lines in version control systems (e. g., Git), and this type of change can add noise to
the analysis of the history of the development process.

These limitations sometimes cause researchers to fail in accurately quantifying small
changes. For example, Listing 2 shows a commit in the Linux repository that changes a
few lines (i.e., three added and two deleted lines). While this commit corresponds with a
multiple-line change and may not correspond to a One-line commit, it only adds a token
“static”. This is similar to Listing 1 corresponding with a One-line commit that only adds a
token “static”. Studying the actual changed tokens instead of the lines can provide a better
understanding of the characteristics of the small changes.



In this paper, we define a new class of commits: micro commits. Micro commits
are commits that add at most five tokens and remove at most five tokens of
source code. We aim to quantify small changes using the token-level definition (i.e., micro
commits) rather than relying on the line-level definition (i.e., One-line commits). This
token-level definition allows us to identify small changes more accurately, and use token
information to characterize them. We conducted an empirical study on four large, mature
open-source projects to: a) demonstrate that micro commits are common, accounting for
between 7.45 and 17.95% of all studied commits in the studied projects, b) understand their
qualitative and quantitative characteristics, and c¢) show our definition of micro commits
(a threshold of 5 added and removed tokens) includes approximately 90% of all One-line
commits, yet only approximately 40-50% of micro commits are One-line commits.

Section 3.2 One-line Commits and Micro Commits

We extracted micro commits based on the hunks provided by Git repositories processed by
cregit. Micro commits refer to commits that include a maximum of five added tokens and
five deleted tokens across all hunks. This number was chosen for the following reasons.

e In the languages being studied (C and Java), it is highly unlikely to add a new statement
with only five tokens, suggesting that such commits carry out minor modifications. For
example, within five tokens, developers can only add a function call with one parameter
and an ending semicolon: name(parm) ; includes two identifiers, two parentheses, and
one semicolon.

e In the systems we studied, between 7.45 and 17.95% of all studied commits add at most
5 tokens and remove at most 5 tokens.

R1.2 - It is unclear why classifying commits into low-level maintenance activities required manual

annotation. This classification is based on the operation (add/delete/replace) and the entity type
(identifier, constant, declaration, statement, control flow, other/no), which could be automatically de-
tected. SrcML could assist in identifying the added or removed entity based on its type. Additionally,
tools are available to perform AST diff off commits (e.g., https://github.com/GumTreeDiff/gumtree).
Therefore, there is no need to limit the analysis to the small subset of 383 sample commits when an
automatic approach could classify the entire dataset. There are two possible solutions: either explain
why the manual analysis cannot be achieved automatically or implement a simple automatic approach
and run it on the full dataset of micro commits. In the latter scenario, the manually classified sample
set could serve as an oracle to evaluate the accuracy of the automatic approach. This needs to be
addressed in the paper.

Response: Thank you for your valuable feedback. We agree with your suggestion that hav-
ing an approach to automatically classify targets and operations would be beneficial for future
studies. We implemented a rule-based approach to validate the automatic classification. Un-
fortunately, achieving high performance can be challenging. Therefore, we retain the manual
annotation in the revised paper. We discuss this limitation in the Threats to Validity section.
For future studies, we have included this rule-based approach in the replication package. The
outcome of our rule-based approach is outlined below. However, you may choose to skip this
section as we have not included these results in the revised paper.



The outcome of a rule-based approach: While we initially believed that manual anno-
tation was necessary because of the complexity of classification, we attempted to implement an
automatic classification approach and assess its performance. Specifically, we implemented a
rule-based approach to automatically classify micro commits into the appropriate targets. For
example, if the micro commit includes the token “if”, this approach classifies the commit as
belonging to the control flow. This approach also employs rules to classify the targets. For
instance, if a commit consists solely of literal tokens, it will be classified as a constant.

Table 1 shows the accuracy of classification for micro commit targets using our automatic
classification approach. Overall, the approach achieves an accuracy of approximately 81.2%
for categorizing micro commits into their targets. In contrast, we observe that although the
approach achieves 100% accuracy in certain targets, it performs worse in others, such as multi,
declaration, and control flow. These misclassifications occurred due to the classification com-
plexity.

For example, classifying micro commits into the multi targets is complex. Listing 3 shows a
micro commit that we manually classified as belonging to the multi(control flow, expression).
However, the automatic approach classified it solely as belonging to the control flow. In this code,
the “ifdef” statement is changed to “if” and the “IS_ENABLED” function call is added. The
change from “ifdef” to “if” is a control flow change, while the addition of the “IS_ENABLED”
function call is an expression change. These changes are classified as multi(control flow, expres-
sion) according to the manual classification.

Listing 4 displays the tokenized commit of Listing 3 using cregit. As mentioned earlier, the
automatic classification approach categorizes commits based on the changed tokens and their
token types. Hence, this approach uses the tokens and token types present in Listing 4.

The tokens and token types related to the expression in this commit are “IS_. ENABLED” (name)
and “(” (parentheses). However, these tokens are also commonly used in the control flow. For
example, when adding a new “if” statement, developers will write the keyword “if”, followed
by the name token and the parentheses to indicate the condition. Additionally, this commit
contains tokens strongly related to the control flow, such as “if”. Consequently, our automatic
classification approach categorizes this as the control flow. This is a common challenge in other
multi targets as well.

Not only in multi targets, but there are also cases where problems can occur with rule-based
approaches. To illustrate, Listing 5 presents an example commit of misclassification by our auto-
matic classification approach. In this commit, the definition of “*addr” is changed, which would
be classified as a declaration change in our manual classification. However, our automatic clas-
sification approach classifies this change as an identifier change. This is because our automated
classification approach uses a rule: it considers the change as an identifier if its target is a token
of the name type token. Since this code only modifies name type tokens (Listing 6, which is a
tokenized version by cregit), it is classified as an identifier according to this rule. However, based
on our manual analysis, it is clear that this is a declaration change. This is an example where
not only the token type but also the semantic elements need to be classified into the appropri-
ate target. Therefore, relying solely on rule-based automatic classification approaches may not
be the best alternative to manual annotation. Note that we did not implement the automatic
approach to classify micro commits into operation categories because it does not achieve perfect
performance in target classification tasks.



Target declaration constant identifier control flow  statement expression no multi Total

Accuracy  65.4(34/52) 100.0(56/56) 100.0(69/69) 73.1(19/26) 100.0(40/40) 87.9(87/99) 66.7(2/3) 10.5(4/38) 81.2(311/383)

Table 1: Accuracy of our automatic classification approach for targets.

Listing 3: An original Linux commitretrieved from: 907aa265fde6589b8059dc51649c6d1f49ade2{3

1 @@ —305 +305 @@ EXP()RT,SYMB()L(of,drm,ﬁnd,panol);
—#ifdef CONFIG_BACKLIGHT_CLASS_DEVICE
3 +#if IS.ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE)

(™)

Listing 4: A token-level Linux commit (org: 907aa265{de6589b8059dc51649c6d1f49ade2f3)

@@ —775,3 +775,5 QQ end_endif
—begin_ifdef

—ifdef|#

—directivelifdef

+begin_if

+if|#

+directivelif
+name|IS_LENABLED
+argument_list | (

@@ —779 4+781,2 @Q name|CONFIG_.BACKLIGHT_CLASS_DEVICE
—end_ifdef

+argument_list|)

+end_if
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Listing 5: An original Linux commit retrieved from: 6b80778d3d7424b8{0a45052742d065ec491abd8

1 @@ —2039 42039 Q@ static int smc911x_drv_probe(struct platform_device spdev)
2 — unsigned int *addr;
3 + void __iomem xaddr;

Listing 6: A token-level Linux commit (org: 6b80778d3d7424b810a45052742d065ec491abd8)

@@ —9289,2 +9289,2 Q@ decl_stmt|;
name|unsigned

—namelint

+name|void

+name|__iomem

UL W N =




Section 8.3 Internal Validity

An alternative solution is to use an automatic classification approach rather than manual
analysis. We developed a heuristic-based method to classify micro commits into their cor-
responding targets automatically. However, this method does not yield perfect results. To
facilitate replication of this approach, we have included it in our replication package.

R1.3 Apart from these issues, I do not see additional major weaknesses/problems with the manuscript.
This is a nice submission which could be an interesting article in the journal. However, I noticed some
additional parts of the text that require clarifications. Therefore, I suggest accepting the paper after
a revision has been made to address the manual annotation issue and fix any minor issues.

Response: Thank you very much for your valuable feedback. Below, we describe our updates.

R1.4 In the rest of my review, I list the minor issues that need clarification and suggested improve-
ments.

e P3, “First, we empirically define micro commits as those that add at most five tokens and/or
remove at most five tokens (replacing a token would imply one removal and one addition).”
=> The “and/or” makes this definition ambiguous and is not clarified later in the paper. This
should be fixed.

Response: Thank you very much for pointing out our writing issue. By incorporating feedback

from another reviewer’s comment, we have revised not only this statement but also other state-
ments in order to improve the clarity of our definition for micro commits. Our micro commit
definition should use “and” in this statement.

e P4, Table 1: It seems that the number of commits listed in the “studied commits” column
for these projects may not be accurate. For instance, the text mentions that Linux has over
one million commits, but Table 1 only shows 748,618. It is possible that only a portion of the
development history was analyzed. If that is the case, include the time ranges examined in the
table.

Response: Thank you for your comment. This column “#studied commits” represents the
studied commits that were extracted from all commits. The procedure is the same as described
in Section 3.3. Therefore, we remove certain commits, such as those that do not modify any
source code. We clarify this in the text. Additionally, to make it clear that this column does not
represent the total number of commits, we have added a new column “#total commits” that
represents the total number of commits.

Section 2 Motivating Example

As in [37], we use the diffs generated by Git to identify one-line commits. Table 1
shows the proportion of one-line commits. The proportion was computed by using
the “#studied commits” column. It only shows the commits that have made changes
to the source code. Our analysis is conducted based on these commits. The detailed
procedure for extracting commits is explained in Section 3.2 and Section 3.3. We observe
4.28-8.20% of one-line commits.



e The text says, “Git has four algorithms to compute diffs.” => This is clear for the example,
but then which algorithm was used with cregit to construct the dataset?

Response: Thank you for bringing attention to this missing information. We use the myers
algorithm, which is the default algorithm in Git. We have now included this information in the
paper.

Section 3.3 Data Collection

We record the same for token-based diffs (replacing lines with tokens—including their
types). Note that when obtaining diffs with Git, we use the myers algorithm, which is
the default algorithm. Also, we record commit messages.

e I do not see a reason to exclude comment changes. Comments are integral parts of the source
code, and changes made to them are important for maintenance purposes. Why are they ex-
cluded from the analysis?

Response: Thank you. We agree with the reviewer’s thoughts. Making changes to comments
is important for maintenance purposes in practice. The primary reason for excluding comments
is to prioritize maintenance activities for code logic. As mentioned in Section 1, our intention
is to support various software engineering approaches (e.g., defect prediction), which typically
prioritize code logic over comments. Indeed, defect prediction studies typically do not take into
account comment issues when identifying target defects. While we acknowledge the importance
of changes made to comments for maintenance purposes, this perspective is beyond the scope
of our paper. We have added this reason. Furthermore, we have discussed this perspective in
future work. This is because maintenance activities for comments are also of interest and should
be considered when defining other types of micro commits.

Section 3.2 One-line Commits and micro commits

Source code comments are important for source code and making changes to comments
are also maintenance activities. However, in this paper, we exclude comments and
execute our analysis. The reason is to prioritize maintenance activities for code logic.
As mentioned in Section 1, our intention is to support various software engineering
approaches (e.g., defect prediction), which typically prioritize code logic over comments.
Indeed, defect prediction studies typically do not take into account comment issues when
identifying target defects [19, 24, 33]. While we acknowledge the importance of changes
made to comments for maintenance purposes, this perspective is beyond the scope of
our paper.

Section 8.2 Construct Validity

Hence, we believe our definition can be acceptable. However, our definition may not be
the best; thus, future studies are necessary to find a better definition than our first one.
For example, future studies can investigate different thresholds for the number of tokens.
Also, studying different thresholds for added and deleted tokens (e.g., 3 added tokens
and 5 deleted tokens) can be beneficial. Additionally, they can consider changes to
source code comments. This definition would encompass not only maintenance activities



related to code logic, but also various other maintenance activities.

e According to Footnote 7, it appears that header files were not considered for C projects, despite
their importance as integral parts of the C code. Can you confirm if the “.h” files were indeed
ignored and provide an explanation as to why?

Response: Thank you for raising this concern. We concur with the comments and have added
the header file as the target files. Consequently, our analysis results have slightly changed.
However, the findings and implications generally remain unchanged.

e I suggest specifying the Java (and C) versions of the projects supported by the analysis. Java
has undergone significant changes in recent major versions, which can impact the identifiable
tokens and results of the analysis.

Response: Thank you for raising this concern. Our analysis supports up to C11 for C, and
Java SE8 Edition for Java. The supported versions of Java and C for our analysis depend on
cregit (and srcML) used to tokenize the source code files. This poses a threat to the validity of
our analysis. Therefore, we have added this point to the paper.

Section 8.3 Internal Validity

The tool “cregit” used to tokenize the source code files utilizes srcML. Therefore, our
analysis can only be applied to specific versions of Java (Java SE8 Edition) and C (up
to C11) that are supported by srcML. We can find the supported versions on the official
homepage®. To extend our analysis to different versions of Java and C, it is necessary
to update srcML and apply our analysis to those versions.

Shttps://www.srcml.org/#home

e Table 3 could benefit from a more precise description. What do “n” and “Pro” mean?

Response: Thank you for pointing out this writing issue. We have added the description.

Section 5.2 Results

Each row indicates a set of token types modified by a single micro commit and their
appearances (i.e., # of micro commits). The “n” column indicates the number of
appearances, while “Pro” indicates the proportion. In this paper, we use the same
column name in the other tables.

e P15, “If at least one of the keywords is included in the commit messages, we classify the commit
into that category. Otherwise, we do not label commits. We used the keyword list defined by
Levin et al. [22]” => Provide more details about the keyword matching. In particular, were
common techniques such as stemming and case folding applied? The replication package shows
that the Python NLTK library was used in the scripts. Please clarify this.

Response: Thank you for pointing out the unclear description. We have added steps to classify

10


https://www.srcml.org/#home

Criteria First Time Second Time Third Time

Operations 0.686 0.669 0.832
Targets 0.425 0.671 0.754

Table 5: Fleiss’ Kappa scores for each repetition

Listing 6: Example “replace identifier” commit diff retrieved from
£72e6c3e17be568138d8e4855ac2734d251a6913 in Linux.

1 — strlepy(drvinfo—>bus_info, pci_-name(mdev—>pdev),
2 + strlepy(drvinfo—>bus_info, dev_name(mdev—>device),

commits into categories. Also, in response to the concerns raised by Reviewer 2, we have moved
this analysis to Section 7.3.

Section 7.3 Program Repair

The detailed procedure is as follows.

Step 1: Apply preprocessing to the commit messages using the NLTK package® in
Python by following the steps below:

— Tokenize the text and convert all words to lowercase.
— Remove stopwords and punctuation.

— Perform stemming on all words.
Step 2: Check if the stemmed commit message contains a keyword for each category.

Step 3: Classify each commit into categories based on keywords present in the commit
message.

%https://www.nltk.org/

e [ suggest moving the manual coding details from the appendix to the main text, as it is a crucial
element of the study method. It might be more appropriate to place Table 5 in the appendix
instead.

Response: Thank you for this suggestion. We have merged and updated the description in
Section 6.1. In response to the suggestions made by Reviewer 2, we have decided to retain
Table 5 in Section 6.1. Additionally, in response to the two comments below and comments
from Reviewer 2, we have included details of our manual coding in Section 6.1. Due to the
reorganization of the RQs, Section 6.1 has been moved to Section 5.1 in the revised version.

Section 5.1 Approach

Our manual inspection consisted of two phases: (1) constructing a coding guide and (2)
manual classification. Constructing a coding guide for manual classification/annotation

11


https://www.nltk.org/

Criteria “andidate Description  Example Commits and Their Diffs in Linux

add Add a new 122503683169b21d9cdb90380a20caad7ba994b6
entity Diff: Listing 12
replace Replace an 1b7a90e8043e7ab1922126e1c1c5c004b470f9e2a

existing en- Diff: Listing 13
tity
Operations  remove Remove a  b95bdeled92a203f4bdfc55£53d6e9c2773e3b6d
completely Diff: Listing 14
existing en-

tity

multi Operations e3ae0cac00042d7fb76914c30c5£991£918e65b4
on multiple Diff: Listing 9
targets

no Non- 2092532483e3200a53¢8b1170b3988cc668c07ef
functional Diff: Listing 15
modification

declaration ~ Change in a 36£062042b0fd9f8e41b97a472f52139886ca26f
type signa- Diff: Listing 16
ture

constant A constant 1db76c14d215c8b26024dd532de3dcaf66ea30f7
(e.g., literal) ~ Diff: Listing 17

identifier An identifier 70e8b40176c75d3544024e7c934720b11a8al1bf
(e.g., func- Diff: Listing 18
tion calls)

control flow  Modifies the 415a1975923722£729211a9efcab50c60c519bf3
control flow  Diff: Listing 19

statement A the major- b95bdeled92a203f4bdfc55£53d6e9c2773e3b6d
ity of a state-  Diff: Listing 14
ment (delim-
ited by semi-

Targets

colon)
expression A part of a 40cc394belaal8848b8757e¢03bd8ed23281£572e
statement Diff: Listing 20
and not
classified
into  other
categories
multi Multiple tar- e3ae0cac00042d7fb76914c30c5£991f918e65b4
gets are al- Diff: Listing 9
tered
no Non- a092532483e3200a53c8b1170b3988cc668c07ef
functional Diff: Listing 15
modification

Table 6: The description of each candidate in our manual inspection

is a common practice in the field of mining software repositories [6, 13, 14, 42, 43, 46].
To create the coding guide, we referred to previous studies [6, 13, 14, 42, 43, 46] and
followed the process detailed below.

The initial coding guide was first discussed by the first and second authors.
Since this is the first study to classify micro commits, we examined both micro commits
and other types of commits to develop the initial coding guide. After constructing
the initial coding guide, we aimed to reach a consensus among the first three authors
for this guide and refine the guide. Specifically, we independently annotated 20 micro
commits from a subset of all micro commits. This subset consists of micro commits
that only change less than or equal to five tokens in main files (.c or .java files) in
the Linux, Hadoop, and Zephyr projects to investigate a single operation commit for
refining the coding guide. We computed the agreement rate for these 20 micro commits
using Fleiss’ Kappa [9] that is used to demonstrate inter-rater agreement when there
are more than two raters. It is also frequently applied in the field of mining software
repositories [6,13]. The Kappa coefficient is commonly interpreted using the following
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Listing 7: Example “replace expression” commit diff retrieved from
8b58£261113c442717b9d205ab187e51¢3823597 in Linux.

1 - dgm->total_queue_count++;
2 + dgm->total_queue_count--;

scale [41]: Slight agreement (0.01 < k < 0.20), Fair agreement (0.21 < k < 0.40),
Moderate agreement (0.41 < k < 0.60), Substantial agreement (0.61 < k& < 0.80),
Almost perfect agreement (0.81 < k < 0.99). Then we discussed the coding guide
along with any inconsistencies in categorization to reach a consensus. We repeated
this process until our categorization substantially matched, indicating that our coding
guide was successfully constructed. We, therefore, repeated this process three times
(i.e., independently classifying 60 commits). Finally, our agreement rate achieved
substantial agreement in two consecutive iterations. Table 5 shows all agreement rates
across three authors for each repetition.

Through this process, we identified two perspectives: operation and target. The
operation indicates what kind of operations are applied, such as adding a new state-
ment or changing an expression; the target indicates source code elements where the
operation is applied, such as expressions. The details of the coding guide are described
below.

We utilized the following coding guide to categorize micro commits in terms of
the operations.

— add: This refers to operations that add a completely new entity.

— replace: This refers to operations that modify an entity.

— remove: This refers to operations that completely remove an entity.
— multi: This code indicates that multiple operations are applied.

— no: This code indicates that no functional change is applied.

We utilized the following coding guide to categorize micro commits in terms of the
targets.

— iddentifier: This refers to commits that only modify identifiers, such as variable
names. If other entities, such as parentheses, are included, it would not be labelled
as an identifier but would be considered an expression.

— statement: This refers to commits that modify a complete statement, including
the semicolon (;), such as an entire function call with its semicolon. C’s #include
preprocessor statement is also regarded as a statement.

— constant: This refers to commits that only modify literals, such as strings or
numbers. If other entities, such as parentheses, are included, they would not be
identified as a constant but would be considered an expression.

— declaration: This refers to commits that modify declarations, such as variable dec-
larations. However, if the commit can be classified as “identifier” or “constant”,
it should be categorized under these two categories rather than “declaration”.
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— control flow: This refers to commits that modify the control flow of execution,
such as adding a new “else” statement.

— expression: If a commit does not match other categories and involves modifying
a part of a statement, it would be classified into this category. Additionally, this
category includes transformations from constants to variables or vice versa, as
well as conversions from a variable to a pointer and vice versa.

— multi: This code suggests that operations are performed on multiple targets.
— no: This code indicates that no functional change is applied.

Table 6 shows the summary and examples. This represents different types of activities
performed by micro commits. Let us describe two example commits. Listing 6 shows
an example commit. This commit changes a function call and its argument. More
specifically, the identifiers of the function call and the argument value are replaced
so that we classify this commit as operations=replace, and targets=identifier. The
commit of Listing 7 replaces an expression “++” into “——". Hence, we classify this
commit as operations=replace, and targets=expression.

Because our agreement rates for operation and target based on our coding guide
achieved almost perfect and substantial agreement respectively (Table 5) and we made
an internal consensus of the coding guide, only the first author manually classified
the 400 micro commits, similar to previous studies [13, 14, 42, 43]. All our manual
categorizations are available in our sheet®. The sample size in manual inspection
was determined as a statistical representative with a confidence level of 95% and
a confidence interval of 5% for 150,967 micro commits from all studied projects.®
The confidence interval, also known as the margin of error, indicates the potential
percentage difference between the characteristics obtained from the sampled micro
commits and those obtained from the population. The minimum sample size with
this confidence level and this confidence interval is 383. For safety, we also inspect 17
additional micro commits. Therefore, we classify a total of 400 micro commits.

%https://docs.google.com/spreadsheets/d/1M6ifKvufH2JV_ZAYcG6j_eEuSeeEjexWavf2eimHyQk/
edit?usp=sharing
Yhttps://www.surveysystem.com/sscalc.htm

e The method used to select the 383 sample commits from the projects is not explained clearly.
Furthermore, there seems to be an uneven representation of the projects and programming
languages in the sample set. This is evident from the fact that most of the commits in the
“manual_analysis_result” spreadsheet of the replication package are from the Linux project.
This raises concerns about the validity of the sampling strategy.

Response: Thank you very much for raising this concern. To mitigate this risk, we manually
inspected additional micro commits from each project. We do not observe significant differences
across the projects. We have added this to the list of threats.

Section 8.3 Internal Validity

Finally, we randomly sampled 400 micro commits from all projects. Therefore, our
sampled micro commits may be biased by the size of the original projects. To mitigate
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this risk, we manually inspected additional micro commits from each project. We do
not observe significant differences across the projects.

e P16, “with a confidence level of 95% and a confidence interval of 5” => 5 is the margin of error.
The confidence interval is 954-5%.

Response: Thank you very much. We have revised the description.

Section 5.1 Approach

The sample size in manual inspection was determined as a statistical representative with
a confidence level of 95% and a confidence interval of 5% for 150,967 micro commits
from all studied projects.® The confidence interval, also known as the margin of error,
indicates the potential percentage difference between the characteristics obtained from
the sampled micro commits and those obtained from the population.

Shttps://www.surveysystem.com/sscalc.htm

e P17, “micro commits are more likely to be defect-fixing activity than other commits.” =>
Interestingly, this corroborates the findings of Hattori and Lanza [1] (a paper missing from the
related work), who found that “Tiny commits are more related to corrective activities, followed
by forward engineering and reengineering, that alternate positions.”

Response: Thank you for pointing out the missing reference. We have now included it in
Section 7.3.

Section 7.3 Program Repair

Also, this finding confirms our initial assumption that micro commits are used more
frequently for maintenance purposes than non-micro commits. Interestingly, Hattori
and Lanza [15] found similar results, noting that tiny commits are often associated with
corrective activities.

e P17, Fig. 6.: It is worth noting that approximately 50% of the commits have been categorized.
What has happened to the remaining commits? If the classification method cannot identify
them, it poses a significant risk to the accuracy of the results, which should be noted in Section
8.3 Internal Validity.

Response: Thank you very much for raising this concern. We acknowledge your concern and
have added it to the list of threats.

Section 8.3 Internal Validity

While we believe the maintenance activities defined by Swanson are acceptable, future
studies are necessary to use other sets. Also, if commit messages do not contain any
keywords, we exclude those commits from the analysis. However, it is possible that
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these commits are related to maintenance activities. Using more precise methods would
enhance the validity of this analysis.

References:
[1] Hattori, Lile P., and Michele Lanza. “On the nature of commits.” 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering-Workshops. IEEE, 2008.

Response to Reviewer R2

Summary The manuscript “An Empirical Study of Token-based micro commits” provides a new
perspective on micro commits. In comparison to prior research, which considered micro commits
based on the number of lines within a textual diff (e.g., a change only to a single line), this paper
rather uses the number of tokens that are added and removed as part of a change to characterize
the micro commits. The data shows that most one-line changes are micro commits according to this
token-based definition, but also that there are other commits that span multiple lines that fall within
this definition. The characterization of the commits further shows that such commits are typically
a replacement of a single token. Which type of token seems to be language dependent as this was
observed to be different between two C and two Java projects.

Overall, T like the concept of the paper and the motivation to better understand small changes.
However, I do not think this work is ready for publication yet and requires further revisions. Please
find my detailed comments below:

Summary: We thank Reviewer 2 for your constructive comments. Based on your comments,
we’ve updated the rationale behind the definition of micro commits. Additionally, we have
updated the coding process description and results presentation to enhance readability. The
details are as follows.

R2.1 Major issues:

1) The definition of micro commit seems to be a moving target within the paper. At the beginning,
it seems like this will be only based on tokens. Then, suddenly, there is the parallel notion of one-line
changes as micro commits. Then, the definition is shifted again to be based on added and changed
tokens. This is sometimes referred to as 7”5 added and changed tokens” and sometimes as 7”5 added
and/or changed tokens”. Both wordings are ambiguous and could mean either five tokens total or five
added and five deleted tokens (ten total). A careful reading of section 4.2 seems to rather imply that
the definition that was used is all commits where the maximum number of either added or removed
tokens is less than or equal to five. This needs to be cleaned up such that there is one consistent and
clear definition that is introduced once.

Response: Thank you for pointing out the unclear definition. To clarify this point in the
paper, we have updated the descriptions. For example, in the revised paper, we do not refer to
one-line changes as micro commits. Also, we clearly define micro commits in Section 1. micro
commits refer to commits that add at most five tokens and remove at most five tokens. A similar
reviewer comment and our response can be found in R1.1. The response of R1.1 is related to
the responses to R2.2, R2.3, and R2.5.

Abstract

To address this limitation, in this paper, we define micro commits, a type of small change based
on changed tokens. Our goal is to quantify small changes using changed tokens. Changed
tokens allow us to identify small changes more precisely. In fact, this token-level definition
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can distinguish the above example.

Section 1 Introduction

While prior studies [2, 18, 37] use churn (number of lines added and removed) to identify
small changes (e. g., small commits and One-line commits [37], or extra-small commits [2]), it
has one significant limitation: they consider the line to be the finest-grained entity of changed
source code. More specifically, such a definition overlooks the details of what has changed in
a line [11, 34, 38]. For instance, when several lines have a small change (such as an identifier
being renamed in a few places), these modifications might appear as one line added and one
line removed for each change, rather than a single identifier change.

Another problem is that splitting or joining a line of code that is being modified can
result in noise. For example, splitting a line into two would be reflected as a change to
multiple lines in version control systems (e. g., Git), and this type of change can add noise to
the analysis of the history of the development process.

These limitations sometimes cause researchers to fail in accurately quantifying small
changes. For example, Listing 2 shows a commit in the Linux repository that changes a
few lines (i.e., three added and two deleted lines). While this commit corresponds with a
multiple-line change and may not correspond to a One-line commit, it only adds a token
“static”. This is similar to Listing 1 corresponding with a One-line commit that only adds a
token “static”. Studying the actual changed tokens instead of the lines can provide a better
understanding of the characteristics of the small changes.

In this paper, we define a new class of commits: micro commits. Micro commits
are commits that add at most five tokens and remove at most five tokens of
source code. We aim to quantify small changes using the token-level definition (i.e., micro
commits) rather than relying on the line-level definition (i.e., One-line commits). This
token-level definition allows us to identify small changes more accurately, and use token
information to characterize them. We conducted an empirical study on four large, mature
open-source projects to: a) demonstrate that micro commits are common, accounting for
between 7.45 and 17.95% of all studied commits in the studied projects, b) understand their
qualitative and quantitative characteristics, and c¢) show our definition of micro commits
(a threshold of 5 added and removed tokens) includes approximately 90% of all One-line
commits, yet only approximately 40-50% of micro commits are One-line commits.

Section 3.2 One-line Commits and Micro Commits

We extracted micro commits based on the hunks provided by Git repositories processed by
cregit. Micro commits refer to commits that include a maximum of five added tokens and
five deleted tokens across all hunks. This number was chosen for the following reasons.

o In the languages being studied (C and Java), it is highly unlikely to add a new statement
with only five tokens, suggesting that such commits carry out minor modifications. For
example, within five tokens, developers can only add a function call with one parameter
and an ending semicolon: name (parm); includes two identifiers, two parentheses, and
one semicolon.
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e In the systems we studied, between 7.45 and 17.95% of all studied commits add at most
5 tokens and remove at most 5 tokens.

R2.2 2)Tam really confused what the message of the results for RQ1 should be and how these results
motivate the threshold of five adds/deletes for the subsequently used definition of micro commits. I
believe this is in part because I cannot really extract a lot of information from the figures. Figure
1 suffers from a bad binning, which basically hides the information beyond the fact that about 50%
of changes have one added and deleted token. The color-scale hinders me from seeing more, as the
contrast between other values is weak. With Figure 2, I wonder why only the maximum is considered
and not the total number. Since I could not really read Figure 1, do not understand the impact of this
choice. Figure 4 yields more information as this seems to imply that commits are mostly replacements
(diagonal) or additions (bottom line) and that even when all commits are considered, this is often
relatively small. But why any of this then yields a meaningful definition of micro, is something I
cannot really follow. In other words: why not 4 tokens? Or 37 Or 7?7 I acknowledge that there is
an intent to derive this threshold from data, rather than to define a magic threshold like ”one-line
changes”. Its just that, at least I, do not really see how this is not just a different kind of magic right
now. I would wish for a clearer explanation here.

Response: Thank you very much for raising the concern about the definition of micro com-
mits. Similar concerns were raised by two other reviewers. Therefore we proceeded to define
micro commits with a threshold of 5 tokens. This is similar to other papers that have arbitrarily
defined small commits (e.g., Purushothaman et al. [5] defined small commits as those modifying
less than 10 lines, and Alali et al. [1] defined extra-small commits as those adding at most 5
lines of code).

We support our decision as follows: (1) In the languages being studied (C and Java), it is
highly unlikely to add a new statement with only five tokens, suggesting that such commits
carry out minor modifications. For example, within five tokens, developers can only add a func-
tion call with one parameter and an ending semicolon: name (parm) ; includes two identifiers,
two parentheses, and one semicolon. (2) In the systems we studied, between 7.45 and 17.95% of
all studied commits add at most 5 tokens and remove at most 5 tokens.

Also, we have relocated the original RQ1 to RQ3 in the revised paper. RQ3 now compares
micro commits with one-line commits to clarify their differences. We revised the experiments
and the presentation of results for RQ3 in response to this comment. Lastly, we have expanded
the discussions in the threats to validity section. This update discusses the impact of the thresh-
old on our analysis.

Abstract

To address this limitation, in this paper, we define micro commits, a type of small change based
on changed tokens. Our goal is to quantify small changes using changed tokens. Changed
tokens allow us to identify small changes more precisely. In fact, this token-level definition
can distinguish the above example.
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Section 1 Introduction

While prior studies [2, 18, 37] use churn (number of lines added and removed) to identify
small changes (e. g., small commits and One-line commits [37], or extra-small commits [2]), it
has one significant limitation: they consider the line to be the finest-grained entity of changed
source code. More specifically, such a definition overlooks the details of what has changed in
a line [11, 34, 38]. For instance, when several lines have a small change (such as an identifier
being renamed in a few places), these modifications might appear as one line added and one
line removed for each change, rather than a single identifier change.

Another problem is that splitting or joining a line of code that is being modified can
result in noise. For example, splitting a line into two would be reflected as a change to
multiple lines in version control systems (e. g., Git), and this type of change can add noise to
the analysis of the history of the development process.

These limitations sometimes cause researchers to fail in accurately quantifying small
changes. For example, Listing 2 shows a commit in the Linux repository that changes a
few lines (i.e., three added and two deleted lines). While this commit corresponds with a
multiple-line change and may not correspond to a One-line commit, it only adds a token
“static”. This is similar to Listing 1 corresponding with a One-line commit that only adds a
token “static”. Studying the actual changed tokens instead of the lines can provide a better
understanding of the characteristics of the small changes.

In this paper, we define a new class of commits: micro commits. Micro commits
are commits that add at most five tokens and remove at most five tokens of
source code. We aim to quantify small changes using the token-level definition (i.e., micro
commits) rather than relying on the line-level definition (i.e., One-line commits). This
token-level definition allows us to identify small changes more accurately, and use token
information to characterize them. We conducted an empirical study on four large, mature
open-source projects to: a) demonstrate that micro commits are common, accounting for
between 7.45 and 17.95% of all studied commits in the studied projects, b) understand their
qualitative and quantitative characteristics, and ¢) show our definition of micro commits
(a threshold of 5 added and removed tokens) includes approximately 90% of all One-line
commits, yet only approximately 40-50% of micro commits are One-line commits.

Section 3.2 One-line Commits and Micro Commits

We extracted micro commits based on the hunks provided by Git repositories processed by
cregit. Micro commits refer to commits that include a maximum of five added tokens and
five deleted tokens across all hunks. This number was chosen for the following reasons.

o In the languages being studied (C and Java), it is highly unlikely to add a new statement
with only five tokens, suggesting that such commits carry out minor modifications. For
example, within five tokens, developers can only add a function call with one parameter
and an ending semicolon: name (parm); includes two identifiers, two parentheses, and
one semicolon.

e In the systems we studied, between 7.45 and 17.95% of all studied commits add at most
5 tokens and remove at most 5 tokens.
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Project  #total commits #studied commits #One-line commits Proportion(%)
Camel 60,911 38,458 2,405 6.25
Hadoop 69,997 53,796 2,302 4.28
Linux 1,048,688 802,726 65,858 8.20
Zephyr 40,883 25,542 1,979 7.75

Table 1: The proportion of One-line commits in the studied projects

Project | #intersects | #One-line  #Micro | %One-line  %Micro

Camel 2,131 2,405 4,230 88.6 50.4

Hadoop 2,069 2,302 4,010 89.9 51.6

Linux 59,836 65,858 138,142 90.9 43.3

Zephyr 1,849 1,979 4,585 934 40.3

Table 2: The number and proportion of the intersection between One-line commits and micro commits
in each commit type (i.e., One-line or micro). The column of “#intersects” indicates the intersec-
tion; the columns of “#One-line” and “#Micro” indicate the number of One-line commits and micro
commits; the column of “%One-line” and “%Micro” indicate the proportion of intersection in each
commit type (i.e., One-line commits and micro commits).

Proportion of One-line commits by number of added and removed tokens
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Figure 3: Proportion of One-line commits by the number of tokens added or removed. The x and
y-axis show the added and deleted tokens, and each cell indicates the proportion of commits.

Section 6.2 Results

Approximately 90% of One-line commits consist of at most five tokens. Table 1
shows the number of One-line commits. As described in Section 2, there are a non-negligible
number of these commits in the studied projects (4.28-8.20%). Figure 3 shows the proportion
of One-line commits according to the number of tokens that they have added and removed
between 0 and 10. As can be seen, there are a significant number of One-line commits
that remove and add exactly one token (between approximately 50 and 63% of all One-line
commits). Furthermore, except for the case in the Hadoop project where no commits add
or delete five tokens, all cells with five or fewer added and deleted tokens have more than
one One-line commit across all projects. This implies that there are no empty cells within
five added or deleted tokens except for one cell in the Hadoop project. Also, the distribution
of One-line commits, with more than five tokens, varies across the projects. For instance,
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Figure 4: Accumulated distribution of One-line commits in terms of the maximum number of added
or removed tokens
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Figure 5: Accumulated distribution of micro commits (N = 5) in terms of the number of hunks
included
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Project | Micro commits Prop (%) | One-token commits Prop (%)

Camel 4,230 11.00 1,319 3.43
Hadoop 4,010 7.45 1,288 2.39
Linux 138,142 17.21 32,973 4.11
Zephyr 4,585 17.95 1,247 4.88

Table 3: Number of micro commits and One-token commits and their proportion with respect to all
source-code commits.

in the Hadoop and Zephyr projects, there are cells with no One-line commits of more than
five deleted tokens and less than or equal to one added token. In contrast, every cell in the
Camel and Linux projects has at least one One-line commit. Hence, the majority of One-line
commits add or remove at most five tokens, and this finding is generally consistent across all
projects.

Figure 4 shows the accumulated distribution of One-line commits according to the
maximum number of tokens they add or remove. We use the maximum number of tokens
added or removed in this figure. This is because our definition of a micro commit applies the
same threshold of five tokens to both the number of added and removed tokens. As can be
seen, between approximately 57% and 65% add-or-remove at most one token, between 76%
and 82% add-or-remove at most three tokens, and between 89% and 93% add-or-remove at
most five tokens. Thus, approximately 90% of One-line commits can be covered by our micro
commits.

The number of modified hunks is also a crucial characteristic of commits. By our
definition, One-line commits only modify one location in the source code (i.e., one hunk).
We define micro commits based on the number of tokens, so even if a commit is spread across
multiple locations (i. e., multiple hunks), it it still considered a micro commit if the number
of modified tokens is below a certain threshold. This is a significant distinction compared to
One-line commits. Therefore, we do not impose any limits on the number of modified hunks.

Figure 5 illustrates the accumulated distribution of the number of hunks included in
micro commits to investigate their difference from One-line commits. Approximately 70%
(Linux and Hadoop) or 60% (Zephyr and Camel) of micro commits contain a single hunk,
while the remaining commits encompass two or more hunks. Hence, while approximately
70% or 60% of micro commits share characteristics with One-line commits, the remaining
30% or 40% represent commits that one-line commits do not detect, even if they modify the
same number of tokens.

In conclusion, although micro commits can encompass nearly all One-line commits,
the reverse is not typically true: One-line commits do not generally cover micro commits.
Indeed, Table 2 in Section 3.3 reveals that around 90% of one-line commits can be encap-
sulated by micro commits. However, only approximately 40% (for Linux and Zephyr) or
50% (for Camel and Hadoop) of micro commits can be encapsulated by one-line commits.
Therefore, micro commits provide new insights compared to one-line commits.
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Summary of RQ3

Approximately 90% of One-line commits add or remove at most five tokens. Therefore,
nearly all one-line commits can be covered by micro commits. In contrast, 30 to
40% of micro commits include two or more hunks that are not covered by one-line
commits. In fact, only approximately 40% (for Linux and Zephyr) or 50% (for Camel
and Hadoop) of micro commits can be encapsulated by one-line commits. Therefore,
the characteristics of micro-commits can help us understand the attributes of small
changes, including those in one-line commits and commits not identified by one-line
commits.

Section 8.2 Construct Validity

We define micro commits based on the number of changed tokens. However, micro commits
are a general term, and we can make different definitions. The key characteristic of micro
commits is that such commits change a small code fragment. Our analysis (RQ1 and 2) shows
that our definition is consistent with this characteristic. Hence, we believe our definition can
be acceptable. However, our definition may not be the best; thus, future studies are necessary
to find a better definition than our first one. For example, future studies can investigate
different thresholds for the number of tokens. Also, studying different thresholds for added
and deleted tokens (e. g., 3 added tokens and 5 deleted tokens) can be beneficial. Additionally,
they can consider changes to source code comments. This definition would encompass not only
maintenance activities related to code logic, but also various other maintenance activities.

R2.3 3) Part of the motivation is pretty paradox. On the one hand, the critique of one-line changes
as criterion for micro changes is strong. On the other hand, this is used immediately afterwards to
understand properties of micro changes. This happens both in the introduction and in Section 2 with
the motivation, as well as later when the definition of micro changes is changed. Together with the
above weak argument for the threshold and the confusing definition of micro changes used here, I think
this is a key aspect that needs to be revisited and cleaned up. My suggestion (feel free to ignore): use
the one-line changes to derive the token-based threshold, then identify how many additional commits
you now identify, likely because of bad diffs as in the example in Listing 2.

Response: Thank you for pointing out this unclear explanation. Similar to the response for
R2.1 and R2.2, we’ve revised the justification for the micro commits and clarified their definition.
Please refer to our responses to R2.1 and R2.2.

R2.4 4) The motivation often stresses that a ”significant effort” is invested in the creation of micro
commits. Is there any support for this statement? Why is the effort not ”micro” as well. At least
for me, changes that touch only few tokens/lines are less effort for coding, testing, reviewing, and
documenting than larger changes. What is so bad about such changes? These statements need either
a strong support or need to be modified.

Response: Thank you for your feedback. We have revised the statement to tone it down.
We now focus on the observation that small changes often address deficiencies introduced by
other modifications [5]. A good understanding of the characteristics of such small changes can
help understand the types of errors introduced. This knowledge can be used to improve quality
assurance approaches, such as automated program repair. We have revised the Abstract and
Section 1 based on this point.
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Abstract

In software development, developers frequently apply maintenance activities to the source
code that change a few lines by a single commit. A good understanding of the characteristics
of such small changes can support quality assurance approaches (e.g., automated program
repair), as it is likely that small changes are addressing deficiencies in other changes; thus,
understanding the reasons for creating small changes can help understand the types of errors
introduced. Eventually, these reasons and the types of errors can be used to enhance quality
assurance approaches for improving code quality.

Section 1 Introduction

Improving code quality is an ultimate goal for software engineering researchers, and several
quality assurance approaches have been widely studied so far, such as automated program
repair (APR), defect prediction, and fault localization. A good understanding of the charac-
teristics of very small changes can support such approaches, as it is likely that such changes
are addressing deficiencies in the system [5]; thus, understanding the characteristics of creat-
ing small changes can help understand the types of errors that other changes introduce and
potentially help with program repair. Eventually, the information can be used to enhance
quality assurance approaches for improving code quality.

R2.5 5) The filter for micro changes seems to be too strict. Notably, header files for the C code are

dropped as well. Thus, commits that touch multiple code files (a .c file and the associated .h header)
could still be considered micro. Additionally, I miss a criterion that only ”single-hunk commits” are
considered as candidates for micro changes. Otherwise, there needs to be a reason why changes that
are touching multiple locations in a file or even multiple files, can be considered micro changes.

Response: Thank you for highlighting the inclusion criteria of micro commits. We concur with

the comment that the header file is crucial for the C code. Therefore, we have removed this
exclusion criterion and re-executed the experiments. Consequently, our analysis results have
slightly changed. However, the findings and implications generally remain unchanged. We do
not use the single-hunk criterion. We would like to define micro commits as those that change
the same number of tokens, regardless of whether they affect multiple locations. Otherwise, our
micro commits would be similar to the one-line commits.

Furthermore, based on our discussion, we have decided to remove the single-file criterion from
the definition of micro commits. If we include the header file as a target, we may need to analyze
commits that simultaneously change both the header file and the C file. We have clarified these
points further in the paper.

Section 1 Introduction

In this paper, we define a new class of commits: micro commits. Micro commits are
commits that add at most five tokens and remove at most five tokens of source
code. We aim to quantify small changes using the token-level definition (i. e., micro commits)
rather than relying on the line-level definition (i.e., One-line commits). This token-level
definition allows us to identify small changes more accurately, and use token information
to characterize them. We conducted an empirical study on four large, mature open-source
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projects to: a) demonstrate that micro commits are common, accounting for between 7.45
and 17.95% of all studied commits in the studied projects, b) understand their qualitative
and quantitative characteristics, and ¢) show our definition of micro commits (a threshold of
5 added and removed tokens) includes approximately 90% of all One-line commits, yet only
approximately 40-50% of micro commits are One-line commits.

Section 3.2 One-line Commits and Micro Commits

We extracted micro commits based on the hunks provided by Git repositories processed by
cregit. Micro commits refer to commits that include a maximum of five added tokens and
five deleted tokens across all hunks. This number was chosen for the following reasons.

e In the languages being studied (C and Java), it is highly unlikely to add a new statement
with only five tokens, suggesting that such commits carry out minor modifications. For
example, within five tokens, developers can only add a function call with one parameter
and an ending semicolon: name (parm); includes two identifiers, two parentheses, and
one semicolon.

e In the systems we studied, between 7.45 and 17.95% of all studied commits add at most
5 tokens and remove at most 5 tokens.

R2.6 6) Related to the filters above, the definition of micro credits is currently also misleading in a
different respect: the "micro” part is *only* for the code. Changes to comments or non-code files can
be arbitrarily large. This should be reflected appropriately in the motivation of the paper, including
an explanation why it is okay to ignore other aspects and which aspects those are. As a side note:
these other aspects that are changed could be one of the reasons that change effort for micro commits
is larger (per changed token) than for other commits and could possibly even add data regarding what
you claim regarding the ”significant effort” (see comment 4).

Response: Thank you. We agree with the reviewer’s thoughts. Making changes to comments
is important for maintenance purposes in practice. The primary reason for excluding comments
and non-code files is to prioritize maintenance activities for code logic. As mentioned in Section
1, our intention is to support various software engineering approaches (e.g., defect prediction),
which typically prioritize code logic over non-code. Indeed, defect prediction studies typically
do not take into account comment issues when identifying target defects. While we acknowledge
the importance of changes made to comments for maintenance purposes, this perspective is
beyond the scope of our paper. We have added this reason. Furthermore, we have discussed
this perspective in future work. This is because maintenance activities for comments are also of
interest and should be considered when defining other types of micro commits.

Section 3.2 One-line Commits and micro commits

Source code comments are important for source code and making changes to comments are
also maintenance activities. However, in this paper, we exclude comments and execute our
analysis. The reason is to prioritize maintenance activities for code logic. As mentioned in
Section 1, our intention is to support various software engineering approaches (e.g., defect
prediction), which typically prioritize code logic over comments. Indeed, defect prediction
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studies typically do not take into account comment issues when identifying target defects [19,
24, 33]. While we acknowledge the importance of changes made to comments for maintenance
purposes, this perspective is beyond the scope of our paper.

Section 8.2 Construct Validity

Hence, we believe our definition can be acceptable. However, our definition may not be the
best; thus, future studies are necessary to find a better definition than our first one. For
example, future studies can investigate different thresholds for the number of tokens. Also,
studying different thresholds for added and deleted tokens (e.g., 3 added tokens and 5 deleted
tokens) can be beneficial. Additionally, they can consider changes to source code comments.
This definition would encompass not only maintenance activities related to code logic, but
also various other maintenance activities.

R2.7 7) I do not understand the message of Figure 5. Figure 4 shows that upwards of 60% of all
replacements are names and literals for all projects. In contrast, Figure 4 looks at exact token values -
and thereby more or less cannot consider these upwards 60% of tokens in the analysis of most common
replacements. This really reduces the value of Figure 5. Consequently, I wonder: what is the intended
message here? That Java has a . that is replaced (method chaining, imports, ...) and that this does
not appear for a language in which this character does not have a similar importance does not really
motivate this analysis for me.

Response: Thank you for your comment. Originally, the message of Figure 5 is that the most
frequently touched tokens in micro commits differ between Java and C. This suggests that at
the token-level, we need to evaluate software engineering methods (such as automated program
repair) across different programming languages to assess their generalizability. However, we
concur that considering the token types would enhance this analysis.

Therefore, we have redesigned this analysis to focus on tokens of the top-3 most frequently
touched token types. Due to the revision of the micro commits definition based on reviewers’
comments, there have been slight changes to Figure 4, which represents token types. Specifically,
we observed the top-3 token types, as opposed to the top-4 in the first version. These top-3
token types account for approximately 80% in Java and 60% in C.

The new results (Figure 5) also indicate that the tokens corresponding to the top-3 token types
vary between Java and C, a finding consistent with the first version. In contrast, we observed
similar tokens within the programming language. Specifically, in Java, condition values (e.g.,
true/false, null, and numeric values) are observed, while in C, parentheses and types (e.g., int,
u32_t, and u8.-t) are observed. This result suggests that even when the most frequently touched
token types are identical, their proportions and actual tokens vary across programming lan-
guages. However, within the same language, similar tokens may be observed. Additionally, to
enhance the value of this analysis, we have included further discussion about these results in
Section 7.3, details of which are provided below.

Note that due to the reorganization of RQs, Figure 4 and Figure 5 in the original paper are now
Figure 1 and Figure 2 in the revised paper.
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Figure 1: Proportions of changed token types (> 5%)

Section 4.2 Results

The top-3 most frequently touched token types in micro commits are generally
the name, literal, and operator token types. Figure 1 shows the frequently added/re-
moved token types by micro commits that account for more than 5% in all projects. We found
three token types, which we refer to as the top-3 most frequently touched token types. The
token type most frequently included in micro commits is the name token (e.g., the name of a
variable or function), the second one is the literal token (e.g., 123, ‘a’, “test”), and the third
one is the operator token (such as +). Also, the proportion of the literal token is significantly
different between Java and C. Specifically, while the proportion of name tokens is more than
three times larger than that of literal tokens in the projects written in C, the difference is
less than two times in the projects written in Java. While the proportion of the operator
tokens is relatively small, these are also included in the top-3 most frequently touched token
types. Hence, micro commits usually modify name, literal, and operator tokens in most
cases, but their proportions may differ between programming languages and their token types.

While the tokens corresponding to the top-3 token types differ between
Java and C, we observe similar tokens within the same language. Figure 2 shows
the top-10 most frequently occurring tokens for the top-3 token types. In Java, boolean
literals (e. g., true/false, null), and numeric literals were the most commonly observed, while
in C, they were the tokens for 0/1, parentheses and names for types (e. g., int, u32_t, and u8_t).

In conclusion, the types of tokens most frequently changed are the same in both pro-
gramming languages, but the actual tokens are different.

Section 7.3 Program Repair

The results of RQ1 showed that micro commits frequently modify a single token, and its token
type is name, literal, or operator. Studying micro commits could help understand how
software is modified with such a tiny amount of change, and provide datasets that
improve methods that attempt to modify software automatically. For example,
datasets based on micro commits might improve data-driven program repair approaches that
have been studied so far [20,29,31]. One potential idea involves utilizing our observations of
frequently modified token types and tokens in Java and C. Our observations indicate that
while the types of frequently modified tokens are similar, the actual tokens differ across

27



500{ 2.5%
(409)
400

300

0.9% g
200 (148)

. 0.8% 08% 0.7%
(131) (126) (126) (122)

..... T (88)

false nult debud true info + Suppol\ 1000
Number of changed tokens (Top-10)

(a) Camel (Java)

06% 0.6% 0.6% 0.5%

10

S

3.9%
(588)

1.9%
(282) 139 1.2%

I (200) (187) 0-9% 0.9% 09% 200 (0 (70

.. o e (99) (99

info gebud  null wue 4000 ward 40000
Number of changed tokens (Top-10)

(b) Hadoop (Java)

12000 1.8%
(9623)
9000
e 1% 0.9% 0.9%
(5469) (5272
6000 521D 420 (a687) 08% 07% o706 07% 0.7%
(3953) (3861) (3550) (3545) (3486)
- II.....
0
int ( - \
Number of changed tokens (Top-10)
(c) Linux (C)
1.3%
(229)
0.9%
200 (68) 08% 0.8%
(49 (47 o6 0.6% 6%
a3 a3 0.5%
(102) (93) 0.4%
100 III T
0 l..
ug_t ->

u32_t int
Number of changed tokens (Top-10)

(d) Zephyer (C)

Figure 2: Numbers of changed tokens

28



languages. This information is important for developing a program repair approach. When
dealing with multiple languages, focusing on token types is crucial. However, when focusing
on a specific language, actual tokens can also be beneficial.

R2.8 8) The description of the "manual coding” needs to be improved. Currently, I am not sure
if open or closed coding was conducted here: did these categories emerge during the coding of the
first 20/40/60 commits or were they pre-defined? Why are pair-wise agreements for Cohen’s kappa
reported instead of Fleiss’ kappa which generalizes the interrater agreement to multiple raters? How
exactly is ”substantially matched” for the agreement defined here? Are 20 commits sufficient to
estimate a reliable value for kappa to measure this substantial matching, or - in other words - how
big is the risk that kappa is just randomly high enough due to a good agreement on a small and
simple subsample? Why is this important part of the study protocol moved to the appendix, but
other sections with similar details are in the main body? What is the expected noise given the choice
to use a single rater for most of the data? How does this noise possibly affect subsequent results and
conclusions? (Please note: I really like that there was this manual inspection of the data and believe
that this is the most valuable and interesting part of the paper)

Response: Thank you for your comment. We have updated the description in Section 5.1
to clarify the process. We used an open coding process. Additionally, we have combined the
details of our coding process (Appendix) with Section 5.1. Please refer to the updated Section
5.1 below. Finally, we've updated the Section 8.1 Internal Validity section to discuss the threats
of this process in more detail.

Section 5.1 Approach

Our manual inspection consisted of two phases: (1) constructing a coding guide and (2)
manual classification. Constructing a coding guide for manual classification/annotation is
a common practice in the field of mining software repositories [6, 13, 14, 42, 43, 46]. To
create the coding guide, we referred to previous studies [6, 13, 14, 42, 43, 46] and followed
the process detailed below.

The initial coding guide was first discussed by the first and second authors. Since
this is the first study to classify micro commits, we examined both micro commits and
other types of commits to develop the initial coding guide. After constructing the initial
coding guide, we aimed to reach a consensus among the first three authors for this guide
and refine the guide. Specifically, we independently annotated 20 micro commits from
a subset of all micro commits. This subset consists of micro commits that only change
less than or equal to five tokens in main files (.c or .java files) in the Linux, Hadoop, and
Zephyr projects to investigate a single operation commit for refining the coding guide. We
computed the agreement rate for these 20 micro commits using Fleiss’ Kappa [9] that is
used to demonstrate inter-rater agreement when there are more than two raters. It is also
frequently applied in the field of mining software repositories [6,13]. The Kappa coefficient is
commonly interpreted using the following scale [41]: Slight agreement (0.01 < k£ < 0.20), Fair
agreement (0.21 < k < 0.40), Moderate agreement (0.41 < k < 0.60), Substantial agreement
(0.61 < k < 0.80), Almost perfect agreement (0.81 < k < 0.99). Then we discussed the
coding guide along with any inconsistencies in categorization to reach a consensus. We
repeated this process until our categorization substantially matched, indicating that our
coding guide was successfully constructed. We, therefore, repeated this process three times
(i. e., independently classifying 60 commits). Finally, our agreement rate achieved substantial
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Criteria First Time Second Time Third Time

Operations 0.686 0.669 0.832
Targets 0.425 0.671 0.754

Table 5: Fleiss” Kappa scores for each repetition

agreement in two consecutive iterations. Table 5 shows all agreement rates across three
authors for each repetition.

Section 8.3 Internal Validity

Also, another threat exists in our manual analysis (RQ2). In this analysis, we performed
manual labeling to micro commits according to our coding guide. Because this process is
performed manually by the first author, the result may have false-positive and false-negative
results. Therefore, we have made all labels publicly available to facilitate the validation of
future studies. Also, to construct the coding guide, the first three authors independently
inspected 20 micro commits three times. This process may also include errors. However,
our agreement rate achieved substantial agreement in two consecutive iterations. Hence, we
believe the coding guide is reliable. An alternative solution is to use an automatic classification
approach rather than manual analysis. We developed a heuristic-based method to classify
micro commits into their corresponding targets automatically. However, this method does
not yield perfect results. To facilitate replication of this approach, we have included it in
our replication package. Finally, we randomly sampled 400 micro commits from all projects.
Therefore, our sampled micro commits may be biased by the size of the original projects. To
mitigate this risk, we manually inspected additional micro commits from each project. We do
not observe significant differences across the projects.

R2.9 9) I am not sure how the confidence interval calculation worked. Which assumptions were
used? For *what exactly™ is this confidence interval calculated? What does it mean that the confidence
interval is 57 5 what? I checked the homepage and it is very generic and seems to be for confidence
intervals for mean values (e.g., average age, voting preferences) when conducting surveys. How does
this translate to this setting? This requires more details, before I can understand if the used strategy
is sound.

Response: As you pointed out, we utilized the general method to determine the sample size.
Specifically, we regard the category of micro commits as the population proportion. Our goal is
to obtain a large enough sample size to analyze the characteristics of the micro commits cate-
gory within the population. The confidence interval, also known as the margin of error, indicates
the potential percentage difference between the characteristics obtained from the sampled micro
commits and those obtained from the population. Therefore, with a 5% confidence interval, the
proportion of categories observed in this study may differ by 5% from the proportion present in
the overall population. We have revised the description in the paper for clarity.

Additionally, we’ve increased the sample size to 400 cases to enhance reliability, as the min-
imum requirement was to analyze 383 micro commits. Moreover, this is a typical method for
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performing manual classification in empirical software engineering. We will reference additional
previous studies to further illustrate this point [2, 3, 7, 8].

Section 5.1 Approach

Because our agreement rates for operation and target based on our coding guide achieved
almost perfect and substantial agreement respectively (Table 5) and we made an internal
consensus of the coding guide, only the first author manually classified the 400 micro commits,
similar to previous studies [13,14,42,43]. All manual categorizations are available in our
sheet®. The sample size in manual inspection was determined as a statistical representative
with a confidence level of 95% and a confidence interval of 5% for 150,967 micro commits from
all studied projects.® The confidence interval, also known as the margin of error, indicates
the potential percentage difference between the characteristics obtained from the sampled
micro commits and those obtained from the population. The minimum sample size with this
confidence level and this confidence interval is 383. For safety, we also inspect 17 additional
micro commits. Therefore, we classify a total of 400 micro commits.

%https://docs.google.com/spreadsheets/d/1M6ifKvufH2JV_ZAYcG6j_eEuSeeEjexWavf2eimHyQk/edit?
usp=sharing
Yhttps://www.surveysystem.com/sscalc.htm

R2.10 10) How does the choice to use a simple keyword approach to determine to which of Swanson’s
categories commits belong affect the results? Keyword-based approaches (and ML approaches as well)
are known to induce a fairly large amount of noise in the labels (see, e.g., https://doi.org/10.1016/j.jss.2020.110821)
such that mislabels for at least 30% of the data would not be surprising. This impact on the findings
needs either to be estimated or, even better, should be mitigated somehow.

Response: Thank you for rising this concern. Reviewer 1 also expressed concern about this
analysis ( R1.4) because it only evaluates the commits containing specific keywords. Hence, we
(1) transferred this analysis from the RQ to the discussion section and (2) manually verified the
false-positive commits identified by this analysis.

Because Swanson categories analysis only reveals that micro commits are mainly used to fix
bugs, and our manual coding analysis sufficiently addresses the original RQ3, we have relocated
Swanson categories analysis from the original RQ3 to the Discussion section under “Section 7.3
Program Repair”. In the Discussion section, we focus solely on the corrective category, as this
finding is a crucial point for program repair techniques.

To verify the accuracy of the categorization into the corrective category, we manually inspect
20 micro commits and 20 non-micro commits identified as corrective, classifying them into three
failure types within the corrective category defined by Swanson [6]. If we can’t associate any
failure types, those would be considered false positive corrective commits. This allows us to es-
timate the actual number of corrective micro commits and corrective non-micro commits in this
categorization. We do not need to examine non-corrective commits to determine the proportion
of false-negative corrective commits. This discussion only reports the minimum percentage of
corrective commits.

Our manual inspection revealed that there were no false-positive corrective micro commits.
In contrast, we found 8 out of 20 false positive corrective commits in non-micro commits. This
finding confirms our initial assumption that micro commits are used more frequently for main-
tenance purposes than non-micro commits. Interestingly, Hattori and Lanza [4] found similar

Ihttps://docs.google.com/spreadsheets/d/17cqps60SkA86GPuUmin3W1FoRZXs1Qf IuJAkX3vqH28/edit?usp=sharing
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results, noting that tiny commits are often associated with corrective activities. In this discus-
sion, we manually inspect only 20 micro and non-micro commits as an initial analysis. Future
studies could improve the validity of these initial findings.

Section 7.3 Program Repair

Finally, we present initial analysis results for micro commits regarding their maintenance
activities. As stated in the introduction, we hypothesize that commits involving the addition
or removal of a few tokens are likely intended for maintenance purposes. Therefore, we
deduce that exploring micro commits could be beneficial for program repair. To validate this
hypothesis, we identify micro commits that fall under the corrective maintenance category
as defined by Swanson [40]. Corrective maintenance is performed in response to failures. If
corrective maintenance makes up a large proportion of micro commits compared to non-micro
commits, it would confirm our hypothesis.

To identify the corrective commits, we followed the methodologies used in prior stud-
ies [35, 37], which use keywords in commit messages. More specifically, if at least one of
the keywords is included in the commit messages, we classify the commit into the corrective
maintenance category. Otherwise, we do not label commits. We used the keyword list
defined by Levin et al. [27] as follows: “fix”, “esolv”, “clos”, “handl”, “issue”, “defect”,
“bug”, “problem”, “ticket”.

The detailed procedure is as follows.

Step 1: Apply preprocessing to the commit messages using the NLTK pack-
age® in Python by following the steps below:

e Tokenize the text and convert all words to lowercase.
o Remove stopwords and punctuation.

e Perform stemming on all words.
Step 2: Check if the stemmed commit message contains a keyword.
Step 3: Identify commits that fall under the corrective category.

Micro commits are more likely to be failure-fixing activity than other commits.
Figure 6 shows the proportion of corrective micro and non-micro commits. In this figure,
we compare the tendency of micro commits (light gray) and non-micro commits (dark
gray). Corrective micro commits are larger than non-micro commits. Hence, micro commits
distinguishably correspond to the corrective commits. This result shows that micro commits
are usually applied to the source code to fix failures.

Also, this finding confirms our initial assumption that micro commits are used more
frequently for maintenance purposes than non-micro commits. Interestingly, Hattori and
Lanza [15] found similar results, noting that tiny commits are often associated with corrective
activities.

It should be noted that the keyword-based approach generally lacks accuracy [3,25].
To verify the accuracy of the identification, we manually inspect 20 micro commits and 20
non-micro commits identified as corrective, classifying them into three failure types within
the corrective category defined by Swanson [40]. If we cannot associate any failure types,
those would be considered false positive corrective commits. This allows us to estimate
the actual number of corrective micro commits and corrective non-micro commits in the
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Figure 6: The proportion of commits for the corrective category. Light gray indicates the proportion
in micro commits; dark gray indicates the proportion in non-micro commits.

identified commits. We do not examine non-corrective commits to determine the proportion
of false-negative corrective commits. This discussion only reports the minimum percentage
of corrective commits. Our manual inspection revealed that there were no false-positive
corrective micro commits. In contrast, we found 8 out of 20 false positive corrective commits
in non-micro commits. This finding suggests that the percentage of corrective micro commits
may not change significantly, while the proportion of corrective non-micro commits could
decrease. Therefore, our conclusion remains unchanged. In this manual inspection, we
inspect only 20 micro and non-micro commits. Future studies could improve the validity of
our findings. Our inspection is avaiable in the following spreadsheet.®

%https://www.nltk.org/
bhttps://docs.google.com/spreadsheets/d/17cqps60SkA86GPulmin3W1FoRZXs1Qf TuJAkX3vqH28/edit?
usp=sharing

Section 8.3 Internal Validity

In the discussion, we use keywords to identify the commits related to the corrective mainte-
nance activity as defined by Swanson [40]. While the keyword identification is widely used
to categorize commits [18,22,27,28,35,37], it is not perfect [3,25]. To mitigate this threat, we
manually review identified commits and estimate their accuracy. Also, there are other sets of
maintenance activities that can be used to classify commits, such as the IEEE standard [1].
While we believe the maintenance activities defined by Swanson are acceptable, future stud-
ies are necessary to use other sets. Also, if commit messages do not contain any keywords,
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we exclude those commits from the analysis. However, it is possible that these commits are
related to maintenance activities. Using more precise methods would enhance the validity of
this analysis.

R2.11 Minor:

e Please use the Swanson’s terminology consistently. Section 4.1 currently deviates from this.

Response: Thank you for the comment. I think this comment pertains to Section 6.1. We
have removed the description of the Swanson category from Section 6.1. Additionally, the new
discussion in Section 7.3 adheres to the terminology.

e The statement that multi operation micro commits are important for developers should be
reconsidered or better motivated based on the results. 10% of micro commits means that these
make up at most 1.6% of commits overall (based on the 16% of micro commits from Zephyr),
i.e. a very small ratio overall.

Response: Thank you for the comment. We have revised the sentence as follows.

Section 6.2 Results

Hence, multi-operation micro commits account for a non-negligible portion of the micro
commits.

e "Each hunk includes context lines” (Page 7) is wrong, hunks may contain context lines but do
not have to. Case in point: the paper uses a config-option to prevent context lines.

Response: Thank you for rising this writing issue. We have revised the sentence.

Section 3.2 One-line Commits and micro commits

Each hunk can include context lines

e Some information is redundant. I already mentioned the repeated and sometimes conflicting
definition of micro commits above. Section 2 overlaps to a large part with the introduction.
Similarly, Section 3.2 overlaps mostly with Section 2. Both times, some (few) new details are
added, but most of it is rewording of what was mentioned before. This should be restructured
to avoid such duplications.

Response: Thank you for your suggestion. We have clarified the definition of micro commits.
The introduction provides a summary of the entire paper; Section 2 delves into the motivation
behind the study; Section 3.2 elaborates on how to manage the output from Git. Hence, while
we revised the definition of micro commits, a large portion of these sections remains the same.
We believe that each section provides important details to replicate our study.

e [ suggest to avoid rhetorical questions.
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Response: Thank you for your suggestion. We have removed such questions from Section 4.1
and Section 5.2.

Response to Reviewer R3

Summary The research problem treated in the paper seems interesting. However, I think the paper
needs to improve some points before it can be accepted. While my detailed comments are reported
below, I noticed that (1) the novelty is unclear, (2) some external factors that may have biased the
study were not mentioned, (3) part of the research method applied could be clarified, and (4) lack of
threats to validity.

EVALUATION AND COMMENTS FOR AUTHORS

STRENGTHS and WEAKNESSES:

+ The paper is well-written and easy to read;

+ The paper provides a replication package

- Some external factors that might bias the study were not considered (or discussed);
- The novelty of the paper should be clarified;

- Some details/choices could be better explained;

- Lack of threats to validity;

Summary: We thank Reviewer 3 for your constructive comments. In response to your feed-
back, we have mainly made the following updates to the manuscript: (1) clarified the novelty of
the study, (2) included potential factors that may bias the findings, (3) provided more details
on the research methods, and (4) expanded the section on threats to validity. The details are
described below.

R3.1 1) The paper seems to suggest that the study involved all commits in the four projects. Were
the commit messages also analyzed? Were also commits in which minor fixes were clearly reported
considered? I expect these types of commits to always fall under micro commits, and in this case, I
assume they would have a different impact.

Response: Thank you for presenting this new perspective. We agree with the comment that

such commit messages would provide us with additional insights for defining micro commits.
However, our intention is to define micro commits based on the size perspective, specifically
the number of tokens. Therefore, this perspective is beyond the scope of this paper. We have
explained why we excluded comments and also discussed future work from this perspective.

Section 3.2 One-line Commits and micro commits

Source code comments are important for source code and making changes to comments are
also maintenance activities. However, in this paper, we exclude comments and execute our
analysis. The reason is to prioritize maintenance activities for code logic. As mentioned in
Section 1, our intention is to support various software engineering approaches (e.g., defect
prediction), which typically prioritize code logic over comments. Indeed, defect prediction
studies typically do not take into account comment issues when identifying target defects|[19,
24, 33]. While we acknowledge the importance of changes made to comments for maintenance
purposes, this perspective is beyond the scope of our paper.
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Section 7.4 Size-perspective vs. Semantic-perspective for Defining micro commits

In this paper, we define micro commits through size metrics (i.e., the number of tokens).
This is because we would like to assist with software engineering research, such as program
repair. However, micro is a general term, and micro commits can be defined not only by size
but also by semantic aspects. For instance, tangled commits [8,16,23] can be considered non-
micro, whereas non-tangled commits can be categorized as micro. Additionally, defect-fixing
commits can be categorized as micro or non-micro depending on the difficulty of the bug being
fixed. We could explore these aspects using non-source code resources, such as source code
comments, issue reports, and mailing lists. Exploring these semantic-based micro commits
can also contribute to software engineering research.

Section 8.2 Construct Validity

Hence, we believe our definition can be acceptable. However, our definition may not be the
best; thus, future studies are necessary to find a better definition than our first one. For
example, future studies can investigate different thresholds for the number of tokens. Also,
studying different thresholds for added and deleted tokens (e. g., 3 added tokens and 5 deleted
tokens) can be beneficial. Additionally, they can consider changes to source code comments.
This definition would encompass not only maintenance activities related to code logic, but
also various other maintenance activities.

R3.2 2) Another concern is related to the projects’ developers. Have their profiles been analyzed in
any way? Again, I expect that the knowledge or otherwise experience of the developers may impact
the results of the study because their experience and knowledge could impact the commit. In the
study, there is no reference to either this point or point 1. I would have expected at least a discussion
on the threats to validity.

Response: Thank you for your comment. We agree with the comment. There are several
factors that can influence commits. For instance, the way developers write commits can vary
depending on the developer and the project. To reduce these influences, we chose and analyzed
four projects that involve a large number of developers. As a result, we expect the impact of
such influences has been minimized. We have added this point in the threats to validity section.

Section 8.2 Construct Validity

There are several factors that can influence commits. For instance, the way developers write
commits can vary depending on the developer and the project. To reduce these influences,
we chose and analyzed four projects that involve a large number of developers. As a result,
we expect the impact of such influences has been minimized.

R3.3 3) I am a bit concerned with the overall novelty of the paper. Looking at the introduction and
the related works, it is not clear what is the knowledge gap and how this work improved the literature.
The motivation reported ”improve the maintenance activities” appears weak and too high-level.

Response: Thank you for rising this concern. Compared to prior studies, this research is the
first to define micro commits at a fine granularity, specifically at the token level. The key novelty
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Criteria First Time Second Time Third Time

Operations 0.686 0.669 0.832
Targets 0.425 0.671 0.754

Table 5: Fleiss’ Kappa scores for each repetition

of this study lies in conducting the analysis at the token level and providing implications for
software engineering research. For example, the findings of RQ1 in this study have implications
for research in program repair. These findings indicate the need to explore approaches for fixing
bugs caused by a single name or literal token. This is because existing automated program repair
approaches (e.g., GenProg) may not be effective in such scenarios due to a lack of information
to repair the code. These findings and implications were obtained because the analysis was
conducted at the token level. It would have been difficult to obtain such findings and implications
using a line-level analysis. We have added the description to this point in Section 9.3.

Section 9.3 Knowledge Gap in Previous Studies

Compared to these prior studies, this research is the first to define micro commits at a fine
granularity, specifically at the token level, through empirical analysis. Small commits defined
at the line level, which previous studies often used, may overlook important information for
improving existing software engineering research. Our research addresses this knowledge gap
by conducting the analysis at the token level.

For instance, as explained in Section 7.3, the findings of RQ1 in this study have im-
plications for research in program repair. These findings indicate the need to explore
approaches for fixing bugs caused by a single name or literal token. This is because existing
automated program repair approaches [20, 26, 30] may not be effective in such scenarios due
to a lack of information to repair the code. These findings and implications were obtained
because the analysis was conducted at the token level. It would have been difficult to obtain
such findings and implications using a line-level analysis. The novelty of this study lies in
conducting the analysis at the token level and providing these implications. The details of
our findings and implications can be found in Sections 5, 6 and 7.

R3.4 4) Concerning the manual coding, some details could be added to improve the reproducibility
of the work. For instance, how was the discussion performed? What is the initial agreement and the
final agreement? How was the analysis performed?

Response: Thank you for pointing out this unclear description. We have updated the de-
scription of our manual annotation to clarify the process. In the revised manuscript, Fleiss’
Kappa was used to compute the first, second, and third agreements (Table 5). Please refer to
the updated Section 5.1 below.

Section 5.1 Approach

Our manual inspection consisted of two phases: (1) constructing a coding guide and (2)
manual classification. Constructing a coding guide for manual classification/annotation is
a common practice in the field of mining software repositories [6, 13, 14, 42, 43, 46]. To
create the coding guide, we referred to previous studies [6, 13, 14, 42, 43, 46] and followed
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the process detailed below.

The initial coding guide was first discussed by the first and second authors. Since
this is the first study to classify micro commits, we examined both micro commits and
other types of commits to develop the initial coding guide. After constructing the initial
coding guide, we aimed to reach a consensus among the first three authors for this guide
and refine the guide. Specifically, we independently annotated 20 micro commits from
a subset of all micro commits. This subset consists of micro commits that only change
less than or equal to five tokens in main files (.c or .java files) in the Linux, Hadoop, and
Zephyr projects to investigate a single operation commit for refining the coding guide. We
computed the agreement rate for these 20 micro commits using Fleiss’ Kappa [9] that is
used to demonstrate inter-rater agreement when there are more than two raters. It is also
frequently applied in the field of mining software repositories [6,13]. The Kappa coefficient is
commonly interpreted using the following scale [41]: Slight agreement (0.01 < k < 0.20), Fair
agreement (0.21 < k < 0.40), Moderate agreement (0.41 < k < 0.60), Substantial agreement
(0.61 < k < 0.80), Almost perfect agreement (0.81 < k < 0.99). Then we discussed the
coding guide along with any inconsistencies in categorization to reach a consensus. We
repeated this process until our categorization substantially matched, indicating that our
coding guide was successfully constructed. We, therefore, repeated this process three times
(i.e., independently classifying 60 commits). Finally, our agreement rate achieved substantial
agreement in two consecutive iterations. Table 5 shows all agreement rates across three
authors for each repetition.

Through this process, we identified two perspectives: operation and target. The oper-
ation indicates what kind of operations are applied, such as adding a new statement or
changing an expression; the target indicates source code elements where the operation is
applied, such as expressions. The details of the coding guide are described below.

We utilized the following coding guide to categorize micro commits in terms of the
operations.

e add: This refers to operations that add a completely new entity.

e replace: This refers to operations that modify an entity.

remove: This refers to operations that completely remove an entity.

multi: This code indicates that multiple operations are applied.
e no: This code indicates that no functional change is applied.
We utilized the following coding guide to categorize micro commits in terms of the targets.

e identifier: This refers to commits that only modify identifiers, such as variable names. If
other entities, such as parentheses, are included, it would not be labelled as an identifier
but would be considered an expression.

e statement: This refers to commits that modify a complete statement, including the
semicolon (;), such as an entire function call with its semicolon. C’s #include prepro-
cessor statement is also regarded as a statement.

e constant: This refers to commits that only modify literals, such as strings or numbers.
If other entities, such as parentheses, are included, they would not be identified as a
constant but would be considered an expression.
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o declaration: This refers to commits that modify declarations, such as variable declara-
tions. However, if the commit can be classified as “identifier” or “constant”, it should
be categorized under these two categories rather than “declaration”.

e control flow: This refers to commits that modify the control flow of execution, such as
adding a new “else” statement.

o cxpression: If a commit does not match other categories and involves modifying a
part of a statement, it would be classified into this category. Additionally, this category
includes transformations from constants to variables or vice versa, as well as conversions
from a variable to a pointer and vice versa.

o multi: This code suggests that operations are performed on multiple targets.
e no: This code indicates that no functional change is applied.

Table 6 shows the summary and examples. This represents different types of activities
performed by micro commits. Let us describe two example commits. Listing 6 shows an
example commit. This commit changes a function call and its argument. More specifically,
the identifiers of the function call and the argument value are replaced so that we classify
this commit as operations=replace, and targets=identifier. The commit of Listing 7 replaces
an expression “++” into “——". Hence, we classify this commit as operations=replace, and
targets=expression.

Because our agreement rates for operation and target based on our coding guide achieved
almost perfect and substantial agreement respectively (Table 5) and we made an internal
consensus of the coding guide, only the first author manually classified the 400 micro
commits, similar to previous studies [13, 14, 42, 43]. All our manual categorizations are
available in our sheet®. The sample size in manual inspection was determined as a statistical
representative with a confidence level of 95% and a confidence interval of 5% for 150,967
micro commits from all studied projects.? The confidence interval, also known as the margin
of error, indicates the potential percentage difference between the characteristics obtained
from the sampled micro commits and those obtained from the population. The minimum
sample size with this confidence level and this confidence interval is 383. For safety, we also
inspect 17 additional micro commits. Therefore, we classify a total of 400 micro commits.

%https://docs.google.com/spreadsheets/d/1M6ifKvufH2JV_ZAYcG6j_eEuSeeEjexWavf2eimHyQk/edit?
usp=sharing
bhttps://wuw.surveysystem.com/sscalc.htm

R3.5 5) The Introduction and the Conclusion Sections need to be better structured. Usually, with
these two sections, a reader should understand what was done in the study and what results were
obtained. In this case, neither section shows the results achieved but only refers to the examples
provided in the discussion.

Response: Thank you for your advice. We have revised the conclusion section. Specifically,
we have highlighted the significant findings that align with the aim of this study. Additionally,
we have emphasized the significant implications.

The introduction section also presents the significant findings that contribute to the aim of
this study. These findings are not examples, but rather important results and implications that
should be emphasized in the introduction section. We have chosen these findings because a
lengthy introduction that includes all results would be challenging to read. However, we agree
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with the comment regarding the importance of understanding the content of the paper through
the introduction section. Therefore, we have revised the introduction to explicitly state that it
highlights significant findings, while detailed results can be found in the results section.

Section 1 Introduction

Specifically, we answer the following research questions (RQs). We have also provided a
summary of the key findings for each RQ. The detailed results are described in Section 4,
Section 5, and Section 6.

Section 10 Conclusion

In this paper, we defined micro commits (add at most five tokens and remove at most five
tokens) and investigated their characteristics. This research is the first to define micro
commits at a fine granularity, specifically at the token level. The key novelty of this study
lies in conducting the analysis at the token level and providing implications for software
engineering research.

Below, we present a summary of the findings from our empirical analysis:

e Our defined micro commits account for between 7.45-17.95% of all studied commits.
Approximately 1 in 3 or 4 these changes (2.39-4.88% of all studied commits) involve
replacing one token with another. Furthermore, RQ3 demonstrates that approximately
90% of One-line commits are micro commits, but only approximately 40-50% of micro
commits are One-line commits. In fact, approximately 30—40% of micro commits include
two or more hunks.

e The results of RQ1 show that micro commits primarily affect name token types (37.7—
44.5%), literal token types (9.2-34.9%), or operator token types (6.6-10.4%). The most
frequently affected tokens vary: the period in Java (2.5% in Camel and 3.9% in Hadoop)
and the 0/1 in C (1.8 and 1.0% in Linux and 1.3 and 0.9% in Zephyr). Furthermore, the
most frequently observed pattern is the modification of a single token. In Java projects,
this modification is typically a single literal token. On the other hand, in C projects,
the modification is usually a single name token.

e The results of RQ2 indicate that approximately 86% of micro commits involve a single
operation on a single target, with the main focus being the replacement of existing
targets. The multi-operation micro commits primarily involve changing the order of
statements (19.3%).

In the discussion, we presented the following four implications of micro commits on future
research based on the findings:

e Based on RQ3, it is observed that almost all One-line commits are micro commits,
whereas only 40-50% of the micro commits are One-line commits. Therefore, token-
based complexity metrics offer supplementary information to the commonly used line-
based complexity metrics. Designing metrics to measure token-based complexity is a
potential area for future research.

e Based on the statistics of micro commits, they account for a non-negligible proportion
of all studied commits (7.45-17.95%). Additionally, according to Section 7.3, these
commits are more likely used to fix bugs. Therefore, supporting the development of
micro commits is an important area for future research.
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e Based on RQ1, micro commits frequently modify a single token, with the token type
often being either a name or a literal. While these micro commits often address bug
fixes, suggesting patches to fix individual name or literal tokens can be challenging with
existing program repair approaches. Therefore, it is necessary to investigate these micro
commits and propose new program repair approaches for future research.

e We define micro commits based on size metrics. However, micro is a general term,
and micro commits can be defined not only by size but also by semantic aspects (e. g.,
tangled commits or not). Exploring semantic-based micro commits is a potential area
for future research.

R3.6 6) The Threats to Validity Section needs to be improved. The paper does not discuss mitigation
strategies applied during the empirical study. A section that acknowledges the potential limitations
of a study but does not provide details on strategies adopted to mitigate those threats or ”plans to
do so in future studies” does not make clear to the reader the degree of realism or generalizability of
the conclusions drawn.

Response: Thank you for your advice. We have revised the threats to validity section. Specif-
ically, we have updated some threats for which the mitigation strategies or future plans are not
sufficient. Furthermore, in this stage of major revisions, we have added new threats to this
section. For these new threats, we have also included mitigation strategies or future plans.

Section 8.1 External Validity

We conducted our empirical study on four OSS projects. To mitigate the threats to gener-
alizability, we selected OSS projects that are active, popular, and well-known OSS projects
written in two popular programming languages. However, even if we use these OSS projects,
our results may not be generalized to all projects. Indeed, these are system software. To rem-
edy this challenge, replication studies in research or practical scenarios (e.g., actual projects
in the industry) are necessary. Hence, we provide a replication package®. Also, the key tool
cregit is an OSS tool; thus, researchers and practitioners easily convert their Git repositories
into token-based ones.

%https://github.com/MKmknd/EMSE2024-micro-commits-replication

Section 8.2 Construct Validity

Hence, we believe our definition can be acceptable. However, our definition may not be the
best; thus, future studies are necessary to find a better definition than our first one. For
example, future studies can investigate different thresholds for the number of tokens. Also,
studying different thresholds for added and deleted tokens (e. g., 3 added tokens and 5 deleted
tokens) can be beneficial. Additionally, they can consider changes to source code comments.
This definition would encompass not only maintenance activities related to code logic, but
also various other maintenance activities.

There are several factors that can influence commits. For instance, the way developers write
commits can vary depending on the developer and the project. To reduce these influences,
we chose and analyzed four projects that involve a large number of developers. As a result,
we expect the impact of such influences has been minimized.
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Section 8.3 Internal Validity

To remove comment lines from source code files, we use regular expressions. This process is
not perfect and may overlook comment lines. However, our manual analysis in RQ2 observes
that our regular expressions usually work well because we do not find false-positive micro
commits. Therefore, we can reduce the risks associated with using regular expressions.

Also, another threat exists in our manual analysis (RQ2). In this analysis, we per-
formed manual labeling to micro commits according to our coding guide. Because this
process is performed manually by the first author, the result may have false-positive and
false-negative results. Therefore, we have made all labels publicly available to facilitate the
validation of future studies. Also, to construct the coding guide, the first three authors
independently inspected 20 micro commits three times. This process may also include errors.
However, our agreement rate achieved substantial agreement in two consecutive iterations.
Hence, we believe the coding guide is reliable. An alternative solution is to use an automatic
classification approach rather than manual analysis. We developed a heuristic-based method
to classify micro commits into their corresponding targets automatically. However, this
method does not yield perfect results. To facilitate replication of this approach, we have
included it in our replication package. Finally, we randomly sampled 400 micro commits
from all projects. Therefore, our sampled micro commits may be biased by the size of the
original projects. To mitigate this risk, we manually inspected additional micro commits
from each project. We do not observe significant differences across the projects.

In the discussion, we use keywords to identify the commits related to the corrective
maintenance activity as defined by Swanson [40]. While the keyword identification is widely
used to categorize commits [18,22,27,28,35,37], it is not perfect [3,25]. To mitigate this
threat, we manually review identified commits and estimate their accuracy. Also, there are
other sets of maintenance activities that can be used to classify commits, such as the IEEE
standard [1]. While we believe the maintenance activities defined by Swanson are acceptable,
future studies are necessary to use other sets. Also, if commit messages do not contain any
keywords, we exclude those commits from the analysis. However, it is possible that these
commits are related to maintenance activities. Using more precise methods would enhance
the validity of this analysis.

The tool “cregit” used to tokenize the source code files utilizes srcML. Therefore, our
analysis can only be applied to specific versions of Java (Java SE8 Edition) and C (up
to C11) that are supported by srcML. We can find the supported versions on the official
homepage®. To extend our analysis to different versions of Java and C, it is necessary to
update srcML and apply our analysis to those versions.

%https://www.srcml.org/#home
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These are definitely maintenance activities, but we deduce that researchers and prac-
titioners are interested in supporting the latter change. To address this limitation, in
this paper, we define micro commits, a type of small change based on changed tokens.
Our goal is to quantify small changes using changed tokens. Changed tokens allow us
to identify small changes more precisely. In fact, this token-level definition can distin-
guish the above example. We investigate defined micro commits in four OSS projects
and understand their characteristics as the first empirical study on token-based micro
commits. We find that micro commits mainly replace a single name or literal token,
and micro commits are more likely used to fix bugs. Additionally, we propose the
use of token-based information to support software engineering approaches in which
very small changes significantly affect their effectiveness.

Keywords Empirical Study; Micro Commits; Tokens; Mining Software Repositories

1 Introduction

Commits changing a few lines of code are common in software development. Pu-
rushothaman et al. defined small commits as those modifying less than 10 lines in
their study [37]. They found that 50% of changes in the examined systems were
small commits. They also reported that 10% of all commits were one-line commits
(modified at most one line). In a recent study, Alali et al. reported that in the GCC
project, 19.9% of commits were extra-small, adding at most 5 lines of code [2]. Our
research found that in the projects we studied, between 6 and 8% of all commits were
one-line commits (see Section 2).

Improving code quality is an ultimate goal for software engineering researchers,
and several quality assurance approaches have been widely studied so far, such as au-
tomated program repair (APR), defect prediction, and fault localization. A good un-
derstanding of the characteristics of very small changes can support such approaches,
as it is likely that such changes are addressing deficiencies in the system [37]; thus,
understanding the characteristics of creating small changes can help understand the
types of errors that other changes introduce and potentially help with program repair.
Eventually, the information can be used to enhance quality assurance approaches for
improving code quality.

While prior studies [2, 18,37] use churn (number of lines added and removed) to
identify small changes (e. g., small commits and one-line commits [37], or extra-small
commits [2]), it has one significant limitation: they consider the line to be the finest-
grained entity of changed source code. More specifically, such a definition overlooks
the details of what has changed in a line [11,34,38]. For instance, when several lines
have a small change (such as an identifier being renamed in a few places), these
modifications might appear as one line added and one line removed for each change,
rather than a single identifier change.

Another problem is that splitting or joining a line of code that is being modified
can result in noise. For example, splitting a line into two would be reflected as a
change to multiple lines in version control systems (e. g., Git), and this type of change
can add noise to the analysis of the history of the development process.



O©CoO~NOOOITA~AWNPE

An Empirical Study of Token-based Micro Commits 3

These limitations sometimes cause researchers to fail in accurately quantifying
small changes. For example, Listing 2 shows a commit in the Linux repository that
changes a few lines (i. e., three added and two deleted lines). While this commit cor-
responds with a multiple-line change and may not correspond to a one-line commit, it
only adds a token “static”. This is similar to Listing 1 corresponding with a one-line
commit that only adds a token “static”. Studying the actual changed tokens instead
of the lines can provide a better understanding of the characteristics of the small
changes.

In this paper, we define a new class of commits: micro commits. Micro com-
mits are commits that add at most five tokens and remove at most five tokens
of source code. We aim to quantify small changes using the token-level definition
(i.e., micro commits) rather than relying on the line-level definition (i.e., one-line
commits). This token-level definition allows us to identify small changes more accu-
rately, and use token information to characterize them. We conducted an empirical
study on four large, mature open-source projects to: a) demonstrate that micro com-
mits are common, accounting for between 7.45 and 17.95% of all studied commits in
the studied projects, b) understand their qualitative and quantitative characteristics,
and c¢) show our definition of micro commits (a threshold of 5 added and removed
tokens) includes approximately 90% of all one-line commits, yet only approximately
40-50% of micro commits are one-line commits.

Specifically, we answer the following research questions (RQs). We have also
provided a summary of the key findings for each RQ. The detailed results are de-
scribed in Section 4, Section 5, and Section 6.

RQI1: What are the characteristics of micro commits?
Motivation: This research question aims to explain their quantitative character-
istics: how frequent they are, and the types of tokens they delete and add.
Results: Most micro commits replace a single token with one of the same types,
and this token type is mostly name (e. g., identifier names) or literal (e. g., num-
bers). Java and C differ on the most frequent tokens in micro commits.

RQ2: What are the types of changes that micro commits perform?
Motivation: We intend to understand the purpose of micro commits (e. g., chang-
ing control flow, replacing the name of a variable, and modifying an expression)
and whether a micro commit performs one or more activities. Specifically, we
manually inspected the changes applied to the source code to understand the
purpose behind the micro commit and the occurrence of activities.
Results: More than 85% of micro commits apply a single operation to a single
target. The four most common types of these micro commits are replacing an
existing expression, identifier, constant, or declaration. Multi-operation micro
commits usually change the order of statements.

RQ3: How do micro commits compare to one-line commits?
Motivation: This research question aims to explore the extent of differences
between one-line commits and micro commits. Extracting micro commits re-
quires syntactic parsing of the source code, which is more costly than extracting
one-line commits. If they are identical, micro commits may be redundant.
Results: Most one-line commits are micro commits (approximately 89-93%).
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Table 1: The proportion of one-line commits in the studied projects

Project  #total commits  #studied commits  #one-line commits  Proportion(%)

Camel 60,911 38,458 2,405 6.25
Hadoop 69,997 53,796 2,302 4.28
Linux 1,048,688 802,726 65,858 8.20
Zephyr 40,883 25,542 1,979 7.75

In contrast, only about 40-50% of micro commits are one-line commits. In-
deed, 30-40% of micro commits include two or more hunks (one-line commits
only have one hunk).

The main contributions of this paper are as follows:

— We propose the concept of micro commits as commits that add at most five tokens
and remove at most five tokens, and demonstrate that these types of changes are
common.

— We empirically investigate micro commits and understand their quantitative and
qualitative characteristics. We especially shed light on the differences in micro
commits between programing languages through our manual inspection.

— We propose the use of token-level information to support software engineering
approaches that use extremely small changes (e. g., programing repair).

— We provide the replication package of this study that contains a set of micro
commits that have been manually labeled according to their purpose.

The organization of our paper is as follows: Section 2 introduces motivating ex-
amples. Section 3 explains our studied dataset. Section 4, Section 5, and Section 6
present the experiments and results based on our RQs. Section 7 proposes the use
of token-level information. Section 8 describes the threats to the validity of our case
study. Section 9 introduces related work. Section 10 presents the conclusion.

2 Motivating Example

In this section, we provide an example of a one-line commit. Also, we demonstrate
that they account for a non-negligible proportion of commits. Finally, we highlight
the drawback of using lines of code to study extremely small changes, and we discuss
how micro commits can address this drawback.

We first show the frequency of one-line commits in four OSS projects used in this
study and confirm that it is consistent with [37]. As in [37], we use the diffs gener-
ated by Git to identify one-line commits. Table 1 shows the proportion of one-line
commits. The proportion was computed by using the “#studied commits” column. It
only shows the commits that have made changes to the source code. Our analysis is
conducted based on these commits. The detailed procedure for extracting commits is
explained in Section 3.2 and Section 3.3!. We observe 4.28-8.20% of one-line com-

! Because of the differences in source code management tools, one-line changes in the prior study [37]
and our one-line commits are slightly different.
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Listing 1: An example micro commit in Linux
retrieved from: 092734b4bb227faddf241b116af14357645d963¢

—struct cards card_list[] __devinitdata = {
+static struct cards card_list[] __devinitdata = {

Listing 2: An example micro commit with multiple changed lines
in Linux retrieved from: Oce6e62bd6591777bd92873e2db93fdbc5228122

int path_lookup.create (const char sname, unsigned int lookup_flags ,

struct nameidata =nd, int open_flags, int create_-mode)
+static int path_lookup_create(const char sname, unsigned int lookup_flags ,
" struct nameidata #nd, int open_flags
+ int create_.mode)

mits. Specifically, the proportion is more than 7% in the Linux and Zephyr projects.
Hence, one-line commits account for a non-negligible proportion of all commits.

Listing 1 shows an example of a one-line commit, also known as a micro commit.
This commit adds a static modifier into a struct definition, and this is not adding a
functionality but fixing the code.

However, some extremely small changes are often obscured by splitting or join-
ing lines of code, making them appear more complex than they are. For example,
Listing 2 shows an example of a micro commit that is not a one-line commit. This
commit semantically adds a static modifier only; however, this commit includes mul-
tiple changed lines because of changing the format of the definition of the variable.
Listings 1 and 2 are semantically identical, but one-line commits cannot include List-
ing 2 because it modifies multiple lines. Because we used Git, we deduced that the diff
algorithms could address this limitation. Git has four algorithms to compute diffs, and
they exhibit different results [36]. Hence, we investigated four algorithms: patience,
minimal, histogram, and myers described in the Git manual pagez. However, all algo-
rithms generate the same diff. Hence, one-line commits may overlook such commits.
If these diffs are analyzed with finer-grained source code entities (e. g., AST), it is
easy to realize these commits have the same intention (i. e. perform the same change).
However, AST analysis is expensive, particularly in repositories such as Linux that
has more than one million commits and more than 60k source code files.

Therefore, to address this limitation, we define micro commits based on tokens.
Because tokens are the semantically finest-grained source code entity, micro commits
based on tokens can cover ones overlooked by one-line commits. Indeed, Listings 1
and 2 change one token only; thus, they both perform the same change in two different
lines of code.

2 https://git-scm.com/docs/git-diff
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3 Dataset Preparation
3.1 Studied Datasets

To answer our RQs, we conducted an empirical study on four notable large OSS
projects written in Java and C: Camel®, Hadoop*, Linux>, and Zephyr®. The Camel
project is an integration framework that provides a routing engine to integrate sys-
tems. The Hadoop project is a distributed computing framework. The Linux project
(a.k.a. the Linux Kernel) is one of the most popular open-source operating system
kernels. The Zephyr project is a real-time operating system supporting several ar-
chitectures. Hence, these include four software systems: an integration framework, a
distributed computing framework, an operating system kernel, and an operating sys-
tem. We selected these four projects because of three reasons: (1) they are written in
popular programming languages (i.e., Java and C), (2) they are well-known popular
OSS projects, and (3) they have a long development history.

3.2 One-line Commits and Micro Commits

Our research aims to accurately quantify small changes using a token-level definition
(i. e., micro commits). Additionally, to highlight the differences in accuracy between
token-level and line-level definitions, we should compare micro commits with one-
line commits. Therefore, we detail the process of extracting one-line commits and
micro commits from software development histories below.

Git is language agnostic. The changes performed in a commit are displayed as
a diff, comparing the code before and after the commit. These changes are grouped
into hunks. A hunk is a set of contiguous lines that are added/removed/modified to-
gether, along with metadata that indicates its context—where the change occurred.
Each hunk can include context lines (i. e., lines that were not modified but are used
to help interpret the change). The default number of context lines is three, but for the
purpose of this paper, we have set it to zero; thus, we ignore context lines in the hunk.
Git’s diff does not present lines that have been modified. Instead, it simply records
lines that have been removed (prefixed with “-””) and lines that have been added (pre-
fixed with “+”); thus, a modified line is represented by a removed line and its cor-
responding added line. If several continuous lines are modified simulataneously, Git
presents first all removed lines, and thereafter the added lines.

We extracted one-line commits based on the hunks provided by Git. Specifically,
one-line commits correspond to commits that have a diff with exactly one removed
and one added line in the same hunk. Listing 1 is an example of such a commit.

To be able to perform token-level analysis, we processed the repository history
using cregit [11]. This uses srcML [7] to generate an equivalent commit history
where the differences are displayed as changes to sequences of tokens instead of

3 https://camel.apache.org/

4 https://hadoop.apache.org/

5 https://www.linux.org/

6 https://www.zephyrproject.org/
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Listing 3: An example commit in a line repository

-int flg = 10;
+static int flag = 10;

Listing 4: An example commit in a token repository

+specifier|static
name | int
-name | flg
+name | flag

lines (see [11] for a detailed description). Effectively, we track tokens removed and/or
added during a commit and can easily identify commits that have added and/or re-
moved a certain number of tokens. Similarly to the way we can identify modified
lines, we can identify modified tokens if one token is added and another is removed
in the same hunk. For example, the commit from Listing 3 is shown in its equivalent
token version in Listing 4.

We extracted micro commits based on the hunks provided by Git repositories
processed by cregit. Micro commits refer to commits that include a maximum of
five added tokens and five deleted tokens across all hunks. This number was chosen
for the following reasons.

— In the languages being studied (C and Java), it is highly unlikely to add a new
statement with only five tokens, suggesting that such commits carry out minor
modifications. For example, within five tokens, developers can only add a func-
tion call with one parameter and an ending semicolon: name (parm) ; includes
two identifiers, two parentheses, and one semicolon.

— In the systems we studied, between 7.45 and 17.95% of all studied commits add
at most 5 tokens and remove at most 5 tokens.

This number serves as a parameter for micro commits. For example, we use the same
number for both added and deleted tokens while different numbers could be used. Its
potential threats are discussed in Section 8.2.

Source code comments are important for source code and making changes to
comments are also maintenance activities. However, in this paper, we exclude com-
ments and execute our analysis. The reason is to prioritize maintenance activities for
code logic. As mentioned in Section 1, our intention is to support various software
engineering approaches (e. g., defect prediction), which typically prioritize code logic
over comments. Indeed, defect prediction studies typically do not take into account
comment issues when identifying target defects [19, 24,33]. While we acknowledge
the importance of changes made to comments for maintenance purposes, this per-
spective is beyond the scope of our paper.
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3.3 Data Collection

We preprocessed the commits in the studied repositories and constructed a database
with its diffs (both line-based and token-based) using the following steps. From this
database, we extracted one-line commits and micro commits.

Step 1: For each commit, extract the line-based diff of its modified source code ig-
noring any changes to non-source code:

— Remove changes to non-source files’.

— Remove changes to comments and white space using regular expressions
(e.g., “/].*).

— Remove commits that do not have any changes after the aforementioned
processes.

Step 2: Using cregit, for each commit, extract the token-based diff of its modified
source code ignoring any changes to non-source code:

— Remove changes to comments.

— For each source code token, keep its type and its value. cregit tokenizes
the source code using srcML8. Thus, the types of tokens are those cre-
ated by srcML. For example, int 1i; will be converted to the sequence
of type|value: name | int, name|i, decl_stml |;

Step 3: Create a database in SQLite with these commits (line and token-based) in-
cluding:

Identify and store each hunk and its metadata (such as the file where it

occurred and the number of lines/tokens added and removed).

Added and removed lines or tokens in each hunk

Commit messages

Metadata (e. g., index)

In summary, we record for each line-based diff: its commit id and its set of hunks
(for each hunk, its location, number of lines added, number of lines removed, and its
contents as a sequence of added/removed lines). We record the same for token-based
diffs (replacing lines with tokens—including their types). Note that when obtaining
diffs with Git, we use the myers algorithm, which is the default algorithm. Also, we
record commit messages. More details can be found in our replication package (see
Section 8.1)

Table 2 displays the number of extracted micro commits and one-line commits.
We used these micro commits and one-line commits in this study. We found that
micro commits can cover approximately 90% of one-line commits. In contract, only
approximately 40% (for Linux and Zephyr) or 50% (for Camel and Hadoop) of micro
commits can be covered by one-line commits.

As shown in Table 3, between 7.45% and 17.95% of all studied commits are micro
commits, and approximately 1 in 3 or 4 micro commits are one-token commits in
all projects. Hence, micro commits constitute a non-negligible portion of all studied

7 We extract files with the extension of “java” in Camel and Hadoop and with the extension of “c” in
Linux and Zephyr.

8 https://www.srcml.org/
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Table 2: The number and proportion of the intersection between one-line commits
and micro commits in each commit type (i.e., one-line or micro). The column of
“#intersects” indicates the intersection; the columns of “#One-line” and “#Micro”
indicate the number of one-line commits and micro commits; the column of “%One-
line” and “%Micro” indicate the proportion of intersection in each commit type (i. e.,
one-line commits and micro commits).

Project | #intersects | #One-line  #Micro | %One-line  %Micro

Camel 2,131 2,405 4,230 88.6 50.4
Hadoop 2,069 2,302 4,010 89.9 51.6
Linux 59,836 65,858 138,142 90.9 433
Zephyr 1,849 1,979 4,585 93.4 40.3

Table 3: Number of micro commits and one-token commits and their proportion with
respect to all source-code commits.

Project ‘ Micro commits  Prop (%) ‘ One-token commits  Prop (%)

Camel 4,230 11.00 1,319 3.43
Hadoop 4,010 7.45 1,288 2.39
Linux 138,142 17.21 32,973 4.11
Zephyr 4,585 17.95 1,247 4.88

commits. As expected, most of these commits modify a few lines: between 52.80%
and 58.70% modify add or remove at most one line, and between 59.56% and 67.48%
add-or-remove two lines.

4 RQ1: What are the characteristics of micro commits?
4.1 Approach

The goal of RQL is to understand the characteristics of micro commits. More specif-
ically, we investigated the modified tokens.

In this RQ, we investigated micro commits from two perspectives: (1) most fre-
quently modified tokens and token types by micro commits and (2) modification pat-
terns for each micro commit. We first count added and removed tokens and their token
types from all micro commits and provide researchers with tokens and token types
frequently modified by micro commits. Second, we investigate the set of added and
removed tokens for every micro commit and show the common modification patterns
adopted by a single micro commit. Note that we used the set rather than the sequence
of tokens. Hence, we characterized modification patterns based on modified tokens
in micro commits rather than the sequences of modified tokens.

We use srcML classification for the types of tokens. For example, tokens of type
names correspond to names of types and variables (including language predefined
ones); literals are constant values; operators are operators to perform mathematical
operations; argument_list corresponds to either () (empty parameter list), or each of
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Fig. 1: Proportions of changed token types (> 5%)

the parenthesis around parameters or the comma that separates them; expr_stmt is the
semicolon at the end of the statement; block is a { or }; file is a filename; specifier is
a C storage specifier (e. g., static); directive a C preprocessor directive; and anno-
tation corresponds to Java annotations. The right-hand side of C macro definitions is
not further parsed by srcML and is considered a single token of type value (i. e., the
value the macro expands to).

4.2 Results

(1) Most frequently modified tokens and token types by micro commits

The top-3 most frequently touched token types in micro commits are gener-
ally the name, literal, and operator token types. Figure 1 shows the frequently
added/removed token types by micro commits that account for more than 5% in all
projects. We found three token types, which we refer to as the top-3 most frequently
touched token types. The token type most frequently included in micro commits is
the name token (e.g., the name of a variable or function), the second one is the lit-
eral token (e.g., 123, ‘a’, “test”), and the third one is the operator token (such as +).
Also, the proportion of the literal token is significantly different between Java and
C. Specifically, while the proportion of name tokens is more than three times larger
than that of literal tokens in the projects written in C, the difference is less than two
times in the projects written in Java. While the proportion of the operator tokens is
relatively small, these are also included in the top-3 most frequently touched token
types. Hence, micro commits usually modify name, literal, and operator tokens in
most cases, but their proportions may differ between programming languages and
their token types.

While the tokens corresponding to the top-3 token types differ between Java
and C, we observe similar tokens within the same language. Figure 2 shows the
top-10 most frequently occurring tokens for the top-3 token types. In Java, boolean
literals (e. g., true/false, null), and numeric literals were the most commonly observed,
while in C, they were the tokens for 0/1, parentheses and names for types (e. g., int,
u32_t, and u8_t).
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Table 4: Top-5 added and removed token types applied to source code by micro com-

mits
Project Add Remove n Pro
literal literal 833 1971
Camel  Dame name 435 1031
(Java) literal,literal literal,literal 312 741
name,name name,name 269 6.41
name,name,name  name,name,name 125 3.0l
literal literal 761 19.00
Hadoo name name 408 1021
Gav) P literal literal literal, literal 266 66l
name,name name,name 229 571
specifier - 126 3.1l
name name 13693 991
Lingx  literal literal 7350 5.3l
© value value 6835 491
name,name name,name 6141 441
specifier - 4171 3.0l
name name 487 1061
Zephyr value value 352 771
Py name,name name,name 260 5.71
©
name,name,name  name,name,name 170 3.71
literal literal 169 371
Listing 5: An example single token modification in a token repository
-name | flg

+name | flag

In conclusion, the types of tokens most frequently changed are the same in both
programming languages, but the actual tokens are different.

(2) Modification patterns of micro commits
The single token modification is the most frequently observed pattern in the
studied micro commits. Table 4 shows the top-5 most frequently appearing sets
of removed and added tokens in micro commits. Each row indicates a set of token
types modified by a single micro commit and their frequency and proportion (i. e., #
of micro commits). The “n” column indicates the frequency, while “Pro” indicates
the proportion. In this paper, we use the same column name in the other tables. In
all projects, the most frequently observed micro commits consist of an added and
removed token. For example, in the Linux project, micro commits adding and remov-
ing a name token are the most frequently observed. This type of single addition and
removal usually represents a single token being replaced (e. g., Listing 5) and is the
most frequently observed type of micro commit in all projects.

Similar to the results from (1), the modified tokens differ between Java and C.
Modifications of literals are the most frequent pattern in Java, accounting for approx-
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imately 20% of all micro commits. Modifications of names are the most common
pattern in C, accounting for about 10% of all micro commits.

Summary of RQ1

Most micro commits modify a single token, and this token type is either a
name, a literal, or an operator. The distribution of micro commits of each of
these types is different in C and Java. The operators being replaced are also
significantly different across languages.

5 RQ2: What are the types of changes that micro commits perform?
5.1 Approach

This RQ aims to understand the details of the activities performed by micro com-
mits. Specifically, we manually inspect a large set of micro commits to understand
what types of change were performed from a source code perspective, considering
removed and/or added tokens. Such an understanding gives us insight into whether
understanding micro commits can support several approaches in software engineer-
ing (see the details in Section 7).

Our manual inspection consisted of two phases: (1) constructing a coding guide
and (2) manual classification. Constructing a coding guide for manual classifica-
tion/annotation is a common practice in the field of mining software repositories [6,
13,14,42,43,46]. To create the coding guide, we referred to previous studies [6, 13,
14,42,43,46] and followed the process detailed below.

The initial coding guide was first discussed by the first and second authors. Since
this is the first study to classify micro commits, we examined both micro commits
and other types of commits to develop the initial coding guide. After constructing the
initial coding guide, we aimed to reach a consensus among the first three authors for
this guide and refine the guide. Specifically, we independently annotated 20 micro
commits from a subset of all micro commits. This subset consists of micro commits
that only change less than or equal to five tokens in main files (.c or .java files) in the
Linux, Hadoop, and Zephyr projects to investigate a single operation commit for re-
fining the coding guide. We computed the agreement rate for these 20 micro commits
using Fleiss’ Kappa [9] that is used to demonstrate inter-rater agreement when there
are more than two raters. It is also frequently applied in the field of mining software
repositories [6, 13]. The Kappa coefficient is commonly interpreted using the follow-
ing scale [41]: Slight agreement (0.01 < k < 0.20), Fair agreement (0.21 < k < 0.40),
Moderate agreement (0.41 < k < 0.60), Substantial agreement (0.61 < k < 0.80), Al-
most perfect agreement (0.81 < k < 0.99). Then we discussed the coding guide along
with any inconsistencies in categorization to reach a consensus. We repeated this pro-
cess until our categorization substantially matched, indicating that our coding guide
was successfully constructed. We, therefore, repeated this process three times (i.e.,
independently classifying 60 commits). Finally, our agreement rate achieved substan-
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Table 5: Fleiss’ Kappa scores for each repetition

Criteria First Time  Second Time  Third Time
Operations 0.686 0.669 0.832
Targets 0.425 0.671 0.754

tial agreement in two consecutive iterations. Table 5 shows all agreement rates across
three authors for each repetition.

Through this process, we identified two perspectives: operation and target. The

operation indicates what kind of operations are applied, such as adding a new state-
ment or changing an expression; the target indicates source code entities where the
operation is applied, such as expressions. The details of the coding guide are de-
scribed below.

We utilized the following coding guide to categorize micro commits in terms of

the operations.

add: This refers to operations that add a completely new entity.
replace: This refers to operations that modify an entity.

remove: This refers to operations that completely remove an entity.
multi: This code indicates that multiple operations are applied.

no: This code indicates that no functional change is applied.

We utilized the following coding guide to categorize micro commits in terms of

the targets.

identifier: This refers to commits that only modify identifiers, such as variable
names. If other entities, such as parentheses, are included, it would not be labelled
as an identifier but would be considered an expression.

statement: This refers to commits that modify a complete statement, including
the semicolon (;), such as an entire function call with its semicolon. C’s #include
preprocessor statement is also regarded as a statement.

constant: This refers to commits that only modify literals, such as strings or num-
bers. If other entities, such as parentheses, are included, they would not be iden-
tified as a constant but would be considered an expression.

declaration: This refers to commits that modify declarations, such as variable
declarations. However, if the commit can be classified as “identifier” or “con-
stant”, it should be categorized under these two categories rather than “declara-
tion”.

control flow: This refers to commits that modify the control flow of execution,
such as adding a new “else” statement.

expression: If a commit does not match other categories and involves modifying
a part of a statement, it would be classified into this category. Additionally, this
category includes transformations from constants to variables or vice versa, as
well as conversions from a variable to a pointer and vice versa.

multi: This code suggests that operations are performed on multiple targets.

no: This code indicates that no functional change is applied.
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Table 6: The description of each candidate in our manual inspection

Criteria Candidate Description Example Commits and Their Diffs in Linux
add Add a new entity 122503683169b21d9cdb90380a20caad7ba994b6
Diff: Listing 11
replace Replace an exist- b7a90e8043e7ab1922126elclc5c004b470f9e2a
ing entity Diff: Listing 12

Remove a com-
pletely existing

Operations ~ remove

b95b4eled92a203f4bdfc55£53d6e9c2773e3bbd
Diff: Listing 13

entity

multi Operations  on  8dfOcfe6c6c4a9355989baa8de9f166b2bc51£76
multiple targets Diff: Listing 8

no Non-functional a092532483e3200a53c8b1170b3988cc668cO7ef
modification Diff: Listing 14

declaration Change in a type  36£062042b0fd9f8e41b97a472£52139886ca26f
signature Diff: Listing 15

constant A constant (e.g., 1db76c¢c14d215c8b26024dd532de3dcaf66ea30£f7
literal) Diff: Listing 16

identifier An identifier =~ 70e8b40176c75d3544024e7c934720b11a8allbf
(e.g., function Diff: Listing 17
calls)

control flow  Modifies the con-  415a1975923722£729211a9efca550c60c519bf3

Targets . L.

trol flow Diff: Listing 18

statement A the majority of b95b4eled92a203f4bdfc55£53d6e9c2773e3b6d
a statement (de-  Diff: Listing 13
limited by semi-
colon)

expression A part of a state-  40cc394belaal8848b8757e03bd8ed23281£f572e
ment and not  Diff: Listing 19
classified into
other categories

multi Multiple targets 8dfOcfe6c6c4a9355989baa8de9f166b2bc51£76
are altered Diff: Listing 8

no Non-functional a092532483e3200a53c8b1170b3988cc668c07ef

modification

Diff: Listing 14

Table 6 shows the summary and examples. This represents different types of activ-
ities performed by micro commits. Let us describe two example commits. Listing 6
shows an example commit. This commit changes a function call and its argument.
More specifically, the identifiers of the function call and the argument value are re-
placed so that we classify this commit as operations=replace, and targets=identifier.
The commit of Listing 7 replaces an expression “++" into “——". Hence, we classify
this commit as operations=replace, and targets=expression.

Because our agreement rates for operation and target based on our coding guide
achieved almost perfect and substantial agreement respectively (Table 5) and we
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Listing 6: Example “replace identifier” commit diff retrieved from
£72e6c3el7be568138d8e4855ac2734d251a6913 in Linux.

- strlcpy (drvinfo->bus_info , pci-name(mdev—>pdev),
+ strlcpy (drvinfo—>bus_info , dev_name(mdev->device),

Listing 7: Example “replace expression” commit diff retrieved from
8b58£261113c442717b9d205ab187e51c3823597 in Linux.

- dgm->total_queue_count++;
+ dgm->total_queue_count --;

Table 7: Proportion of micro commits having multi activities

Single Multi
85.75%(343)  14.25%(57)

made an internal consensus of the coding guide, only the first author manually clas-
sified the 400 micro commits, similar to previous studies [13, 14,42,43]. All manual
categorizations are available in our sheet’. The sample size in manual inspection was
determined as a statistical representative with a confidence level of 95% and a confi-
dence interval of 5% for 150,967 micro commits from all studied projects.'? The con-
fidence interval, also known as the margin of error, indicates the potential percentage
difference between the characteristics obtained from the sampled micro commits and
those obtained from the population. The minimum sample size with this confidence
level and this confidence interval is 383. For safety, we also inspect 17 additional
micro commits. Therefore, we classify a total of 400 micro commits.

5.2 Results

Micro commits usually perform a single operation (85.75%). Micro commits
with multiple operations account for the remaining 14.25%, and they usually
correspond to two operations. Table 7 lists the proportion of micro commits classi-
fied into “multi” in the operation and target. Approximately 86% of micro commits
are classified into single operations (i. e., non “multi”’); thus, micro commits usually
modify an extremely small section. We refer to such commits as single-operation
micro commits (e.g., Listing 5 is a replace identifier). We surprisingly observe that
approximately 14% are classified into multi-operation micro commits (i.e., “multi”).
Hence, multi-operation micro commits account for a non-negligible portion of the

9 https://docs.google.com/spreadsheets/d/1M6ifKvufH2IV_ZAYcG6j_
eEuSeeEjexWavf2eimHyQk/edit?usp=sharing

10 https://www.surveysystem.com/sscalc.htm
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Table 8: The frequency of the combination of operations and targets in single-
operation micro commits

Operation Target n Pro

replace expression 85 2438
replace identifier 69 2010

replace constant 59 1721
replace declaration 57 1661
add statement 22 6.41
replace control flow 12 351
no no 8 231
remove statement 8 231
add expression 7 2.0l
remove declaration 7 2.0l
add control flow 4 1.21
add identifier 2 06l
remove control flow 1 0.3l
remove expression 1 0.31
remove identifier 1 0.31

Listing 8: Example “multi” micro commit diffs retrieved from
8df0cfe6c6c4a9355989baa8de9f166b2bc51£76 in Linux.

+ % — EXTCON_PROP_USB_SS (SuperSpeed)

+ * @type: integer (intval)

+ % @value: 0 (USB/USB2) or 1 (USB3)
+ % @default: 0 (USB/USB2)

+

+#define EXTCON_PROP_USB_SS 2

—#define EXTCON_PROP_.USB-MAX 1
+#define EXTCON_PROP_.USB.MAX

[3S]

micro commits. Listing 8 shows an example of a multi-operation micro commit. This
commit has an add declaration and a replace constant. We disregard the first hunk
because it only contains comment lines. It should be noted that such multi-operation
micro commits usually have two operations only; we observed that only two commits
contain more than two operations. Thus, based on our manual inspection, it is rare to
find micro commits containing more than two operations.

Approximately 82.2% of single-operation micro commits replace existing to-
kens. Table 8 summarizes the frequency of the combination of operations and targets
in single-operation micro commits. The top-4 combinations include the “replace”
operation, accounting for approximately 78.7% (270/343). Also, all the “replace” op-
eration commits account for 82.2% (282/343). This result suggests that many single-
operation micro commits modify the existing source code, but do not add or remove
the source code.
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Table 9: The frequency of the combination of operations and targets in multi-
operation micro commits

Operation Target n Pro
replace identifier 22 1911
replace expression 19 1650
add statement 16 1391
remove statement 16 1391
replace constant 15 1301
add expression 7 6.11
replace declaration 5 431
remove expression 4 351
add declaration 3 26l
replace control flow 3 2.6l
add control flow 2 1.71
remove declaration 2 171
remove control flow 1 0.9

Listing 9: Example “multi” commit diff retrieved from
a7lbfb4abaabfe5e6£145883020153103c7fdfba in Linux.

-error_free_data:
- free(data);
error_free_buffer_access:
free(buffer_access);
+error_free_data:
+ free(data);

Multi-operation micro commits more frequently add-and-remove statements
rather than single-operation ones. Table 9 summarizes the frequency of the com-
bination of operations and targets in multi-operation micro commits, and Table 10
summarizes the frequency of the pair of their combination for each commit. The
main difference from single-operation micro commits is that the “add statement” and
the “remove statement” are top-3 (Table 9). The reason is that multi-operation micro
commits that add and remove statements appear most frequently (Table 10). This type
of commit is used to move the statements, and therefore, change the order of execu-
tion and potentially the control flow of the program. For example, Listing 9 shows
an example micro commit. This commit adds and removes a statement and changes
the order of execution of the free statement to fix a bug related to freeing data. This
swapping activity is frequently observed in multi-operation micro commits.
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Table 10: The frequency of the pair of the combination of operations and targets in
multi-operation micro commits

Ope#l Tar#1 Ope#2 Tar#2 Ope#3 Tar#3 n Pro
remove  statement add statement - - 11 1930
replace  identifier replace  expression - - 6 105l
replace  identifier replace  constant - - 6 105l
add expression replace  identifier - - 4 7.0l
replace  expression replace  constant - - 4 7.0l
remove  statement replace  expression - - 3 531
add expression replace  constant - - 2 351
add control flow  replace  expression - - 2 3.5l
replace  identifier replace  declaration - - 2 3.5l
replace  expression replace  control flow - - 2 351
add declaration remove  declaration - - 2 351
add statement remove  expression replace  identifier 2 351
replace  constant remove  expression - - 1 1.8l
add statement replace  identifier - - 1 1.8l
remove  statement replace  control flow - - 1 1.81
add statement replace  declaration - - 1 1.81
replace  declaration replace  constant - - 1 1.8l
add statement replace  expression - - 1 1.8l
add statement remove  control flow - - 1 1.8l
add declaration replace  constant - - 1 1.8l
remove  statement replace  identifier - - 1 1.8l
add expression remove  expression - - 1 1.8l
replace  declaration replace  expression - - 1 1.81

Summary of RQ2

More than 85% of micro commits apply a single operation to a single tar-
get, and they mainly replace existing target. Multi-operation micro commits
frequently change the order of statements.

6 RQ3: How do micro commits compare to one-line commits?

6.1 Approach

As discussed in Sections 1 and 2, one-line commits are common in software de-
velopment and often address deficiencies in the system [37]. However, they have a
drawback: they overlook changes within a line. Consequently, two commits with the
same number of changed tokens could differ; one might be a one-line commit and
the other might not. The concept of micro commits, introduced in this paper, address
their drawbacks.

However, the extent of the differences between one-line commits and micro com-
mits is unclear. Extracting micro commits is more costly than one-line commits as
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it requires syntactic parsing of the source code. Hence, this RQ aims to compare the
one-line commits and micro commits.

Our methodology can be summarized as follows: we start by analyzing the changed
tokens in one-line commits. We then analyze the modified hunks in micro commits.
Finally, we discuss the intersection between one-line commits and micro commits.

6.2 Results

Proportion of One-line commits by number of added and removed tokens

LT (11 [ | []
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Fig. 3: Proportion of one-line commits by the number of tokens added or removed.
The x and y-axis show the added and deleted tokens, and each cell indicates the
proportion of commits.
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Fig. 4: Accumulated distribution of one-line commits in terms of the maximum num-
ber of added or removed tokens
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Approximately 90% of one-line commits consist of at most five tokens. Ta-
ble 1 shows the number of one-line commits. As described in Section 2, there are a
non-negligible number of these commits in the studied projects (4.28-8.20%). Fig-
ure 3 shows the proportion of one-line commits according to the number of tokens
that they have added and removed between 0 and 10. As can be seen, there are a sig-
nificant number of one-line commits that remove and add exactly one token (between
approximately 50 and 63% of all one-line commits). Furthermore, except for the case
in the Hadoop project where no commits add or delete five tokens, all cells with
five or fewer added and deleted tokens have more than one one-line commit across
all projects. This implies that there are no empty cells within five added or deleted
tokens except for one cell in the Hadoop project. Also, the distribution of one-line
commits, with more than five tokens, varies across the projects. For instance, in the
Hadoop and Zephyr projects, there are cells with no one-line commits of more than
five deleted tokens and less than or equal to one added token. In contrast, every cell in
the Camel and Linux projects has at least one one-line commit. Hence, the majority
of one-line commits add or remove at most five tokens, and this finding is generally
consistent across all projects.

Figure 4 shows the accumulated distribution of one-line commits according to
the maximum number of tokens they add or remove. We use the maximum number
of tokens added or removed in this figure. This is because our definition of a micro
commit applies the same threshold of five tokens to both the number of added and re-
moved tokens. As can be seen, between approximately 57% and 65% add-or-remove
at most one token, between 76% and 82% add-or-remove at most three tokens, and
between 89% and 93% add-or-remove at most five tokens. Thus, approximately 90%
of one-line commits can be covered by our micro commits.

1.00

0.75
’: project
camel
0.50 — hadoop
— linux
zephyr
0.25

0.00

1 2 3 4 5 6 7 8 9 10
Number of hunks in line repositories

Fig. 5: Accumulated distribution of micro commits (N = 5) in terms of the number
of hunks included

The number of modified hunks is also a crucial characteristic of commits. By
our definition, one-line commits only modify one location in the source code (i.e.,
one hunk). We define micro commits based on the number of tokens, so even if a
commit is spread across multiple locations (i. e., multiple hunks), it it still considered

21
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a micro commit if the number of modified tokens is below a certain threshold. This is
a significant distinction compared to one-line commits. Therefore, we do not impose
any limits on the number of modified hunks.

Figure 5 illustrates the accumulated distribution of the number of hunks included
in micro commits to investigate their difference from one-line commits. Approxi-
mately 70% (Linux and Hadoop) or 60% (Zephyr and Camel) of micro commits
contain a single hunk, while the remaining commits encompass two or more hunks.
Hence, while approximately 70% or 60% of micro commits share characteristics with
one-line commits, the remaining 30% or 40% represent commits that one-line com-
mits do not detect, even if they modify the same number of tokens.

In conclusion, although micro commits can encompass nearly all one-line com-
mits, the reverse is not typically true: one-line commits do not generally cover micro
commits. Indeed, Table 2 in Section 3.3 reveals that around 90% of one-line commits
can be encapsulated by micro commits. However, only approximately 40% (for Linux
and Zephyr) or 50% (for Camel and Hadoop) of micro commits can be encapsulated
by one-line commits. Therefore, micro commits provide new insights compared to
one-line commits.

Summary of RQ3

Approximately 90% of one-line commits add or remove at most five tokens.
Therefore, nearly all one-line commits can be covered by micro commits.
In contrast, 30 to 40% of micro commits include two or more hunks that
are not covered by one-line commits. In fact, only approximately 40% (for
Linux and Zephyr) or 50% (for Camel and Hadoop) of micro commits can
be encapsulated by one-line commits. Therefore, the characteristics of micro
commits can help us understand the attributes of small changes, including
those in one-line commits and commits not identified by one-line commits.

7 Discussion

In this paper, we defined micro commits and shed light on their characteristics. The
main motivation is that turning our attention to micro commits would benefit software
engineering research. In this section, we describe the implications of micro commits
on future research.

7.1 Line-based vs Token-based Complexity Metrics

Line-based complexity metrics (e. g., LA, LD, and LT) [21] are one of the most pop-
ular source code complexity metrics in software engineering. However, there are
limitations to using line-based complexity metrics, as they may overlook cap-
turing commits with equivalent complexity in terms of changed tokens. We have
shown examples with different numbers of changed lines but the same number of
changed tokens (Listings 1 and 2). We have shown that in the projects under analysis,

22
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Listing 10: Example “replace constant” commit diff retrieved from
c143708acfb17e91c5e4£c9bd9b496£fc7d2db29c in Hadoop.

html.h1 (). _.("Invalid log start value: ™ + $("end”))._():
+ html.h1()._.("Invalid log end value: 7 + $("end™))._.();

approximately 90% of one-line commits are micro commits, but only approximately
40-50% of micro commits are one-line commits (Table 2).

Thus, future research should consider tokens (and their types) as an addi-
tional metric of the complexity of commits. Because, for example, prior stud-
ies [24,33] in defect prediction reported that current models heavily rely on the added
lines, such new metrics would provide new information to identify defective commits
accurately.

7.2 Micro Commits Are Non-negligible and Should Be Further Studied

In Section 3.3, we showed that micro commits account for between 7.45 and 17.95%
of all studied commits, which is quite high. Furthermore, 1 in 3 or 4 these changes
(2.39 and 4.88% of all studied commits) simply change one token. Hence, micro
commits, including their finest-grained form, the one-token commit, represent a non-
negligible development activity. Thus, we need to understand how to better sup-
port developers, first, by deeply looking at the need for micro commits, and sec-
ond, by reducing the amount of effort needed to complete these changes.

7.3 Program Repair

The results of RQ1 showed that micro commits frequently modify a single token,
and its token type is name, literal, or operator. Studying micro commits could help
understand how software is modified with such a tiny amount of change, and
provide datasets that improve methods that attempt to modify software auto-
matically. For example, datasets based on micro commits might improve data-driven
program repair approaches that have been studied so far [20, 29, 31]. One potential
idea involves utilizing our observations of frequently modified token types and to-
kens in Java and C. Our observations indicate that while the types of frequently mod-
ified tokens are similar, the actual tokens differ across languages. This information
is important for developing a program repair approach. When dealing with multiple
languages, focusing on token types is crucial. However, when focusing on a specific
language, actual tokens can also be beneficial.

Also, the empirical investigation of micro commits would reveal types of mi-
cro commits that are difficult to be generated by program repair approaches.
Listing 10 shows a replace constant micro commit example. Specifically, this com-
mit changes a string literal token: “start” into “end”. Such a change might be difficult
to be generated automatically, because it is not obvious why a literal token should be
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replaced by another one; however, other changes (including micro commits) might
have performed this specific replacement somewhere else.

Some large commits might actually be composed of several micro commits (i. e.,
tangled commits [8, 16,23]). Thus it is worth also exploring the possibility of un-
tangling micro commits from larger commits. These untangled micro commits
might be very valuable for program repair.

Finally, we present initial analysis results for micro commits regarding their main-
tenance activities. As stated in Section 1, we hypothesize that small changes are likely
intended for maintenance purposes. Therefore, we deduce that exploring micro com-
mits could be beneficial for program repair. To validate this hypothesis, we iden-
tify micro commits that fall under the corrective maintenance category as defined
by Swanson [40]. Corrective maintenance is performed in response to failures. If
corrective maintenance makes up a large proportion of micro commits compared to
non-micro commits, it would confirm our hypothesis.

To identify the corrective commits, we followed the methodologies used in prior
studies [35, 37], which use keywords in commit messages. More specifically, if at
least one of the keywords is included in the commit messages, we classify the commit
into the corrective maintenance category. Otherwise, we do not label commits. We
used the keyword list defined by Levin et al. [27] as follows: “fix”, “esolv”, “clos”,
“handl”, “issue”, “defect”, “bug”, “problem”, “ticket”.

The detailed procedure is as follows.

Step 1: Apply preprocessing to the commit messages using the NLTK package'! in
Python by following the steps below:
— Tokenize the text and convert all words to lowercase.
— Remove stopwords and punctuation.
— Perform stemming on all words.
Step 2: Check if the stemmed commit message contains a keyword.
Step 3: Identify commits that fall under the corrective category.

Micro commits are more likely to be failure-fixing activity than other com-
mits. Figure 6 shows the proportion of corrective micro and non-micro commits. In
this figure, we compare the tendency of micro commits (light gray) and non-micro
commits (dark gray). Corrective micro commits are larger than non-micro commits.
Hence, micro commits distinguishably correspond to the corrective commits. This
result shows that micro commits are usually applied to the source code to fix failures.

Also, this finding confirms our initial assumption that micro commits are used
more frequently for maintenance purposes than non-micro commits. Interestingly,
Hattori and Lanza [15] found similar results, noting that tiny commits are often asso-
ciated with corrective activities.

It should be noted that the keyword-based approach generally lacks accuracy [3,
25]. To verify the accuracy of the identification, we manually inspect 20 micro com-
mits and 20 non-micro commits identified as corrective, classifying them into three
failure types within the corrective category defined by Swanson [40]. If we cannot
associate any failure types, those would be considered false positive corrective com-
mits. This allows us to estimate the actual number of corrective micro commits and

1 https://www.nltk.org/
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Fig. 6: The proportion of commits for the corrective category. Light gray indicates
the proportion in micro commits; dark gray indicates the proportion in non-micro
commits.

corrective non-micro commits in the identified commits. We do not examine non-
corrective commits to determine the proportion of false-negative corrective commits.
This discussion only reports the minimum percentage of corrective commits. Our
manual inspection revealed that there were no false-positive corrective micro com-
mits. In contrast, we found 8 out of 20 false positive corrective commits in non-micro
commits. This finding suggests that the percentage of corrective micro commits may
not change significantly, while the proportion of corrective non-micro commits could
decrease. Therefore, our conclusion remains unchanged. In this manual inspection,
we inspect only 20 micro and non-micro commits. Future studies could improve the
validity of our findings. Our inspection is avaiable in the spreadsheet.!?

7.4 Size-perspective vs. Semantic-perspective for Defining Micro Commits

In this paper, we define micro commits through size metrics (i. €., the number of to-
kens). This is because we would like to assist with software engineering research,
such as program repair. However, micro is a general term, and micro commits can
be defined not only by size but also by semantic aspects. For instance, tangled com-
mits [8, 16, 23] can be considered non-micro, whereas non-tangled commits can be
categorized as micro. Additionally, defect-fixing commits can be categorized as mi-
cro or non-micro depending on the difficulty of the bug being fixed. We could explore

12 https://docs.google.com/spreadsheets/d/17cqps60SkA86GPuUmin3W1FoRZXs1QfTuJAkX3vqH28/

edit?usp=sharing
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these aspects using non-source code resources, such as source code comments, issue
reports, and mailing lists. Exploring these semantic-based micro commits can also
contribute to software engineering research.

8 Threats to Validity
8.1 External Validity

We conducted our empirical study on four OSS projects. To mitigate the threats to
generalizability, we selected OSS projects that are active, popular, and well-known
OSS projects written in two popular programming languages. However, even if we
use these OSS projects, our results may not be generalized to all projects. Indeed,
these are system software. To remedy this challenge, replication studies in research
or practical scenarios (e.g., actual projects in the industry) are necessary. Hence, we
provide a replication package'3. Also, the key tool cregit is an OSS tool; thus,
researchers and practitioners easily convert their Git repositories into token-based
ones.

8.2 Construct Validity

We define micro commits based on the number of changed tokens. However, micro
commits are a general term, and we can make different definitions. The key charac-
teristic of micro commits is that such commits change a small code fragment. Our
analysis (RQ1 and 2) shows that our definition is consistent with this characteristic.
Hence, we believe our definition can be acceptable. However, our definition may not
be the best; thus, future studies are necessary to find a better definition than our first
one. For example, future studies can investigate different thresholds for the number
of tokens. Also, studying different thresholds for added and deleted tokens (e. g., 3
added tokens and 5 deleted tokens) can be beneficial. Additionally, they can consider
changes to source code comments. This definition would encompass not only main-
tenance activities related to code logic, but also various other maintenance activities.

For future studies, researchers can use ASTs to tokenize the source code instead of
cregit, which we used in this paper. While ASTs are powerful in analyzing token-
level information, cregit is designed for Git, a de facto standard version control
system. Hence, researchers easily analyze the software development history to sup-
port its process when using cregit instead of ASTs. Hence, we recommend using
cregit in future studies.

There are several factors that can influence commits. For instance, the way devel-
opers write commits can vary depending on the developer and the project. To reduce
these influences, we chose and analyzed four projects that involve a large number of
developers. As a result, we expect the impact of such influences has been minimized.

13 https://github.com/MKmknd/EMSE2024-micro-commits-replication
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8.3 Internal Validity

To remove comment lines from source code files, we use regular expressions. This
process is not perfect and may overlook comment lines. However, our manual anal-
ysis in RQ2 observes that our regular expressions usually work well because we do
not find false-positive micro commits. Therefore, we can reduce the risks associated
with using regular expressions.

Also, another threat exists in our manual analysis (RQ2). In this analysis, we
performed manual labeling to micro commits according to our coding guide. Be-
cause this process is performed manually by the first author, the result may have
false-positive and false-negative results. Therefore, we have made all labels publicly
available to facilitate the validation of future studies. Also, to construct the coding
guide, the first three authors independently inspected 20 micro commits three times.
This process may also include errors. However, our agreement rate achieved substan-
tial agreement in two consecutive iterations. Hence, we believe the coding guide is
reliable. An alternative solution is to use an automatic classification approach rather
than manual analysis. We developed a heuristic-based method to classify micro com-
mits into their corresponding targets automatically. However, this method does not
yield perfect results. To facilitate replication of this approach, we have included it
in our replication package. Finally, we randomly sampled 400 micro commits from
all projects. Therefore, our sampled micro commits may be biased by the size of the
original projects. To mitigate this risk, we manually inspected additional micro com-
mits from each project. We do not observe significant differences across the projects.

In the discussion, we use keywords to identify the commits related to the correc-
tive maintenance activity as defined by Swanson [40]. While the keyword identifica-
tion is widely used to categorize commits [18,22,27,28,35,37], it is not perfect [3,25].
To mitigate this threat, we manually review identified commits and estimate their ac-
curacy. Also, there are other sets of maintenance activities that can be used to classify
commits, such as the IEEE standard [1]. While we believe the maintenance activities
defined by Swanson are acceptable, future studies are necessary to use other sets.
Also, if commit messages do not contain any keywords, we exclude those commits
from the analysis. However, it is possible that these commits are related to main-
tenance activities. Using more precise methods would enhance the validity of this
analysis.

The tool “cregit” used to tokenize the source code files utilizes srcML. Therefore,
our analysis can only be applied to specific versions of Java (Java SE8 Edition) and
C (up to C11) that are supported by srcML. We can find the supported versions on
the official homepage'*. To extend our analysis to different versions of Java and C, it
is necessary to update srcML and apply our analysis to those versions.

14 https://www.srcml.org/#home
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9 Related Work
9.1 Challenges of Mining Git Repositories

Prior studies [4,5, 11,39] investigated and intended to address the challenges of min-
ing Git repositories. For example, as described in Section 2, some non-functional
changes update the information for each line and make it difficult to track code
changes accurately. cregit [11] is proposed to address this problem by improving
the blame feature in Git. More specifically, cregit tokenizes each line and applies
the blame feature to the tokenized files. Spacco and Williams [39] proposed a tech-
nique SDiff to track changes at the statement level instead of the line level. This tech-
nique combines previous line- and structural-based approaches. Specifically, SDiff
tokenizes each statement and uses diff between revisions. These techniques tokenize
the source code to address this problem. Similarly, we define micro commits based
on changed tokens in this paper to track code changes accurately.

9.2 Change Classification

Classifying changes (e.g., commits) into a certain category is a research topic in
mining software repositories so far [2, 10, 12, 17, 18, 22, 27, 28, 32, 35, 37, 44, 45].
For example, many prior studies intend to classify changes in terms of the pur-
pose [10, 12,17, 18,22,27, 28,32, 35,45]. Levin et al. [27] classified commits into
the maintenance activities defined by Swanson [40]. Hindle et al. [17] used machine
learning classifiers to classify changes into the extended Swanson categories. Ghad-
hab et al. [12] used a pre-trained deep learning model known as BERT to classify
commits into maintenance categories.

On the contrary, in this paper, we classify commits into micro commits based on
their size and empirically investigate their characteristics, and there are several similar
prior studies [2, 18, 37]. Purushothaman and Perry [37] classified changes into three
categories and studied them: one-line changes, small changes, and all. Specifically,
this study used the number of changed lines for this classification. Hindle et al. [18]
identified large commits based on the number of changed files and revealed the char-
acteristics of large commits. They also compared their result with the characteristics
of the small commits by Purushothaman and Perry [37]. Alali et al. [2] empirically
investigated the characteristics of commits in nine OSS projects. They used three size
criteria: the number of files, lines, and hunks. For example, they found that approxi-
mately 19.9% of commits in the GNU gcc system change at most five lines. However,
the finest-grained changed source code entity is a line in these papers, and such an en-
tity loses the information of changed tokens in a line. This limitation makes it difficult
to define a certain category of commits based on finer-grained source code changes.
Hence, our investigation would provide a new research direction in which researchers
and practitioners use token-level changes.
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9.3 Knowledge Gap in Previous Studies

Compared to these prior studies, this research is the first to define micro commits at
a fine granularity, specifically at the token level, through empirical analysis. Small
commits defined at the line level, which previous studies often used, may overlook
important information for improving existing software engineering research. Our re-
search addresses this knowledge gap by conducting the analysis at the token level.

For instance, as explained in Section 7.3, the findings of RQ1 in this study have
implications for research in program repair. These findings indicate the need to ex-
plore approaches for fixing bugs caused by a single name or literal token. This is
because existing automated program repair approaches [20, 26, 30] may not be effec-
tive in such scenarios due to a lack of information to repair the code. These findings
and implications were obtained because the analysis was conducted at the token level.
It would have been difficult to obtain such findings and implications using a line-level
analysis. The novelty of this study lies in conducting the analysis at the token level
and providing these implications. The details of our findings and implications can be
found in Sections 5, 6 and 7.

10 Conclusion

In this paper, we defined micro commits (add at most five tokens and remove at most
five tokens) and investigated their characteristics. This research is the first to define
micro commits at a fine granularity, specifically at the token level. The key novelty of
this study lies in conducting the analysis at the token level and providing implications
for software engineering research.

Below, we present a summary of the findings from our empirical analysis:

— Our defined micro commits account for between 7.45-17.95% of all studied com-
mits. Approximately 1 in 3 or 4 these changes (2.39-4.88% of all studied com-
mits) involve replacing one token with another. Furthermore, RQ3 demonstrates
that approximately 90% of one-line commits are micro commits, but only approx-
imately 40-50% of micro commits are one-line commits. In fact, approximately
30—-40% of micro commits include two or more hunks.

— The results of RQ1 show that micro commits primarily affect name token types
(37.7-44.5%), literal token types (9.2-34.9%), or operator token types (6.6—10.4%).
The most frequently affected tokens vary: the period in Java (2.5% in Camel and
3.9% in Hadoop) and the 0/1 in C (1.8 and 1.0% in Linux and 1.3 and 0.9% in
Zephyr). Furthermore, the most frequently observed pattern is the modification
of a single token. In Java projects, this modification is typically a single literal
token. On the other hand, in C projects, the modification is usually a single name
token.

— The results of RQ2 indicate that approximately 86% of micro commits involve a
single operation on a single target, with the main focus being the replacement of
existing targets. The multi-operation micro commits primarily involve changing
the order of statements (19.3%).
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In the discussion, we presented the following four implications of micro commits

on future research based on the findings:

Based on RQ3, it is observed that almost all one-line commits are micro commits,
whereas only 40-50% of the micro commits are one-line commits. Therefore,
token-based complexity metrics offer supplementary information to the com-
monly used line-based complexity metrics. Designing metrics to measure token-
based complexity is a potential area for future research.

Based on the statistics of micro commits, they account for a non-negligible pro-
portion of all studied commits (7.45-17.95%). Additionally, according to Sec-
tion 7.3, these commits are more likely used to fix bugs. Therefore, supporting
the development of micro commits is an important area for future research.
Based on RQ1, micro commits frequently modify a single token, with the token
type often being either a name or a literal. While these micro commits often ad-
dress bug fixes, suggesting patches to fix individual name or literal tokens can be
challenging with existing program repair approaches. Therefore, it is necessary
to investigate these micro commits and propose new program repair approaches
for future research.

We define micro commits based on size metrics. However, micro is a general
term, and micro commits can be defined not only by size but also by semantic
aspects (e. g., tangled commits or not). Exploring semantic-based micro commits
is a potential area for future research.

The key message of this paper is as follows:

The token-level definition could help researchers and practitioners to improve
software engineering approaches for software quality assurance activities.
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Appendix

A Example micro commits

Listing 11: Example “add statement” commit diff retrieved from
122503683169b21d9cdb90380a20caad7ba994b6 in Linux.

+ cond_resched ();

Listing 12: Example “replace constant” commit diff retrieved from
b7a90e8043e7ab1922126elclc5c004b470£f9e2a in Linux.

- dprint (DBG_SUPER, "hfsplus_write_super\n”);
+ dprint (DBG.SUPER, ”hfsplus_sync_fs\n”);

Listing 13: Example “remove statement”” commit diff retrieved from
b95b4eled92a203£f4bdfc55£53d6e9c2773e3b6d in Linux.

—EXPORT.SYMBOL (alloc_pages_exact_nid);

Listing 14: Example “no” commit diff retrieved from
a092532483e3200a53c8b1170b3988cc668cO7ef in Linux.

_ B
}
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Listing 15: Example “change declaration” commit diff retrieved from
36£062042b0£d9£8e41b97a472£52139886ca26f in Linux.

—static int mmap_vmcore_fault(struct vm_fault svmf)
+static vm_fault.t mmap_vmcore_fault(struct vm_fault xvmf)

Listing 16: Example “change constant” commit diff retrieved from
1db76c14d215c8b26024dd532de3dcaf66ea30£7 in Linux.

l;
0;

—static int fw_cmd_doorbell
+static int fw_cmd_doorbell

Listing 17: Example “change identifier” commit diff retrieved from
70e8b40176c75d3544024e7c934720b11a8allbf in Linux.

- return IRQ_HANDLED;
+ return IRQNONE;

Listing 18: Example “change control flow” commit diff retrieved from
415a1975923722£729211a9efca550c60c519bf3 in Linux.

+ break ;

Listing 19: Example “change expression” commit diff retrieved from
40cc394belaal8848b8757e03bd8ed23281£572e in Linux.

- scomma = 0;
+ len = comma — dev_name;
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