
Empirical Software Engineering (2022) 27:136
https://doi.org/10.1007/s10664-022-10120-x

An empirical study of issue-link algorithms:
which issue-link algorithms should we use?

Masanari Kondo1 ·Yutaro Kashiwa1 ·Yasutaka Kamei1 ·OsamuMizuno2

Accepted: 10 January 2022
© The Author(s) 2022

Abstract
The accuracy of the SZZ algorithm is pivotal for just-in-time defect prediction because most
prior studies have used the SZZ algorithm to detect defect-inducing commits to construct
and evaluate their defect prediction models. The SZZ algorithm has two phases to detect
defect-inducing commits: (1) linking issue reports in an issue-tracking system to possible
defect-fixing commits in a version control system by using an issue-link algorithm (ILA);
and (2) tracing the modifications of defect-fixing commits back to possible defect-inducing
commits. Researchers and practitioners can address the second phase by using existing solu-
tions such as a tool called cregit. In contrast, although various ILAs have been proposed
for the first phase, no large-scale studies exist in which such ILAs are evaluated under
the same experimental conditions. Hence, we still have no conclusions regarding the best-
performing ILA for the first phase. In this paper, we compare 10 ILAs collected from our
systematic literature study with regards to the accuracy of detecting defect-fixing commits.
In addition, we compare the defect prediction performance of ILAs and their combina-
tions that can detect defect-fixing commits accurately. We conducted experiments on five
open-source software projects. We found that all ILAs and their combinations prevented the
defect prediction model from being affected by missing defect-fixing commits. In partic-
ular, the combination of a natural language text similarity approach, Phantom heuristics, a
random forest approach, and a support vector machine approach is the best way to statisti-
cally significantly reduced the absolute differences from the ground-truth defect prediction
performance. We summarized the guidelines to use ILAs as our recommendations.

Communicated by: Andrian Marcus

� Masanari Kondo
kondo@ait.kyushu-u.ac.jp

Yutaro Kashiwa
kashiwa@ait.kyushu-u.ac.jp

Yasutaka Kamei
kamei@ait.kyushu-u.ac.jp

Osamu Mizuno
o-mizuno@kit.ac.jp

1 Principles of Software Engineering and Programming Languages Lab. (POSL), Kyushu University,
Fukuoka, Japan

2 Software Engineering Laboratory (SEL), Kyoto Institute of Technology, Kyoto, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10120-x&domain=pdf
http://orcid.org/0000-0002-6317-7001
mailto: kondo@ait.kyushu-u.ac.jp
mailto: kashiwa@ait.kyushu-u.ac.jp
mailto: kamei@ait.kyushu-u.ac.jp
mailto: o-mizuno@kit.ac.jp

 136 Page 2 of 50 Empir Software Eng (2022) 27:136

Keywords Issue-link algorithms · SZZ · Just-in-time defect prediction · Issue reports ·
Commits

1 Introduction

Just-in-time defect prediction models help in identifying whether a commit (i.e., source
code changes) is likely to be defective (Kamei et al. 2013). A just-in-time defect prediction
model has several advantages compared with traditional file/package-level defect prediction
models (Kamei et al. 2013; Kondo et al. 2020; McIntosh and Kamei 2018); for example, it
can provide faster feedback. Hence, numerous prior studies have investigated just-in-time
defect prediction models (Kamei et al. 2013, 2016; Kondo et al. 2020; Kim et al. 2008;
Fukushima et al. 2014; Yang et al. 2015; Tan et al. 2015; McIntosh and Kamei 2018).

The SZZ algorithm (Śliwerski et al. 2005) is a de facto standard algorithm to prepare a
dataset to construct and evaluate a just-in-time defect prediction model. The key concept
is to link issue reports corresponding to defects and commits that fixed such defects. Such
linked commits (a.k.a. defect-fixing commits) are used to identify commits that induced
changes that needed to be fixed (a.k.a. defect-inducing commits). Researchers and practi-
tioners usually use such defect-inducing commits to construct a defect prediction model and
evaluate it in terms of the accuracy of predicting defect-inducing commits.

Hence, the accuracy of the SZZ algorithm may affect the reliability of the evaluation
of defect prediction performance. For example, Bird et al. (2009) reported that the defect-
fixing commits linked with issue reports are biased; such biased defect-fixing commits
result in underperformance in defect prediction. Kim et al. (2011) reported that defect pre-
diction models are durable to the false-positive/negative defect-inducing commits up to
a certain threshold (20%), though those over the threshold have a significant effect on
prediction performance.

Nowadays, the SZZ algorithm can detect defect-inducing commits accurately with exist-
ing solutions (Jung et al. 2009; Nguyen et al. 2013; Neto et al. 2018; German et al. 2019);
however, even if we use such solutions, false-positive/negative defect-fixing commits may
induce false-positive/negative defect-inducing commits. Hence, the SZZ algorithm needs an
implementation to detect defect-fixing commits accurately.

To improve the accuracy of detecting defect-fixing commits, many prior studies have
proposed various issue-link algorithms (ILAs) that use several criteria to detect defect-fixing
commits (Fischer et al. 2003a; Śliwerski et al. 2005; Bachmann and Bernstein 2009a, 2010;
Bird et al. 2010; Sureka et al. 2011; Wu et al. 2011; Nguyen et al. 2012; Bissyandé et al.
2013; Le et al. 2015; Schermann et al. 2015; Sun et al. 2016, 2017a, b; Xie et al. 2019; Tu
and Menzies 2020). For example, Wu et al. (2011) proposed an ILA called ReLink. This
approach uses three criteria: (1) the difference between the resolved dates of issue reports
and the dates of commits; (2) the consistency of developers; and (3) text similarity.

However, two challenges remain in prior studies: dataset inconsistency and small com-
parisons. More specifically, prior studies evaluated their ILAs on different datasets (data
inconsistency). In addition, they overlooked the comparison across their proposed ILAs
with the majority of prior ILAs. To present the effectiveness of their proposed ILAs (state-
of-the-art approaches), they only compared their ILAs with a few conventional ones (small
comparisons). We discuss the details in Section 3.3. Owing to these two challenges, it
is difficult to conclude the best-performing ILA in terms of the accuracy of detecting
defect-fixing commits and the impact to the defect prediction performance.

Empir Software Eng (2022) 27:136 Page 3 of 50 136

In this paper, we compared all criteria that were used by the previous ILAs as our ILAs
and their combinations on the same dataset. As we divided the previous ILAs into some
criteria, our comparison covers not only previous ILAs, but also other combinations. More
specifically, we compared 10 criteria as our ILAs (i.e., time filtering, natural language
text similarity, natural language text similarity with word association, message generation
from source code, loners heuristics, phantom heuristics, modified text files, PU learning,
random forest, and support vector machine) in terms of the accuracy of detecting defect-
fixing commits. To collect these ILAs, we conducted a systematic literature study with
the snowballing approach (Wohlin 2014). In addition, we investigated the impact of the
ILAs and their combinations to defect prediction performance in terms of the absolute
differences to the ground-truth defect prediction performance. The ground-truth defect pre-
diction performance is measured in the dataset where almost all defect-fixing commits are
already detected accurately. The details of such datasets and defect-fixing commits are dis-
cussed in Section 5.1. We conducted our experiments on five open-source software projects
from the Apache Software Foundation: the Avro (Apache Software Foundation 2009b),
Tez (Apache Software Foundation 2014), ZooKeeper (Apache Software Foundation 2008),
Chukwa (Apache Software Foundation 2009), and Knox (Apache Software Foundation
2013) projects.

Our ultimate goal is to clarify which ILA or combination of ILAs detects the most
defect-fixing commits and prevents the defect prediction model from being affected by
missing defect-fixing commits compared with the baseline ILA (i.e., used by the SZZ algo-
rithm) called the keyword extraction. To achieve this goal, we investigated the following two
research questions.

RQ1: Which issue-link algorithm is the best to detect defect-fixing commits?
Motivation: Many prior studies have proposed ILAs to detect defect-fixing com-
mits accurately. However, no studies have conducted a large empirical comparison
across ILAs. In this RQ, we compared 10 ILAs. Our goal is to identify ILAs that
detect defect-fixing commits accurately.
Results: The time filtering approach and the natural language text similarity
approach recovered the statistically significantly largest number of missing defect-
fixing commits compared with the other ILAs in different projects. The random
forest approach achieved the statistically significant highest precision in 22 out of
25 results.

RQ2: Which issue-link algorithm is the best to prevent a defect prediction model
from being affected by missing defect-fixing commits in defect prediction?
Motivation: Researchers and practitioners should carefully select an ILA if ILAs
prevent a defect prediction model from being affected by missing defect-fixing
commits. In this RQ, we studied how ILAs and their combinations affect defect
prediction performance.
Results: All ILAs including the combinations of ILAs that detect defect-fixing
commits accurately result in a statistically significant reduction in the impact
to defect prediction performance compared with the baseline ILA, the keyword
extraction approach. These ILAs are robust to the datasets including missing
defect-fixing commits. In particular, the combination of the natural language
text similarity, Phantom heuristics, random forest, and support vector machine
approaches is the best method to prevent the defect prediction performance from
being affected by missing defect-fixing commits.

 136 Page 4 of 50 Empir Software Eng (2022) 27:136

Our results provide researchers and practitioners who study/use defect prediction or
investigate defect-fixing commits with guidelines to choose the best ILA for their purpose.
We recommend using the combination of the natural language text similarity, Phantom
heuristics, random forest, and support vector machine approaches to remove the bias
of missing defect-fixing commits on defect prediction performance. If researchers and
practitioners want to investigate defect-fixing commits on a dataset in which no false-
positive defect-fixing commits exist, we recommend using the random forest approach. If
researchers and practitioners need more defect-fixing commits to investigate while allow-
ing false-positive defect-fixing commits, we recommend using the time filtering or natural
language text similarity approach. In addition, before using any ILAs, we recommend using
the dates of the commit and the issue report to remove noise of defect-fixing commits for
defect prediction.

The four main contributions of this paper are as follows:

– We have conducted the first large-scale empirical study to evaluate the ILAs on the
same experimental setup.

– We have proposed guidelines for the use of ILAs according to the purpose of each study.
– We have implemented all the studied ILAs that were collected by our systematic

literature study (Kondo 2021b).
– We have conducted a systematic literature study of the ILAs.

We summarized our ILAs and the validation technique in defect prediction as Python
packages (Kondo 2021b, c). In addition, we made the replication package (Kondo 2021a).
These packages can be used to replicate/update our experiment.

The organization of our paper is as follows. Section 2 presents a motivating example.
Section 3 introduces related work and contextualize our research. Section 4 presents the
experimental design. Section 5 presents our methodology. We also explain our studied ILAs
in this section. Section 6 presents the results of our experiment. Section 7 discusses these
results. Section 8 describes the threats to the validity of our findings. Section 9 presents the
conclusion.

2 Motivating Example

2.1 Defect Prediction and ILAs

Firstly, an overview of just-in-time defect prediction and ILAs is depicted in Fig. 1. For
more details, prior studies such as the study by Kamei and Shihab (2016) may be referred
to. Defect prediction mainly consists of three phases: the data preparation phase, the model
construction phase, and the evaluation phase.

Data Preparation: This phase prepares the data for defect prediction. The data are (1) soft-
ware entities (e.g., commits) that are the target of the prediction, (2) the label that indicates
whether entities include defects (i.e., defect-inducing entities), and (3) the metrics that mea-
sure the characteristics of entities such as the change metrics (Kamei et al. 2013). To prepare
the label, researchers use two techniques: ILAs and commit-link algorithms (CLAs). ILAs
link issue reports to software entities, whereas CLAs find entities that induce defects from
entities that are linked to issue reports related to defects (e.g., the SZZ algorithm (Śliwerski

Empir Software Eng (2022) 27:136 Page 5 of 50 136

Link issue
reports and

changes/commits

Issue
tracking
system

Version
control
system

((1) software
entities)

Detect defect-
inducing changes/
commits ((2) label)

Measure the
characteristics
as (3) metrics

Metrics
extractor

ILA CLA

Prepare
validation data

Preprocess
metrics

(6)
Model validation

technique

(4) Modeling
technique

(5)
Preprocessing

technique

Evaluate
prediction

model

(8)
Statistical test

E ect size

(7) Evaluation
measures

Construct
prediction

model

Data Preparation Phase Evaluation PhaseModel Construction Phase

Fig. 1 Overview of just-in-time defect prediction and ILAs

et al. 2005)). All data are collected from two data sources: the issue tracking system (e.g.,
JIRA) and the version control system (e.g., GitHub).

Model Construction: This phase constructs defect prediction models based on the data that
are prepared in the previous phase. To construct the prediction model, researchers need to
select (4) modeling techniques (e.g., logistic regression), (5) preprocessing techniques (e.g.,
z-score), and (6) model validation techniques (e.g., bootstrap-sampling).

First, researchers need to select modeling techniques for defect prediction. Based on the
selected modeling techniques, the preprocessing techniques must be decided. Usually, the
z-score approach (Kondo et al. 2019) is utilized. However, according to the requirements of
the selected modeling techniques, we might choose another preprocessing technique such
as the min-max scaling approach (Kondo et al. 2019).

The model validation technique divides the data into the training data and the test data to
improve the validity of the evaluation of the prediction models. One technique needs to be
selected from the various existing model validation techniques (e.g., bootstrap sampling).

Finally, we construct defect prediction models based on the selected modeling tech-
niques, preprocessing techniques, and model validation techniques.

Evaluation: This final phase evaluates the constructed defect prediction model. Similar
to validation techniques, various (7) evaluation measures also exist. Researchers usually
evaluate the prediction performance such as precision, recall, and F1-score. In addition,
cost-aware evaluation measures are utilized (e.g., Norm(Popt)). To evaluate the applicability
of defect prediction models to practical scenarios, the execution time might also be eval-
uated. To evaluate the difference across prediction models, (8) the statistical test (e.g., the
Scott-Knott ESD test Tantithamthavorn et al. 2017) and the effect size (e.g., the Cohen’s d

effect size cohen 2013) are computed.
ILAs studied in this paper are utilized in the data preparation phase. In particular, ILAs

link the issue reports extracted from the issue tracking system to the commits/changes
extracted from the version control system to prepare the label. This indicates that ILAs are
applied as the first step in defect prediction. Hence, ILAs are important because the accuracy
of the links (i.e., the label) affects all the phases. Our study will support the improvement of
the accuracy of links and improve the reliability of the defect prediction research.

 136 Page 6 of 50 Empir Software Eng (2022) 27:136

2.2 Do ILAs Affect Defect Prediction?

In Section 2.1, we introduce the accuracy of ILAs is important for defect prediction. Our
next questions are that are existing ILAs inaccurate and do such ILAs affect defect pre-
diction? If so, that should be the motivation for our study. In this section, to answer these
questions, we introduce false-positive and false-negative defect-fixing commits induced
by the most popular ILA, and show a simple survey that clarifies do ILAs affect defect
prediction.

False-positive defect-fixing commits indicate defect-fixing commits that are linked with
unrelated issue reports while false-negative defect-fixing commits indicate defect-fixing
commits that should link with issue reports but do not. Prior studies usually use an ILA
called keyword extraction approach, which uses regular expressions to identify defect-fixing
commits in which commit messages include issue ids. However, this approach induces false-
positive/negative defect-fixing commits.

For example, the commit of cf3318e1b in the Tez project, which is a studied project
in this paper, includes two issue ids, TEZ-8 and TEZ-1594. TEZ-8 corresponds to a
defect-fixing process while TEZ-1594 does not. The keyword extraction approach links
this commit and these two issue reports and refers to this commit as a defect-fixing commit.
However, TEZ-8 is not directly related to this commit. Hence, the commit of cf3318e1b
is a possible false-positive defect-fixing commit.

Also, the commit message of the commit of 0b74bd5e in the Avro project, which is also
a studied project, does not include any issue ids. Hence, the keyword extraction approach
does not refer to this commit as a defect-fixing commit. However, the changed file by this
commit includes an issue id (AVRO-2033) that corresponds to a defect-fixing process.
Hence, this commit is a possible false-negative defect-fixing commit. Therefore, even the
most popular existing ILA may induce false-positive/negative defect-fixing commits.

Next, let us show a simple survey that clarifies do ILAs affect defect prediction. We con-
ducted the preliminary survey that has been used by prior defect prediction studies (Yedida
and Menzies 2021; Fu et al. 2016). The procedure of our survey is as follows:

1. We search for studies that use the keyword “defect prediction” and are published in the
top venues1 using Google Scholar.

2. We read the title and the abstract and exclude non-defect prediction studies (e.g., issue
report studies) and studies that do not have any PDF links. The remaining studies are
considered defect prediction studies. We call this set of studies Group A.

3. We read the papers and collect the ILAs that are explicitly written in the papers. Also,
we exclude studies that are not change/commit-level defect prediction (a.k.a. just-in-
time defect prediction) studies. The remaining studies are considered just-in-time defect
prediction studies. We call this set of studies Group B.

The studies collected into Group A and Group B can be found in our Google sheet2.

1The top venues were defined by Google Scholar Metrics of “Software Systems.” The number of top venues
is 20 (final access: 2021/11/1). We can find all top venues: https://scholar.google.com/citations?view op=top
venues&hl=en&vq=eng softwaresystems
2https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m GLDcWZsOeYsk/
edit?usp=sharing

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m_GLDcWZsOeYsk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m_GLDcWZsOeYsk/edit?usp=sharing

Empir Software Eng (2022) 27:136 Page 7 of 50 136

Only 16.1% of the prior studies use datasets that were generated using ILAs except
for the keyword extraction approach. However, 83.3% of them reuse the publicly avail-
able dataset. Our survey collects 112 studies in Group A. The proportion of the studies that
explicitly use any datasets that were generated using ILAs except for the keyword extrac-
tion approach is only 16.1% (18/112). In addition, 83.3% of them (15/18) reuse the ReLink
dataset that is generated by an ILA, ReLink (Wu et al. 2011). Since the ReLink dataset was
publicly available3, several prior defect prediction studies used this dataset, which implies
that almost all prior defect prediction studies do not consider ILAs but simply use the
publicly available dataset or the most popular ILA, the keyword extraction approach.

However, we have another question: how many commits can the keyword extraction
approach link with issue reports? If the number of linked commits is high and such links are
accurate, we do not need to use any ILAs. Since we have already discussed that the keyword
extraction approach induces false-positive/negative defect-fixing commits, we counted the
number of linked commits. To answer this question, we investigated all the projects that
were used as the target projects in Group B except for the unclear or unreachable projects
(e.g., “Mozilla” is used as a target project by prior studies while Mozilla is an organization
having several projects, not a project). There are 24 studies in Group B. We used Group B
because such linked commits are used in just-in-time defect prediction studies. We applied
the following regular expressions that were modified regular expressions of the original
SZZ (Śliwerski et al. 2005) to all commit messages and computed the proportion of commits
where commit messages include at least one issue id candidate (i.e., the proportion of linked
commits):

– bug[#\s\t] ∗ [0 − 9]+
– fix[#\s\t] ∗ [0 − 9]+
– pr[#\s\t] ∗ [0 − 9]+
– show\ bug\.cgi\?id = [0 − 9]+
– \[[0 − 9] + \]
In addition, for the Apache projects, we considered the issue ids that are used in the Apache
projects such as CAMEL-{{issue id}} in the Camel project. If the proportion is high, the
number of linked commits by the keyword extraction approach is high.

Table 1 lists the proportion of commits in which we can find issue id candidates with
the regular expressions in the studied projects in Group B. The number of studied projects
without duplication is 58. The gold cell indicates a proportion of over 80%. This is because,
in this paper, we used projects in which over 80% of commits include at least one issue id
candidate as our studied projects. The blue cells indicate a proportion of under 50%. We
observe only 5 of 58 projects are over 80%. On the contrary, almost all projects (49/58
projects) are less than 50%.

In summary, these result show that we need ILAs to improve the accuracy and num-
ber of links between commits and issue reports. Otherwise, many commits exist that do
not correspond to any issues reports. Such commits could potentially be defect-fixing com-
mits that are not detected (false-negative defect-fixing commits). In addition, false-positive
defect-fixing commits also exist. Such commits affect defect prediction. Hence, in this
study, we investigated the impact of ILAs to defect prediction.

3The dataset was able to be downloaded from the site of https://cse.hkust.edu.hk/∼scc/ReLink.htm. However,
currently, the download link is expired (2021/10/9).

https://cse.hkust.edu.hk/~scc/ReLink.htm

 136 Page 8 of 50 Empir Software Eng (2022) 27:136

Table 1 The proportion of
commits in which we can find
issue id candidates in the studied
projects in Group B (58 projects
from 24 studies). The numerator
is the number of commits in
which we can find issue id
candidates; the denominator is
the number of all commits
without merge commits. We
cloned all the projects on Oct. 7,
2021

)%(noitroporPtcejorP

ABINIT 1.1 (142/13,316)

Accumulo 81.6 (6,402/7,844)

ActiveMQ 5.5 (709/12,807)

Amber 5.2 (32/618)

AngularJS 0.8 (97/12,755)

Ant 6.4 (1,068/16,776)

ArgoUML 0.6 (177/28,722)

Eclipse JDT 27.2 (6,799/24,983)

Bitcoin 0.9 (204/22,931)

Buck 0.3 (90/26,497)

Bugzilla 83.4 (12,036/14,424)

)602,76/542,63(9.35lemaC

Columba 0.0 (0/369)

LibreOffice 2.3 (12,585/538,108)

Derby 84.6 (6,994/8,269)

)341,73/912,42(2.56knilF

Geronimo 37.9 (6,283/16,583)

Gerrit 3.9 (1,338/33,896)

Gimp 12.4 (7,163/57,739)

GWT 0.4 (45/10,598)

Hadoop 28.4 (20,374/71,704)

Hadoop Common 0.3 (99/33,473)

HBase 90.0 (47,655/52,948)

HOOMD-blue 0.1 (16/16,507)

ITK 1.1 (492/44,655)

iText 0.7 (28/4,279)

JDeodorant 0.2 (3/1,696)

Jackrabbit 1.9 (270/14,071)

Jaxen 7.4 (110/1,485)

Jetty 2.5 (494/19,576)

JRuby 11.0 (5,275/48,059)

LAMMPS 0.2 (50/25,274)

libMesh 0.4 (109/25,333)

Liferay Portal 0.0 (232/823,321)

Linux 2.5 (23,811/966,548)

Lucene-Solr 0.3 (174/64,639)

)875,4/643,2(2.15tuohaM

Maven 19.9 (2,660/13,375)

MDAnalysis 2.7 (172/6,443)

OsmAnd 2.0 (1,262/63,102)

)793,7/170,5(6.86APJnepO

OpenStack 6.3 (15,379/242,338)

PCMSolver 0.3 (5/1,756)

Empir Software Eng (2022) 27:136 Page 9 of 50 136

Table 1 (continued)
)%(noitroporPtcejorP

Perl 5 1.4 (1,638/114,320)

Pig 88.2 (5,492/6,227)

PostgreSQL 4.8 (3,797/79,044)

Qt Base 0.7 (379/56,273)

RMG-Py 0.4 (64/14,351)

Rails 1.2 (884/76,060)

Rhino 16.3 (711/4,365)

Spring Framework 0.3 (79/26,776)

Synapse 0.3 (64/19,942)

Tomcat 16.5 (11,265/68,226)

VTK 1.5 (998/64,943)

Voldemort 0.2 (10/4,413)

Xenon 0.1 (2/2,047)

X server 7.7 (1,849/23,940)

XStream 0.2 (8/3,456)

3 RelatedWork

Locating defect-fixing and defect-inducing commits by using the issue ids in commit/log
messages is a common practice in software engineering (Čubranić and Murphy 2003; Fis-
cher et al. 2003b, 2003a; Śliwerski et al. 2005; Bachmann and Bernstein 2009a, 2010; Bird
et al. 2010; Sureka et al. 2011; Wu et al. 2011; Nguyen et al. 2012; Bissyandé et al. 2013; Le
et al. 2015; Schermann et al. 2015; Sun et al. 2016, 2017a, b; Xie et al. 2019; Tu and Men-
zies 2020). For example, Fischer et al. (Fischer et al. 2003a) applied regular expressions to
log messages to retrieve issue ids.

In defect prediction, the SZZ algorithm (Śliwerski et al. 2005) is the de facto standard
approach to detect both defect-fixing and defect-inducing commits by using the issue ids in
commit/log messages. This algorithm uses two data sources (i.e., a version control system
and an issue-tracking system) and links these data sources to detect defect-fixing com-
mits. Defect-inducing commits are tracked based on the modifications in such defect-fixing
commits.

3.1 Challenges of the SZZ Algorithm

The SZZ algorithm has challenges to detect defect-fixing and defect-inducing commits
(Kim et al. 2006; Herzig and Zeller 2013; Da Costa et al. 2016; Herbold et al. 2019;
Kawrykow and Robillard 2011; Fan et al. 2019; Bird et al. 2009; Bachmann et al. 2010,
2009b; Ayari et al. 2007).

Multiple-purposes commits: A defect-fixing commit could include modifications that
accomplish other purposes apart from fixing defects. Herzig and Zeller (2013) called
commits that have multiple purposes tangled changes. Such changes affect the SZZ algo-
rithm when detecting defect-inducing commits from defect-fixing commits. Kawrykow and
Robillard (2011) found that up to 15.5% of method updates occur by non-essential modifi-
cations only. Kim et al. (2006) modified the SZZ algorithm to handle not only defect-fixing
hunks but also other purpose hunks in a defect-fixing commit. The modified SZZ algorithm

 136 Page 10 of 50 Empir Software Eng (2022) 27:136

improved the accuracy of detecting defect-inducing commits compared with the original
SZZ algorithm. Herbold et al. (2019) found that half of defect-fixing commits that were
detected by the SZZ algorithm are not actual defect-fixing commits.

A small number of detected commits: The SZZ algorithm uses an issue-tracking sys-
tem to detect defect-fixing commits; however, this approach can only detect a fraction of
the defect-fixing commits (Bird et al. 2009; Bachmann and Bernstein 2009b, 2010; Ayari
et al. 2007). For example, Bachmann and Bernstein (2009b) reported the rate of fixed issue
reports that are linked with commits. They found that the rate for the Apache HTTPD project
is 43.43%, the Eclipse project is 33.05%, the GNOME project is 38.99%, the NetBeans
project is 54.60%, the OpenOffice project is 7.43%, and the BSZKB project is 37.31%.
Ayari et al. (2007) reported that the heuristic is not sufficient to find links between issue
reports and changes. Indeed, our motivating example (Section 2) also reported that only a
fraction of commits include issue id candidates. Hence, the SZZ algorithm needs to detect
defect-fixing commits based on incomplete information.

In summary, the SZZ algorithm has two challenges: (1) detecting defect-inducing com-
mits based on multiple-purpose defect-fixing commits; (2) detecting defect-fixing commits
based on incomplete information.

3.2 Detecting Defect-Inducing Commits Based onMultiple-Purpose Defect-Fixing
Commits

To address the first challenge that a defect-fixing commit intends to accomplish multiple
purposes or is not related to defects (Mockus and Votta 2000; Kim et al. 2008; Pan et al.
2009; Kawrykow and Robillard 2011; Herzig and Zeller 2013; Nguyen et al. 2013; Mills
et al. 2018), prior studies have proposed several solutions (Mockus and Votta 2000; Rosen
et al. 2015; Jung et al. 2009; Nguyen et al. 2013; Neto et al. 2018, 2019). Jung et al. (2009)
excluded non-fixing hunks from a defect-fixing commit. They identified 11 non-fixing hunk
patterns, which can be divided into two categories: syntactically detectable patterns and
semantically detectable patterns. For example, renaming is a non-fixing hunk pattern in the
syntactically detectable patterns category. Pan et al. (2009) also summarized code patterns
in defect-fixing hunks. They found 27 code patterns; the defect-fixing hunks that include
one of them account for around 50%. Nguyen et al. (2013) called such commits mixed-
purpose fixing commits (MFCs). They proposed a tool, Cardo, which achieved an average
of 93% precision and 61% recall to detect MFCs. Neto et al. (2018) tried to remove refac-
toring changes by modifying the SZZ algorithm and called this approach refactoring aware
SZZ implementation (RA-SZZ). They reported that RA-SZZ removed 20.8% lines that were
identified as defective lines by another state-of-the-art SZZ implementation.

cregit (German et al. 2019) has been utilized to detect defect-inducing commits from
defect-fixing commits including non-source code changes (e.g., style changes). This tool
converts a Git repository into a view repository in which specified types of files (e.g., Java
files) are converted into token per line files. Each token also has an AST type. Hence, we can
track the modification at the token level and easily ignore all non-source code modifications
(e.g., comments, blanks, and format changes).

However, even if researchers use these previous solutions to detect defect-inducing com-
mits, they need to detect defect-fixing commits first. If such detected defect-fixing commits
are inaccurate, any of the previous solutions induce false defect-inducing commits. Hence,
detecting defect-fixing commits accurately is important in detecting defect-inducing com-
mits to take full advantage of the previous solutions. Hence, in this paper, we focus on the
second challenge, detecting defect-fixing commits based on incomplete information.

Empir Software Eng (2022) 27:136 Page 11 of 50 136

3.3 Issue-Link Algorithm: Detecting Defect-Fixing Commits Based on Incomplete
Information

To address the second challenge, many studies have attempted to improve the accuracy of
detecting defect-fixing commits (Fischer et al. 2003a; Śliwerski et al. 2005; Bachmann and
Bernstein 2009a, 2010; Bird et al. 2010; Sureka et al. 2011; Wu et al. 2011; Nguyen et al.
2012; Bissyandé et al. 2013; Le et al. 2015; Schermann et al. 2015; Sun et al. 2016, 2017a,
b; Xie et al. 2019; Tu and Menzies 2020). More specifically, ILAs (issue-link algorithms)
have been proposed to link issue reports to commits. For example, Fischer et al. (2003a)
proposed an ILA that extracts issue ids from log messages to link between issue reports and
commits.

As we described in Section 1, prior studies that proposed ILAs have two challenges: the
data inconsistency and the small comparisons. Table 2 provides an overview of the stud-
ied projects (in the “Studied Projects/Organizations” column) and ILAs (in the “Baseline
ILAs name” column) that were compared with the proposed ILA (in the “Proposed ILAs
name” column) in prior studies. “NaN” indicates that no information was available or that
the authors did not provide any names with their ILAs (e.g., heuristics). To collect these
ILAs, we conducted a systematic literature study with the snowballing approach (Wohlin
2014). This is because we want to collect prior studies that proposed ILAs regardless of
their venues and years. We observe that prior studies used different studied projects (data
inconsistency), and compared their proposed ILAs with only few ILAs (small comparison).
As a result, it is difficult to compare their results and conclude on the best-performing ILA
in terms of the accuracy of detecting defect-fixing commits and improving defect prediction
performance.

3.4 Defect Data Quality in Defect Prediction Research

If an ILA induces false-positive/negative defect-fixing commits, the ground-truth data that
is used to train and evaluate defect prediction models would be biased. Indeed, prior
studies have investigated the importance of data quality (Nguyen et al. 2010; Bird et al.
2009). Nguyen et al. (2010) investigated the impact of missing links for a commercial
project. They found that even a commercial project, which adheres to strict rules, also pro-
vides a biased dataset. Bird et al. (2009) reported that the defect-fixing commits that were
detected by using an issue-tracking system are not accurate and affect defect prediction
performance.

In addition, prior studies have investigated the impact of noisy data on defect predic-
tion performance (Kim et al. 2011; Rahman et al. 2013; Ramler and Himmelbauer 2013;
Herzig et al. 2013; Tantithamthavorn et al. 2015). Kim et al. (2011) reported the impact
of the false-positive/negative rate of detected defects by an ILA on defect prediction per-
formance. They found that the proportion of false-positive/negative rates over a certain
threshold (e.g., 20%) had a significant effect on defect prediction performance. Ramler and
Himmelbauer (2013) studied the noise in a defect dataset. They reported that the prediction
performance is not significantly affected by 20% noise. Rahman et al. (2013) compared the
impact of the bias and sample size on defect prediction performance, reporting that the sam-
ple size is more important than the bias. They found that researchers need to focus more
on collecting samples rather than the bias. Herzig et al. (2013) reported that bug reports
are frequently misclassified (33.8% of bug reports). In addition, they found that 39% of
files that are labeled as defective are not defective on average. They also showed that such

 136 Page 12 of 50 Empir Software Eng (2022) 27:136

Ta
bl
e
2

D
at

a
in

co
ns

is
te

nc
y

an
d

sm
al

lc
om

pa
ri

so
ns

in
pr

io
r

st
ud

ie
s

fo
r

IL
A

s.
T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

in
th

e
“S

tu
di

ed
Pr

oj
ec

ts
/O

rg
an

iz
at

io
ns

”
co

lu
m

n
in

di
ca

te
th

e
nu

m
be

rs
of

re
tr

ie
ve

d
pr

oj
ec

ts
fr

om
th

e
A

pa
ch

e
So

ft
w

ar
e

Fo
un

da
tio

n
or

st
ud

ie
d

pr
oj

ec
ts

R
ef

er
en

ce
Y

ea
r

St
ud

ie
d

Pr
oj

ec
ts

/O
rg

an
iz

at
io

ns
B

as
el

in
e

IL
A

s
N

am
e

Pr
op

os
ed

IL
A

N
am

e

Fi
sc

he
r

et
al

.(
20

03
a)

20
03

M
oz

ill
a

N
aN

N
aN

Śl
iw

er
sk

ie
ta

l.
(2

00
5)

20
05

M
oz

ill
a,

E
cl

ip
se

N
aN

SZ
Z

B
ac

hm
an

n
an

d
B

er
ns

te
in

(2
00

9a
)

20
09

A
pa

ch
H

T
T

P
Se

rv
er

,E
cl

ip
se

et
c.

(6
)

N
aN

N
aN

B
ac

hm
an

n
et

al
.(

20
10

)
20

10
A

pa
ch

e
H

T
T

P
Se

rv
er

N
aN

L
IN

K
ST

E
R

B
ir

d
et

al
.(

20
10

)
20

10
N

aN
N

aN
L

IN
K

ST
E

R

Su
re

ka
et

al
.(

20
11

)
20

11
A

pa
ch

e
H

T
T

P
Se

rv
er

,W
ik

iM
ed

ia
N

aN
N

aN

W
u

et
al

.(
20

11
)

20
11

Z
X

in
g,

O
pe

nI
nt

en
ts

,A
pa

ch
e

H
T

T
P

Se
rv

er
T

ra
di

tio
na

l
R

eL
in

k

N
gu

ye
n

et
al

.(
20

12
)

20
12

Z
X

in
g,

O
pe

nI
nt

en
ts

,A
pa

ch
e

H
T

T
P

Se
rv

er
R

eL
in

k,
B

ug
Sc

ou
t

M
L

in
k

B
is

sy
an

dé
et

al
.(

20
13

)
20

13
A

pa
ch

e
So

ft
w

ar
e

Fo
un

da
tio

n
(1

0)
R

eL
in

k,
IR

te
ch

s.
N

aN

L
e

et
al

.(
20

15
)

20
15

A
pa

ch
e

So
ft

w
ar

e
Fo

un
da

tio
n

(6
)

M
L

in
k

R
C

L
in

ke
r

Sc
he

rm
an

n
et

al
.(

20
15

)
20

15
A

pa
ch

e
So

ft
w

ar
e

Fo
un

da
tio

n
(1

5)
N

aN
Pa

L
iM

od

Su
n

et
al

.(
20

16
)

20
16

A
pa

ch
e

So
ft

w
ar

e
Fo

un
da

tio
n

(1
8)

FR
L

in
k,

R
C

L
in

ke
r

N
aN

Su
n

et
al

.(
20

17
b)

20
17

C
L

I,
C

ol
le

ct
io

ns
et

c.
(6

)
R

C
L

in
ke

r
FR

L
in

k

Su
n

et
al

.(
20

17
a)

20
17

A
pa

ch
e

So
ft

w
ar

e
Fo

un
da

tio
n

(1
2)

FR
L

in
k

PU
L

in
k

X
ie

et
al

.(
20

19
)

20
19

A
pa

ch
e

So
ft

w
ar

e
Fo

un
da

tio
n

(6
)

PU
L

in
k

D
ee

pL
in

k

T
u

an
d

M
en

zi
es

(2
02

0)
20

20
L

A
M

M
PS

,R
M

G
-P

Y
et

c.
(9

)
K

ey
w

or
d

la
be

lin
g

E
M

B
L

E
M

Empir Software Eng (2022) 27:136 Page 13 of 50 136

misclassified data potentially decrease the defect prediction performance. Tantithamtha-
vorn et al. (2015) evaluated the impact of mislabeled data on defect prediction. They found
that such mislabeled data rarely affect precision values; in contrast, they do affect recall
values.

To remedy such biased ground-truth data, we need to improve ILAs. To the best of the
authors’ knowledge, no studies have conducted large-scale empirical comparisons across
ILAs, though many prior studies have proposed various ILAs (as described in Table 2).
Hence, we conducted a large-scale empirical comparison across ILAs and evaluated the
impact to defect prediction performance. Note that detecting defect-inducing commits
based on defect-fixing commits is beyond the scope of this paper. We use a basic approach
to detect defect-inducing commits to evaluate the impact to defect prediction performance.

4 Experimental Design

In this section, we give an overview of our experimental design. Figure 2 shows the steps of
our experiments. In the following, we describe these steps in detail.

1. Extract explicit links by the Keyword Extraction. The keyword extraction approach uses
issue ids in the commit messages to make links between issue reports and commits. We
regard commits that are linked with studied issue reports labeled Bug as defect-fixing com-
mits and use them as the ground-truth defect-fixing commits. We call the links of such
ground-truth defect-fixing commits explicit links.

2. Randomly delete X% links. We randomly deleted X% explicit links on our studied datasets
(Section 5.1). By randomly deleting explicit links and regarding defect-fixing commits that
are only linked with such deleted links as missing defect-fixing commits, we can simulate
and evaluate a scenario in which datasets have low link proportions. Figure 3 shows an
example. Let us assume we have three explicit links (Commit A and Issue A, Commit A
and Issue B, and Commit B and Issue A) and delete 66% of the links. We might delete
two links: Commit A and Issue A, and Commit B and Issue A. We regard Commit B as a
missing defect-fixing commit; Commit A is still a defect-fixing commit because Commit
A is still linked with Issue B. We describe the studied delete rates (i.e., X%) in our results
section (Sections 6.1 and 6.2).

3. Preprocess data. We executed the preprocessing for the ILAs. The missing defect-fixing
commits should not have any issue ids on commit messages because we assume that the
keyword extraction approach overlooks such commits. Hence, we removed issue ids from
the commit messages to conduct a fair comparison when using the commit messages on the
missing defect-fixing commits. In addition, we applied a basic restriction.We describe the
details of this restriction in Section 5.2. The details of the preprocessing for each ILA are
given in Appendix A.

4. Extract links by the ILAs. We applied the ILAs to the preprocessed commits and issue
reports for each delete rate. When using a delete rate greater than 0%, ILAs are trained on
the explicit links without the deleted links if such ILAs need to be trained.

5. Execute defect prediction based on extracted links. We executed the defect prediction
on the extracted links. We first used the extracted links to identify defect-fixing com-

 136 Page 14 of 50 Empir Software Eng (2022) 27:136

Issue
Tracking
System

Software
Repository

Issue Reports

Commits

Keyword
Extraction

1: Extract explicit
links by the

Keyword
Extraction

Ground-
Truth
Links

ILAs

4: Extract links by
the ILAs

Random
Link Deleter

2: Randomly
delete X% links

Defect
Prediction

Model

5: Execute defect
prediction based
on extracted links

3: Preprocess data

Data Pre-
processor

Data Flow

Apply Operation

Tool

Data

Operation or A Data Set

Ground truth and deleted data are generated

Evaluate ILAs

6: Repetitions

Fig. 2 Overview of our experimental design

mits. We used such defect-fixing commits to identify defect-inducing commits by using the
commit-link algorithm. We describe the details of our commit-link algorithm implementa-
tion in Section 5.3. Based on the defect-inducing commits, we trained the defect prediction
model and evaluated the performance across different ILAs.

6. Repetitions. To relieve data selection bias on the deleted links, we repeated steps 2-5. We
repeated steps 1-4 100 times while we repeated step 5 20 times. We used the 100 results
of step 4 as the RQ1 results and the 20 results of step 5 as the RQ2 results. We employed

Commit A

Commit B

Issue A

Issue B

Commit A

Commit B

Issue A

Issue B

Randomly
delete

66% links

Fig. 3 An example to delete 66% of the explicit links from three of them

Empir Software Eng (2022) 27:136 Page 15 of 50 136

different times because the execution time of step 5 would be too long to conduct 100
repetitions. We discussed the details of the execution time in Section 6.2.

A running example. Let us describe these steps with an example: the Avro project. In
particular, we utilize the commit a439bf9. In step 1, the keyword extraction approach
forms the links. The commit message of the commit a439bf9 includes a studied issue id
of AVRO-2741 that is labeled Bug. Consequently, the keyword extraction approach links
this commit to the issue report of AVRO-2741 and refers to this commit as a defect-fixing
commit. Also, this link is an explicit link. For all the commits in the Avro project (2,728),
the keyword extraction approach links 778 commits to issue reports labeled Bug. These
commits are also defect-fixing commits, and all the links are explicit links.

In step 2, we delete X% links. If X is zero, no links are deleted. However, if X is not
zero, X% links are deleted. For example, if X is 50, half of the links in the Avro project are
randomly deleted. We refer to all commits whose all links are deleted as missing defect-
fixing commits. For example, if the link for the commit a439bf9 is deleted, the commit
a439bf9 is a missing defect-fixing commit.

In step 3, if the commit a439bf9 is a missing defect-fixing commit, the issue id (i.e.,
AVRO-2741) is excluded from the commit message. We apply this exclusion process to all
missing defect-fixing commits. In addition, we also apply the basic restriction to all remain-
ing links to exclude the false-positive links (Section 5.2). The link of the commit a439bf9
is not the false-positive link; and therefore, it is not the target of the basic restriction.

In step 4, ILAs are applied to all commits and issue reports. If the commit a439bf9 is a
missing defect-fixing commit, ILAs may recover the link between the commit and the issue
report of AVRO-2741. However, ILAs may form links between the commit and other issue
reports as false-positive links. Similarly, ILAs may recover links between any commits and
any issue reports.

In step 5, we conduct defect prediction. First, we use all the commits that are defect-
fixing and not missing defect-fixing commits, and all the commits that are not defect-fixing
but linked to issue reports labeled Bug by ILAs to find the corresponding defect-inducing
commits. For the commit a439bf9, if either the link is not deleted in step 2 or the link is
recovered in step 4, this commit is referred to as a defect-fixing commit and it is utilized
to find the corresponding defect-inducing commits. Otherwise, this commit is not referred
to as a defect-fixing commit even if it is an actual defect-fixing commit. We build a defect
prediction model based on the defect-inducing commits.

In step 6, steps 2-5 are repeated. This repetition allows us to study the impact of var-
ious deleted links and false-positive links (i.e., the combination of defect-fixing commits,
false-positive defect-fixing commits, and missing defect-fixing commits). For the commit
a439bf9, we study both cases where the commit a439bf9 is a missing defect-fixing
commit and a defect-fixing commit.

5 Methodology

In this section, we describe our methodology. In particular, we discuss our studied datasets,
ILAs, a commit-link algorithm, defect prediction models, evaluation measures, preprocessing
steps, a resampling approach, and validation schemes. The tools, data, and operations in
Fig. 2 correspond to each method.

 136 Page 16 of 50 Empir Software Eng (2022) 27:136

5.1 Studied Datasets

We used five open-source software projects (the Avro (Apache Software Foundation 2009b),
Tez (Apache Software Foundation 2014), ZooKeeper (Apache Software Foundation 2008),
Chukwa (Apache Software Foundation 2009), and Knox (Apache Software Foundation,
2013) from the Apache Software Foundation as our studied datasets. Table 3 describes the
basic information of the projects. Avro is a data serialization system. Developers can use
Avro to transform raw data into rich binary data. Tez is a framework on Hadoop that allows
developers to process data. ZooKeeper is a centralized service for managing distributed
systems. Chukwa is a monitoring system for distributed systems. Knox provides developers
with an application gateway on Hadoop. As a result, we used two domains (data serialization
and distributed system) in this study. We extracted Git repositories on GitHub and issue
reports on JIRA for these five projects. The studied data include over 10k linked commits
and 5k issue reports.

We chose these five projects because almost all commit messages of the repositories
include issue ids on JIRA. The proportion of linked commits (i.e., including issue ids on
commit messages) for the Avro project is 81.1%, for the Tez project is 96.3%, for the
ZooKeeper project is 84.6%, for the Chukwa project is 82.4%, and for the Knox project is
82.7%; the proportion of defect-fixing commits that are detected by our keyword extraction
approach (we describe the details in Section 5.2) for the Avro project is 28.5%, for the Tez
project is 53.0%, for the ZooKeeper project is 44.7%, for the Chukwa project is 36.8%, and
for the Knox project is 35.1%.

We considered these defect-fixing commits as the ground-truth defect-fixing commits.
This is commonly used when evaluating ILAs (Bachmann and Bernstein 2009b; Sureka
et al. 2011, Sun et al. 2016, 2017a; Xie et al. 2019) because prior studies have validated this
practice (Bachmann and Bernstein 2009b; Sureka et al. 2011; Sun et al. 2017a). Prior stud-
ies (Bissyandé et al. 2013; Sun et al. 2017a; Sureka et al. 2011) executed a manual inspection
to validate the accuracy of their data. Similar to such prior studies, to validate the accu-
racy of our ground-truth data, we also executed a manual inspection for both false-positive
and -negative defect-fixing commits by two of the authors. We first randomly extracted 361
defect-fixing commits to validate the number of false-positive defect-fixing commits and
367 non-defect-fixing commits to validate the number of false-negative defect-fixing com-
mits from all projects. These numbers are determined by the condition where the confidence
level is 95% and the confidence interval is 5. Two of the authors labeled these commits
as false-positive/negative defect-fixing commits. The kappa coefficients (scikit-learn devel-
opers 2020d) of this labeling process are 1.000 and 0.971, respectively. For the conflicts
between two of the authors, the two of the authors carefully discussed and decided the
final label. Given this manual inspection, we found that the accuracy of the defect-fixing
commits and non-defect-fixing commits are 99.7% (360/361) and 89.1% (327/367), respec-
tively, which are high accuracy values. Consequently, the ground truth data is reliable. We
discuss the false-positive and -negative defect-fixing commits in Section 7.5 and the threats
of this manual inspection in Section 8.3.

We studied the Java source code in the studied projects, though the Avro project also pro-
vides developers with implementations on multiple languages. Note that we removed merge
commits from the studied commits. This is because merge commits only merge existing
diff codes and do not add/modify any codes. In addition, we studied issue reports that are
labeled Bug and the status is either Resolved or Closed. Note that there exists an issue

Empir Software Eng (2022) 27:136 Page 17 of 50 136

Ta
bl
e
3

O
ve

rv
ie

w
of

st
ud

ie
d

A
pa

ch
e

pr
oj

ec
ts

Pr
oj

ec
t

#
C

om
m

its
#

M
er

ge
#

Is
su

es
%

L
in

ke
d

%
D

ef
ec

t-
Fi

xi
ng

%
D

ef
ec

t-
In

du
ci

ng
L

at
es

tA
bb

r.

C
om

m
its

(T
yp

e:
B

ug
)

C
om

m
its

C
om

m
its

C
om

m
its

C
om

m
it

H
as

h

A
vr

o
2,

78
8

60
90

8
81

.1
(2

,2
13

/2
,7

28
)

28
.5

(7
78

/2
,7

28
)

9.
9

(2
69

/2
,7

28
)

7
9
1
e
c
6
0

Te
z

3,
86

6
16

1,
78

6
96

.3
(3

,7
06

/3
,8

50
)

53
.0

(2
,0

40
/3

,8
50

)
26

.5
(1

,0
19

/3
,8

50
)

b
a
4
4
1
c
1

Z
oo

K
ee

pe
r

3,
78

4
6

1,
33

9
84

.6
(3

,1
97

/3
,7

78
)

44
.7

(1
,6

89
/3

,7
78

)
15

.5
(5

86
/3

,7
78

)
b
5
f
e
a
d
c

C
hu

kw
a

1,
10

4
2

34
0

82
.4

(9
08

/1
,1

02
)

36
.8

(4
05

/1
,1

02
)

19
.6

(2
16

/1
,1

02
)

3
8
7
4
2
d
2

K
no

x
2,

85
6

32
1,

04
7

82
.7

(2
,3

36
/2

,8
24

)
35

.1
(9

92
/2

,8
24

)
22

.3
(6

29
/2

,8
24

)
a
8
2
1
c
f
3

 136 Page 18 of 50 Empir Software Eng (2022) 27:136

report whose resolution date is missing. Hence, in our experiment, we used the closed date
as a proxy of the resolution date if the resolution date is missing.

5.2 Studied ILAs

We first collected prior studies that propose ILAs. To prevent overlooking such prior stud-
ies, we used the snowballing approach (Wohlin 2014) that we described in Section 3.3. In
particular, when we find a paper that proposes ILAs, we also collect all studies that refer to
this study and are referred by this study. This process allows us to collect studies regardless
of their venues and years. Also, we used the result of our literature survey that we described
in Section 2.2. Finally, we found 16 prior studies (Table 2).

Prior studies combined several criteria (e.g., text similarity) on their ILAs (Fischer et al.
2003a; Śliwerski et al. 2005; Bachmann and Bernstein 2009a; Bachmann et al. 2010; Bird
et al. 2010; Sureka et al. 2011; Wu et al. 2011; Nguyen et al. 2012; Bissyandé et al. 2013;
Le et al. 2015; Schermann et al. 2015; Sun et al. 2016, 2017a, b; Xie et al. 2019; Tu and
Menzies 2020). In this paper, we retrieved each of the criteria from the previous ILAs and
call them and their combinations ILAs. This is because such criteria are the finest-grained
algorithms when linking issue reports to commits, and we can cover not only previous ILAs,
but also other combinations of criteria. Note that we exclude the studies that used manual
analysis (Bachmann et al. 2010; Bird et al. 2010; Tu and Menzies 2020). Table 4 lists all
the studied ILAs. We studied 10 ILAs including the baseline ILA (the keyword extraction
approach). Note that because we used two models for the machine learning approach, the
actual number of studied ILAs is 11. Before applying these ILAs, we applied an essential
restriction:

Table 4 Overview of studied ILAs

ILA Abbr. References

Keyword Extraction KE Fischer et al. (2003a), Śliwerski et al. (2005),
Sureka et al. (2011), Wu et al. (2011), Nguyen et al.
(2012), Schermann et al. (2015), Sun et al. (2016),
Bachmann and Bernstein (2009a), Bissyandé et al.
(2013), and Xie et al. (2019)

Time Filtering TF Śliwerski et al. (2005), Sureka et al. (2011), Wu
et al. (2011), Nguyen et al. (2012), Schermann
et al. (2015), Le et al. (2015), Sun et al. (2016),
Bachmann and Bernstein (2009a), Bissyandé et al.
(2013), Sun et al. (2017b), Sun et al. (2017a), and
Xie et al. (2019)

Natural Language Text Similarity TS Sureka et al. (2011), Wu et al. (2011), Nguyen et al.
(2012), Bissyandé et al. (2013), Le et al. (2015),
Sun et al. (2016, 2017a b), Xie et al. (2019)

Natural Language Text Similarity
with Word Association

WA Nguyen et al. (2012)

Message Generation from Source Code GS Le et al. (2015)

Loner Heuristics LO Schermann et al. (2015)

Phantom Heuristics PH Schermann et al. (2015)

Modified Text Files MT Sun et al. (2016, 2017b)

PU Learning PU Sun et al. (2017a)

Machine Learning ML Le et al. (2015) and Xie et al. (2019)

Empir Software Eng (2022) 27:136 Page 19 of 50 136

– a linked issue report is created before the date of its linked commits are committed; and
– such a linked issue report is resolved after the date of its linked commits are committed.

All ILAs include this restriction. We call this restriction the basic restriction. This restriction
reduces the number of false-positive defect-fixing commits. We discussed the details in
Section 7.5. All the implementations of ILAs used in this paper can be seen as a Python
package (Kondo 2021b).

In the following, we give a brief overview of the ideas behinds ILAs. We describe the
details of them in Appendix A.

– Keyword Extraction (KE): This is a de facto standard approach to identify defect-
fixing commits extracting issue ids from commit messages with regular expressions. As
described previously, we used the output of this ILA as the ground-truth defect-fixing
commits. However, even if we use the projects in which almost all commits include
issue ids, linking commits and issue reports is a difficult process. We describe this threat
in Section 8.1.

– Time Filtering (TF): This approach makes links between commits and issue reports
where the date information is within a certain time interval. The main idea is that an
issue report might be resolved right after the commit date of the corresponding modifi-
cation. Interestingly, prior studies used different time intervals. For example, Bachmann
and Bernstein (2009a) used seven days or less; Schermann et al. (2015) used five min-
utes or less. Therefore, it is difficult to determine which time interval should be used.
From our preliminary analysis, we decided to use 10 minutes as our time interval. We
discuss the details of the preliminary study in Section 7.3.

– Natural Language Text Similarity (TS): This approach computes a text similarity value
between issue report descriptions and commit messages. If such a similarity value is
high, then a pair would be linked. The main idea is that the related issue reports and
commits have similar descriptions.

– Natural Language Text Similarity with Word Association (WA): This approach also
computes a text similarity value between issue reports and commits. However, this
approach additionally associates words between issue reports and commits based on
their contextual relationship.

– Message Generation from Source Code (GS): This approach uses comments of source
code instead of commit messages. A prior study (Le et al. 2015) used a comment gen-
eration technique. They used javadoc comments as the supervised data to train the
technique, and therefore, we used the javadoc comments instead of using code com-
ment generation techniques to ensure that clean information is used. The procedure is
the same as that in the natural language text similarity approach.

– Loner Heuristics (LO): This approach focuses on a scenario in which one commit
addresses one issue report. Schermann et al. (2015) proposed heuristics of the scenario
to identify defect-fixing commits.

– Phantom Heuristics (PH): This approach focuses on a scenario in which a set of commits
addresses one issue report. Schermann et al. (2015) proposed heuristics of the scenario.

– Modified Text Files (MT): This approach considers not only commit messages but also
modified text files. The main idea is to retrieve additional information from natural
language text in modified files.

– PU Learning (PU): This approach uses PU (positive and unlabeled) learning (Elkan
and Noto 2008). As there might exist many unlabeled links between issue reports and
commits, prior study (Sun et al. 2017a) used the PU learning to predict positive links

 136 Page 20 of 50 Empir Software Eng (2022) 27:136

based on such unclear data. To predict positive links, we provided five features with the
PU learning approach: the time difference, the time difference type, the cosine similar-
ity of text, the proportion of modified source files, and the number of modified source
files. Further details of the features are described in Appendix A.

– Machine Learning (ML): This approach applies machine learning models to predict
links. Although the PU learning approach predicts positive links based on positive and
unlabeled links, this approach predicts positive links based on positive links. We used
two machine learning models: a random forest model (scikit-learn developers 2020a)
and a support vector machine model (scikit-learn developers 2020c). To predict positive
links, we provided five features with the machine learning approach that are also used
on the PU learning approach.

Note that, in this paper, we decided not to use the following four ILAs that have been
proposed previously:

– File Filtering Approach (Fischer et al. 2003a; Sureka et al. 2011)
– Developer Filtering Approach (Śliwerski et al. 2005; Sureka et al. 2011; Wu et al. 2011;

Schermann et al. 2015)
– Code Similarity Approach (Nguyen et al. 2012)
– Deep Learning Approach (Xie et al. 2019)

The file filtering and code similarity approaches need modified files information (patches).
However, the Apache JIRA prohibited such information from being retrieving. The devel-
oper filtering approach is a common practice; however, we cannot use such information
because of GDPR (EU 2016). The deep learning approach was proposed by Xie et al.
(2019). However, many settings are not clear in the paper, such as the details of deep learning
architectures. Hence, we decided not to use these approaches in this paper.

5.3 Commit-Link Algorithm

After detecting defect-fixing commits, we need to detect defect-inducing commits. We call
this process commit-link algorithm (CLA). We used a basic procedure as our CLA:

1. Apply cregit (German et al. 2019) to the target repository. As described in Section 3,
cregit (German et al. 2019) converts a Git repository into a view repository in which
specified types of files (i.e., Java file) are converted into token per line files. Each token
also has an AST type. Hence, we can easily ignore redundant tokens (e.g., comments).

2. Extract commit hash lists from the target repository. Remove the first commit hash.
This is because the first commit is not related to source code in the Avro and ZooKeeper
projects and it is difficult to track individual modifications in the Tez, Chukwa, and
Knox projects.

3. Apply the git show4 command to extract all changed lines (added lines and deleted
lines) for each commit. Note that the git show command classifies all changed
(added/deleted/modified) lines in a commit as the added lines or the deleted lines. A
modified line is represented by an added line and a deleted line.

4https://git-scm.com/docs/git-show

https://git-scm.com/docs/git-show

Empir Software Eng (2022) 27:136 Page 21 of 50 136

4. Extract the deleted lines for all Java files for each commit, but ignore the added lines.
This is because the added lines are newly added lines in this defect-fixing commit.
Hence, such lines do not have any information to detect defect-inducing commits.

5. Remove the deleted lines in non-source code (i.e., comments).
6. Apply the git blame5 command to the remaining deleted lines to identify the

commits where the deleted lines were added. We regard the extracted commits as
defect-inducing commits.

5.4 Studied Defect PredictionModel

We used the logistic regression model as our defect prediction model. As our goal is not
to construct an accurate defect prediction model, but to reduce the difference in defect pre-
diction performance from the ground-truth defect prediction performance by using ILAs,
we only chose logistic regression. The logistic regression model is frequently used for con-
structing defect prediction models (Kamei et al. 2013; Basili et al. 1996; Gyimóthy et al.
2005). This model learns the relationship between a dependent variable and independent vari-
ables. In defect prediction, a dependent variable is the flag of commits that indicates whether
this commit is defective or clean; dependent variables are the features of commits.

To construct a logistic regression model, we used the scikit-learn implementation (scikit-
learn developers 2020b). Because it is important to optimize the hyper-parameters of defect
prediction models (Tantithamthavorn et al. 2016), we optimized the hyper-parameter of
the logistic regression model. The scikit-learn implementation has two hyper-parameters
that can be optimized: the regularization strength C and the norm of the penalty. We opti-
mized these two hyper-parameters in the following ranges: 0 to 10 for C and l1 and l2
for the norm of the penalty. We might optimize other hyper-parameters; however, because
of the long execution time, we only used these two hyper-parameters. We describe the
execution time of defect prediction in Section 6.2. From empirical and theoretical view-
points, the random search is one of the best optimization methods (Bergstra and Bengio
2012). Hence, we used the random search to optimize the hyper-parameters of the logistic
regression.

5.5 EvaluationMeasures

We evaluated two tasks: the accuracy of detecting defect-fixing commits by the ILAs and
the accuracy of detecting defect-inducing commits by the defect prediction model. As each
task has different outputs, we used different sets of evaluation measures. In addition, we
used a statistical test. In the following, we explain the evaluation measures for each task and
the statistical test.

5.5.1 Detecting Defect-Fixing Commits

We used four evaluation measures: precision, recall, F1, and true-positive (TP) rate. The pre-
cision indicates the proportion of true defect-fixing commits in all the defect-fixing commits
that are decided by an ILA; the recall indicates the proportion of true defect-fixing commits
that are identified by an ILA in all the true defect-fixing commits. Here, the true defect-
fixing commits indicate the commits that are identified by the explicit links. Let us assume

5https://git-scm.com/docs/git-blame

https://git-scm.com/docs/git-blame

 136 Page 22 of 50 Empir Software Eng (2022) 27:136

that we have three true defect-fixing commits and two clean commits, and an ILA detects
one true defect-fixing commit and one clean commit as defect-fixing commits. In this case,
the precision value would be 0.500 (1/2), and the recall value would be 0.333 (1/3) (Fig. 4).

The TP rate is used on this task only. In this task, we deleted X% of the links and have
the ILAs recover missing defect-fixing commits. The precision, recall, and F1 values were
computed on all the true defect-fixing commits; however, the TP rate was computed on the
missing defect-fixing commits only. This is because we want the TP rate to evaluate the
accuracy of the ILAs on the missing defect-fixing commits. Let us assume that we have
five missing defect-fixing commits. If an ILA detects two missing defect-fixing commits as
defect-fixing commits, the TP rate would be 0.400.

5.5.2 Detecting Defect-Inducing Commits

We used six evaluation measures: area under the receiver operating characteristic curve
(AUC), precision, recall, F1, Matthews correlation coefficient (MCC), and Brier score.
AUC and Brier score are threshold-independent measures, though the precision, recall, and
F1 are threshold-dependent measures (we used 0.5 as the threshold). This is because Tan-
tithamthavorn and Hassan (2018) suggested using threshold-independent measures because
threshold-dependent measures may result in different conclusions by different thresholds.
However, we also used threshold-dependent measures because such measures show us vari-
ous viewpoints on the results. We also used a threshold-dependent measure, MCC, because
prior studies reported that MCC is durable to the skewness of defect data (Boughorbel et al.
2017; Zhang et al. 2016).

5.5.3 The Scott-Knott ESD test

We used the Scott-Knott ESD test (Tantithamthavorn et al. 2017) as our statistical test to
compare the evaluation measures across ILAs (using a 95% significance level). The Scott-
Knott ESD test is an extended version of the Scott-Knott test. The Scott-Knott test is a
clustering algorithm that ranks the distributions. If distributions are not statistically signif-
icantly different, these distributions are placed in the same rank. The Scott-Knott ESD test
ranks the distributions with not only statistically significant differences but also Cohen’s d

effect size (Cohen 2013). The distributions that are not statistically significantly different or
with negligible effect size are placed in the same rank.

Clean commit

Precision

Recall

True Data ILA Result

Fig. 4 An example to evaluate the accuracy of detecting defect-fixing commits

Empir Software Eng (2022) 27:136 Page 23 of 50 136

5.6 Preprocessing for Predicting Defect-Inducing Commits

To predict defect-inducing commits, we used the defect prediction model. Thus, we need to
transform a commit into a numerical vector representation. The most common representa-
tion in commit-level defect prediction (a.k.a. just-in-time defect prediction) is metrics-based
approaches such as using the change metrics (Kamei et al. 2013; Kim et al. 2008; Mockus
and Votta 2000; Kondo et al. 2020).

In this paper, we used the change metrics (Kamei et al. 2013; Kondo et al. 2020) to
transform a commit into a numerical vector representation and evaluate the ILAs. We
used Commit Guru (Rosen et al. 2015) to calculate the change metrics. We transformed
the change metrics to remove correlated features and normalize the features following a
previous study (Kondo et al. 2020):

– Exclude ND and REXP because they are strongly correlated with NF and EXP.
– LA is replaced by LAnew = LA/LT if LT is not zero.
– LD is replaced by LDnew = LD/LT if LT is not zero.
– LT is replaced by LTnew = LT/NF if NF is not zero.
– NUC is replaced by NUCnew = NUC/NF if NF is not zero.

Finally, we apply the z-score (Kondo et al. 2019) to the processed change metrics. Note that
we decided not to apply z-score to FIX because FIX is a binary metric.

5.7 Resampling Approach

When learning the model, the learning performance might be affected by imbalanced
data (Tan et al. 2015). Prior studies (Bennin et al. 2017; Agrawal and Menzies 2018;
Tantithamthavorn et al. 2018) recommend using the following resampling approaches:
random under-sampling, SMOTUNED, and MAHAKIL. In particular, SMOTUNED and
MAHAKIL are state-of-the-art approaches.

To remove the affection of imbalanced data, we compared the three approaches in defect
prediction and selected one of them for our study. Because we used the resampling approach
in RQ2, we evaluated the impact of these different approaches on the defect prediction per-
formance in the same experimental setting as RQ2 except for the repetition times. Owing
to the long execution time, we used 10 repetitions. Given the result, we found that SMO-
TUNED is the best resampling approach in our study. Hence, we employed SMOTUNED.
We only applied SMOTUNED to training data because we must use raw test data for
evaluation.

5.8 Validation Schemes

We need to relieve data selection bias on the deleted links. If we used a set of deleted
links, our result may be affected by which links are deleted. Therefore, we repeated the
process of deleting links 100 times for each delete rate. For each process, we computed the
evaluation measures of detecting defect-fixing commits in RQ1. Also, we used 20 of them in
RQ2 to compute the evaluation measures of detecting defect-inducing commits. Finally, we
computed the median evaluation measures across 100 repetitions in RQ1 and 20 repetitions
in RQ2. When applying the Scott-Knott ESD test, we considered the values of an evaluation
measure for 100/20 repetitions as a distribution for each ILA.

When evaluating the accuracy of detecting defect-inducing commits (just-in-time defect
prediction), we also need to relieve data selection bias on the training data and test

 136 Page 24 of 50 Empir Software Eng (2022) 27:136

data. Cross-validation techniques or bootstrap-sampling techniques (Tantithamthavorn et al.
2017) are frequently used. However, just-in-time defect prediction is studied on sequential
data. We must use past commits/changes to train the model without any information from
the future commits/changes. Thus, we used online change classification, which satisfies
this restriction. Online change classification was originally proposed by Tan et al. (2015),
and Kondo et al. (2020) formalized the parameters. We provide a Python package of the
online change classification (Kondo 2021c). Table 5 lists the parameter settings of the online
change classification. We used the same process with prior work (Kondo et al. 2020).

6 Results

6.1 RQ1: Which Issue-Link Algorithm is the Best to Detect Defect-Fixing Commits?

Motivation and Approach: In recent years, several prior studies (Sureka et al. 2011; Bis-
syandé et al. 2013; Schermann et al. 2015; Sun et al. 2016, 2017a; Xie et al., 2019) focused
on recovering missing links rather than detecting missing defect-fixing commits. A missing
link indicates a link between a commit and an issue report that is not detected by the KE
approach. A missing defect-fixing commit is a commit that fixes a defect but is not detected
by the KE approach.

Our main aim is to evaluate the ability of the ILAs in terms of detecting missing defect-
fixing commits rather than detecting missing links. This is because we want to contribute
to defect prediction rather than recovering missing links.

In this experiment, we deleted the explicit links of 10% to 50% in steps of 10%. We
considered the deleted explicit links as missing links and commits that are only linked
with such missing links as missing defect-fixing commits. We evaluated how many missing
defect-fixing commits are detected by the ILAs.

Results: Table 6 shows the median values of the evaluation measures for the 100 repetitions;
the row indicates an ILA, and the column indicates an evaluation measure. The cells show
not only the median values of the evaluation measures, but also the ranks in the parentheses
that were computed by the Scott-Knott ESD test across the ILAs. The gold cells indicate
the highest rank (= 1). Owing to space limitations, we only show the delete rates of 50%
and 10%.

Table 5 Parameter values of the online change classification for each project (days)

Project Start gap End gap Gap Unit (test Training Iteration

interval) interval step size

Avro 30 647 243 30 1530 51

Tez 30 450 51 30 990 33

ZooKeeper 30 606 211 30 1830 61

Chukwa 30 531 140 30 1590 53

Knox 30 544 147 30 1230 41

Empir Software Eng (2022) 27:136 Page 25 of 50 136

Table 6 The median values of the evaluation measures with the Scott-Knott ESD test results on detecting
missing defect-fixing commits for each ILA. The delete rate is 50% (left) and 10% (right)

(a) The Avro project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.757 (5) 0.821 (1) 0.788 (1) 0.824 (1)
TS 0.865 (4) 0.517 (4) 0.647 (3) 0.517 (3)
WA 0.117 (6) 0.271 (6) 0.164 (8) 0.123 (6)
GS 0.000 (7) 0.000 (10) 0.000 (9) 0.000 (9)
LO 0.817 (5) 0.236 (7) 0.366 (5) 0.471 (4)
PH 0.937 (3) 0.549 (3) 0.692 (2) 0.094 (7)
MT 0.598 (5) 0.372 (5) 0.458 (4) 0.374 (5)
PU 0.535 (5) 0.628 (2) 0.580 (3) 0.624 (2)
RF 0.993 (1) 0.103 (9) 0.188 (7) 0.055 (8)
SVM 0.986 (2) 0.127 (8) 0.225 (6) 0.104 (7)

(b) The Avro project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.757 (5) 0.821 (2) 0.788 (3) 0.820 (1)
TS 0.865 (4) 0.517 (6) 0.647 (6) 0.519 (5)
WA 0.078 (8) 0.404 (7) 0.130 (8) 0.190 (8)
GS 0.000 (9) 0.000 (10) 0.000 (10) 0.000 (10)
LO 0.520 (7) 0.046 (9) 0.084 (9) 0.463 (6)
PH 0.940 (2) 0.917 (1) 0.929 (1) 0.163 (9)
MT 0.598 (6) 0.372 (8) 0.458 (7) 0.371 (7)
PU 0.882 (3) 0.682 (4) 0.769 (4) 0.675 (3)
RF 0.964 (1) 0.766 (3) 0.854 (2) 0.690 (2)
SVM 0.940 (2) 0.566 (5) 0.706 (5) 0.545 (4)

(c) The Tez project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.847 (4) 0.776 (1) 0.810 (1) 0.777 (1)
TS 0.609 (6) 0.149 (6) 0.239 (5) 0.149 (6)
WA 0.071 (10) 0.443 (4) 0.123 (6) 0.296 (4)
GS 0.200 (9) 0.001 (10) 0.003 (10) 0.002 (9)
LO 0.888 (3) 0.159 (5) 0.270 (4) 0.318 (3)
PH 0.960 (1) 0.624 (2) 0.757 (2) 0.246 (5)
MT 0.255 (8) 0.058 (7) 0.095 (7) 0.057 (7)
PU 0.219 (7) 0.551 (3) 0.313 (3) 0.546 (2)
RF 1.000 (5) 0.004 (9) 0.007 (9) 0.001 (9)
SVM 0.955 (2) 0.040 (8) 0.077 (8) 0.031 (8)

(d) The Tez project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.847 (4) 0.776 (2) 0.810 (3) 0.779 (1)
TS 0.609 (6) 0.149 (7) 0.239 (5) 0.150 (8)
WA 0.042 (9) 0.604 (4) 0.079 (7) 0.441 (5)
GS 0.200 (8) 0.001 (10) 0.003 (9) 0.000 (10)
LO 0.654 (5) 0.031 (9) 0.060 (8) 0.316 (6)
PH 0.962 (1) 0.945 (1) 0.954 (1) 0.454 (4)
MT 0.255 (7) 0.058 (8) 0.095 (6) 0.055 (9)
PU 0.254 (7) 0.566 (5) 0.350 (4) 0.560 (3)
RF 0.911 (2) 0.748 (3) 0.821 (2) 0.715 (2)
SVM 0.905 (3) 0.223 (6) 0.357 (4) 0.213 (7)

(e) The ZooKeeper project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.908 (5) 0.771 (1) 0.834 (1) 0.774 (1)
TS 0.952 (4) 0.328 (6) 0.488 (4) 0.329 (4)
WA 0.046 (9) 0.445 (4) 0.084 (9) 0.341 (3)
GS 0.364 (8) 0.002 (10) 0.005 (10) 0.002 (8)
LO 0.846 (6) 0.090 (8) 0.163 (7) 0.181 (5)
PH 0.968 (3) 0.665 (2) 0.788 (2) 0.328 (4)
MT 0.505 (7) 0.331 (5) 0.400 (5) 0.331 (4)
PU 0.855 (6) 0.600 (3) 0.686 (3) 0.602 (2)
RF 1.000 (1) 0.062 (9) 0.117 (8) 0.037 (7)
SVM 0.990 (2) 0.120 (7) 0.214 (6) 0.104 (6)

(f) The ZooKeeper project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.908 (6) 0.771 (2) 0.834 (3) 0.769 (1)
TS 0.952 (4) 0.328 (8) 0.488 (6) 0.331 (7)
WA 0.029 (10) 0.557 (6) 0.055 (8) 0.476 (6)
GS 0.364 (9) 0.002 (10) 0.005 (10) 0.000 (9)
LO 0.575 (7) 0.017 (9) 0.033 (9) 0.174 (8)
PH 0.970 (2) 0.960 (1) 0.965 (1) 0.596 (4)
MT 0.505 (8) 0.331 (7) 0.400 (7) 0.335 (7)
PU 0.933 (5) 0.681 (4) 0.787 (4) 0.679 (3)
RF 0.987 (1) 0.729 (3) 0.839 (2) 0.690 (2)
SVM 0.964 (3) 0.584 (5) 0.727 (5) 0.578 (5)

(g) The Chukwa project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.730 (5) 0.706 (1) 0.718 (2) 0.704 (1)
TS 0.951 (4) 0.430 (3) 0.592 (4) 0.432 (3)
WA 0.271 (8) 0.323 (4) 0.297 (6) 0.164 (7)
GS 0.000 (9) 0.000 (8) 0.000 (9) 0.000 (10)
LO 0.709 (6) 0.109 (7) 0.188 (8) 0.217 (5)
PH 0.958 (3) 0.600 (2) 0.739 (1) 0.204 (6)
MT 0.663 (7) 0.272 (5) 0.385 (5) 0.268 (4)
PU 0.775 (5) 0.594 (2) 0.663 (3) 0.582 (2)
RF 1.000 (1) 0.142 (6) 0.248 (7) 0.054 (9)
SVM 0.984 (2) 0.149 (6) 0.259 (7) 0.111 (8)

(h) The Chukwa project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.730 (5) 0.706 (2) 0.718 (4) 0.701 (1)
TS 0.951 (3) 0.430 (7) 0.592 (6) 0.439 (4)
WA 0.171 (8) 0.472 (6) 0.251 (8) 0.229 (7)
GS 0.000 (9) 0.000 (10) 0.000 (10) 0.000 (8)
LO 0.404 (7) 0.022 (9) 0.042 (9) 0.214 (7)
PH 0.963 (2) 0.938 (1) 0.950 (1) 0.366 (5)
MT 0.663 (6) 0.272 (8) 0.385 (7) 0.263 (6)
PU 0.896 (4) 0.652 (3) 0.753 (3) 0.630 (2)
RF 0.965 (1) 0.625 (4) 0.758 (2) 0.477 (3)
SVM 0.950 (3) 0.541 (5) 0.689 (5) 0.487 (3)

(i) The Knox project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.867 (7) 0.451 (4) 0.594 (4) 0.452 (3)
TS 0.913 (6) 0.755 (1) 0.826 (1) 0.755 (1)
WA 0.290 (9) 0.412 (5) 0.340 (5) 0.156 (7)
GS 0.000 (10) 0.000 (10) 0.000 (9) 0.000 (10)
LO 0.929 (4) 0.187 (7) 0.311 (6) 0.376 (4)
PH 0.977 (3) 0.583 (3) 0.730 (3) 0.166 (6)
MT 0.400 (8) 0.002 (9) 0.004 (8) 0.002 (9)
PU 0.962 (5) 0.665 (2) 0.779 (2) 0.659 (2)
RF 1.000 (1) 0.090 (8) 0.164 (7) 0.047 (8)
SVM 0.990 (2) 0.213 (6) 0.350 (5) 0.189 (5)

(j) The Knox project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.867 (6) 0.451 (7) 0.594 (5) 0.447 (5)
TS 0.913 (5) 0.755 (2) 0.826 (2) 0.759 (1)
WA 0.207 (9) 0.627 (6) 0.312 (6) 0.253 (8)
GS 0.000 (10) 0.000 (10) 0.000 (9) 0.000 (10)
LO 0.810 (7) 0.036 (8) 0.069 (7) 0.359 (6)
PH 0.982 (2) 0.930 (1) 0.955 (1) 0.300 (7)
MT 0.400 (8) 0.002 (9) 0.004 (8) 0.000 (9)
PU 0.956 (4) 0.730 (3) 0.827 (2) 0.725 (2)
RF 0.991 (1) 0.692 (4) 0.814 (3) 0.603 (4)
SVM 0.978 (3) 0.647 (5) 0.778 (4) 0.636 (3)

 136 Page 26 of 50 Empir Software Eng (2022) 27:136

Observation 1) The TF approach generally statistically significantly outperformed the
other ILAs in the case where the delete rate is 50%. Tables 6a, c, e, and g list the results
on the datasets with the delete rate of 50% in the Avro, Tez, ZooKeeper, and Chukwa
projects. The TF approach achieved the highest rank on recall, F1, and TP rate in the delete
rate of 50% except for F1 in the Chukwa project. In addition, the rank on F1 in the Chukwa
project is the second rank. This result implies that the TF approach recovers the largest num-
ber of missing defect-fixing commits (recall and TP rate) in almost all projects, whereas
the number of false-positive defect-fixing commits (not defect-fixing commits, but identi-
fied by the ILA) is moderate (F1). However, the TF approach ranked fourth or fifth in terms
of precision in these four projects. Hence, even if the TF approach achieved the highest
F1 rank, we need to be aware of false-positive defect-fixing commits when using the TF
approach. Finally, the TF approach did not achieve high ranks in the Knox project on the
three evaluation measures (Table 6i). Hence, the TF approach generally statistically signifi-
cantly outperformed the other ILAs while projects exist in which the TF approach does not
work well.

Observation 2) The TF approach statistically significantly outperformed the other
ILAs in terms of the TP rate for all delete rates except for the Knox project. Except for
the Knox project, all the results in Table 6 show that the TF approach achieved the high-
est rank in terms of the TP rate. We observed the same results in the other delete rates as
well. This result implies that the TF approach can recover the most missing defect-fixing
commits for not only the delete rate of 50% but for all the delete rates in many projects.

Observation 3) The TS approach statistically significantly outperformed the other
ILAs in terms of the TP rate for all delete rates in the Knox project. We observed that
the TF approach is the best approach in the Avro, Tez, ZooKeeper, and Chukwa projects
in terms of the TP rate. However, in the Knox project, the TS approach achieved the high-
est rank in all the delete rates. Hence, the TS approach may recover the most missing
defect-fixing commits in certain projects.

Observation 4) The PH achieved the highest rank (statistically significantly outper-
forming the ILAs that are placed at lower ranks) in terms of the recall, or F1 in 32 out
of 40 cases between the delete rates of 10% and 40%. Table 6b, d, f, h, and j list the
results on the datasets with the delete rate of 10%. The PH achieved the highest rank on the
recall and F1 in all the projects. We observed similar results between the delete rates of 10%
and 40% (32 out of 40 cases6). This result implies that the PH detects many defect-fixing
commits (recall) while keeping the number of false-positive defect-fixing commits moderate
(F1). However, the PH achieved statistically significantly lower recall and F1 in the datasets
with the delete rate of 50% except for one case and TP rate in all delete rates compared with
the TF or TS approach. Hence, the PH potentially overlooks missing defect-fixing commits
compared with the TF or TS approach.

Observation 5) The RF approach achieved the highest rank in terms of the precision
in 22 out of 25 cases. Except for the Tez project with delete rates of 10%, 20%, and 50%,
the RF approach achieved the highest rank on precision. This result implies that the RF

6Here a case indicates a cell in the table. The two evaluation measures (recall, and F1) for five projects with
four deleted rates consist of 40 cases.

Empir Software Eng (2022) 27:136 Page 27 of 50 136

approach prevents false-positive defect-fixing commits. Indeed, the median precision values
are over 0.900. Hence, the RF approach could recover missing defect-fixing commits accu-
rately. However, the recall values and ranks are low. Hence, the RF approach may overlook
many defect-fixing commits. Note that the SVM approach achieved the highest or second
highest rank in 19 out of 25 cases. Hence, the SVM approach could also recover missing
defect-fixing commits accurately.

6.2 RQ2: Which Issue-Link Algorithm is the Best to Prevent a Defect Prediction
Model From Being Affected byMissing Defect-Fixing Commits in Defect Prediction?

Motivation and Approach: From the RQ1 results, we found that the ILAs can detect
missing defect-fixing commits. In particular, the following ILAs are well performed:

– the time filtering approach;
– the natural language text similarity approach;
– the Phantom heuristics ;
– the random forest approach;
– the support vector machine approach.

We hypothesize that such ILAs can improve the reliance of defect prediction perfor-
mance on a low-quality dataset by reducing the number of missing defect-fixing commits.
A low-quality dataset indicates a dataset that has many missing defect-fixing commits. If
there exist many missing defect-fixing commits, a defect prediction model may not learn
sufficient numbers of defect-inducing commits that are detected by insufficient numbers of
defect-fixing commits.

We prepared six possible scenarios: we randomly deleted 0% to 50% of links in steps
of 10% as described in Section 4. In particular, we refer to the scenario where 0% of links
are deleted as a high-quality dataset scenario; we refer to the other scenarios (where 10%,
20%, 30%, 40%, and 50% of links are deleted) as low-quality dataset scenarios.

 136 Page 28 of 50 Empir Software Eng (2022) 27:136

We refer to the defect prediction performance on the high-quality dataset where the
KE approach is used to detect defect-fixing commits as the ground-truth defect prediction
performance. We computed the difference between the ground-truth defect prediction per-
formance and the defect prediction performance on the low-quality datasets where we use
any ILAs. If such ILAs detect missing defect-fixing commits accurately and sufficiently,
the difference would be smaller than using the KE approach only on the low-quality dataset
scenarios. For example, if a defect prediction model on a low-quality dataset where an ILA
is used matches the ground-truth defect prediction performance, such an ILA may detect all
the missing defect-fixing commits. Note that we investigated not only an ILA, but also all
combinations of the ILAs that are well performed in RQ1.

Figure 5 shows the procedure of the RQ2 approach for a studied project. We describe the
steps in the following. The details are described in Section 5.

1. Execute defect prediction based on the explicit links. We used the explicit links
(detected by the KE approach on the high-quality dataset) to detect defect-fixing commits
and compute the ground-truth defect prediction result in terms of six evaluation measures
(AUC, precision, recall, F1, MCC, and Brier score).

2. Randomly delete X% links. We randomly delete X% links (10% to 50% in steps of
10%) from the explicit links and prepare a low-quality dataset.

3. Apply ILA. We apply an ILA to the dataset to detect missing defect-fixing commits.

4. Execute defect prediction based on the dataset that was processed by ILA. We exe-
cute defect prediction based on the dataset. We repeat steps 2–4 20 times to relieve the data
selection bias of deleted links. Eventually, we have 20 ILA defect prediction results for each
evaluation measure.

5. Compute the absolute difference between the ground-truth result and ILA results.
We compute the absolute difference between the ground-truth defect prediction result and

1: Execute defect
prediction based

on the explicit
links

Explicit links
(KE)

2: Randomly
delete X% links

0.7 0.4 0.1

AUC F1 Brier
0.7 0.4 0.1

AUC F1 Brier
0.6 0.2 0.4

AUC F1 Brier

0.7 0.4 0.1

AUC F1 Brier

3: Apply ILA

4: Execute defect
prediction based on
the dataset that was

processed by ILA

5: Compute the
absolute di erence

between the
ground-truth result

and ILA results

6: Construct the
distribution of
di erences for

each evaluation
measure

AUC F1 Brier

0.7 0.4 0.1

AUC F1 Brier
0.7 0.4 0.1

AUC F1 Brier
0.1 0.2 0.3

AUC F1 Brier

The ground-truth
defect prediction result

The ILA defect
prediction results (20)

The di erences of defect
prediction results

The distributions of
di erences

Repeat this process 20 times

Repeat this process for each ILA for each delete rate

7: Apply the Scott-
Knott ESD test to
compare ILAs for
each evaluation

measure for each
delete rate

2 3 3
AUC F1 Brier

KE

RF 3 1 1

2 3 3
AUC F1 Brier

KE

RF 3 1 1

2 3 3
AUC F1 Brier

KE

RF 3 1 1

The Scott-Knott ESD ranks

Fig. 5 Procedure of RQ2 approach for a studied project

Empir Software Eng (2022) 27:136 Page 29 of 50 136

the ILA defect prediction results. As we have 20 ILA defect prediction results, this process
results in 20 differences for each evaluation measure.

6. Construct the distribution of differences for each evaluationmeasure. As each of the
evaluation measures has 20 results, we consider these 20 results as a distribution of an
evaluation measure. We repeat this process for each ILA for each delete rate (10% to 50%).
Eventually, each ILA has a distribution for each evaluation measure for each delete rate.

7. Apply the Scott-Knott ESD test to compare ILAs for each evaluationmeasure for each
delete rate. To identify the ILA that achieves the smallest differences, we apply the Scott-
Knott ESD test to the distributions of all ILAs for each evaluation measure for each delete
rate.

In these steps, the execution time of defect prediction (Strep 4) is remarkably long. In this
paper, we repeated this step 20 times for 31 ILAs (all combinations of six ILAs), 5 studied
projects, and 6 dataset scenarios. The execution time of one repetition for an ILA, a studied
project, and a dataset scenario is about 761 seconds on a computational resource, which
consists of 8 CPUs and 32 GB memory with parallel execution. Hence, if we repeated this
process 100 times similar to RQ1, the total expected execution time would be 31 ∗ 5 ∗ 6 ∗
100 ∗ 761 � 819 days. To reduce this execution time, we only repeat this process 20 times
in this RQ.

Results: Observation 6) The combination of the TS, PH, RF, and SVM approaches
achieved the highest rank or statistically significantly reduces the absolute differences
the most compared with the KE approach. To understand this observation easily, we first
describe the result in an experimental setting. Table 7 lists the median absolute differences
between the ground-truth result and the ILA results in the Avro project with the delete rate
of 50%. The values in parentheses show the ranks that were computed by the Scott-Knott
ESD test across the ILAs. The gold cells indicate the cases where the rank is the highest
(rank 1) across the ILAs. The cyan cells indicate the cases where the rank is higher than
the rank of the KE approach. The COUNT column indicates the numbers of gold and cyan
cells for each row; the values in parentheses indicate the number of gold cells only. We
observed that 18 of the ILAs statistically significantly reduce the absolute differences for
all the evaluation measures (i.e., the values in the COUNT column were six). Hence, these
ILAs work well at reducing the absolute differences across the ILAs in this experimental
setting.

Table 8 lists the summation of all the COUNT values for each ILA. As we used six eval-
uation measures in the five projects with five delete rates, the maximum summation value
is 150. Indeed, we observed that the combination of TS, PH, RF, and SVM approaches
achieved 111, which is the highest value. This result implies that this combination statis-
tically significantly reduces the absolute differences compared with the KE approach or at
least achieved the highest rank.

Observation 7) All ILAs statistically significantly reduced the absolute differences
compared with the KE approach. Table 8 indicates that the KE approach, which is the
baseline, achieved 56, which is the smallest value. Hence, the ILAs statistically significantly
reduced the absolute differences compared with the KE approach.

 136 Page 30 of 50 Empir Software Eng (2022) 27:136

Observation 8) The combination of the TS, PH, RF, and SVM approaches achieve
better results in the lower-quality dataset scenarios while it may achieve worse results
in the higher-quality dataset scenarios. Table 9 lists all the median absolute differences of
the combination of TS, PH, RF, and SVM approaches with the Scott-Knott ESD test results.
In the Chukwa project, the numbers of cyan and gold cells with the delete rate of 10% were
zero. In addition, the numbers in the Tez project with the delete rate of 20% were one and
one; the numbers in the ZooKeeper project with the delete rate of 10% were two and one.
This result implies that the best combination of ILAs may be more suitable for the lower-
quality dataset while it may achieve worse results in certain projects with higher-quality
datasets.

7 Discussion

7.1 Can the RF Approach Detect Missing Defect-Fixing Commits in the High-Quality
Dataset?

From the RQ1 result, the RF approach achieves the highest precision (e.g., 1.000); hence, we
suppose that the RF approach can identify new defect-fixing commits that are not detected
by the KE approach in the high-quality dataset scenario. Table 10 lists the links of newly
identified defect-fixing commits and issue ids in the high-quality dataset. The non-green
cells are actual links that were confirmed manually by two of the authors.

Observation 9) The RF approach identified several missing defect-fixing commits. For
example, in the Avro project, the RF approach identified the missing defect-fixing com-
mit 7eaba5aa that links with AVRO-555. The commit message includes AVR0-555,
which uses 0 instead of O. It is easy for humans to detect this missing defect-fixing commit;
however, it is difficult for tools to interpret AVR0 as AVRO. In the Tez project, the
RF approach identified the missing defect-fixing commit a0d63ed05 that links with
TEZ-3001. This commit message includes an issue id of TEZ-2496 that is not labeled
Bug. However, a comment of TEZ-3001 describes that the patch of TEZ-2496 will fix
the issue of TEZ-3001. The RF approach can identify such a complex link as well.

Empir Software Eng (2022) 27:136 Page 31 of 50 136

Table 7 The median absolute differences between the ground-truth result and the ILA results in the Avro
project with the delete rate of 50%

ILA AUC F1 Pre Rec MCC Brier COUNT

KE 0.028 (3) 0.027 (3) 0.018 (5) 0.061 (3) 0.039 (3) 0.018 (4) 0 (0)

TF 0.018 (2) 0.011 (1) 0.007 (1) 0.030 (1) 0.016 (1) 0.008 (1) 6 (5)

TS 0.031 (2) 0.014 (1) 0.008 (3) 0.030 (2) 0.019 (2) 0.008 (2) 6 (1)

PH 0.021 (2) 0.019 (1) 0.011 (3) 0.030 (2) 0.027 (2) 0.016 (4) 5 (1)

RF 0.044 (5) 0.035 (3) 0.021 (6) 0.061 (3) 0.047 (3) 0.014 (4) 0 (0)

SVM 0.026 (4) 0.025 (3) 0.016 (5) 0.061 (3) 0.032 (4) 0.014 (3) 1 (0)

TF,TS 0.021 (2) 0.018 (1) 0.012 (3) 0.030 (2) 0.026 (2) 0.010 (2) 6 (1)

TF,PH 0.016 (1) 0.015 (1) 0.010 (3) 0.030 (2) 0.022 (2) 0.009 (1) 6 (3)

TF,RF 0.020 (2) 0.018 (1) 0.014 (3) 0.030 (2) 0.026 (2) 0.011 (2) 6 (1)

TF,SVM 0.017 (2) 0.020 (1) 0.011 (3) 0.030 (2) 0.028 (2) 0.011 (2) 6 (1)

TS,PH 0.022 (2) 0.017 (1) 0.010 (2) 0.061 (2) 0.024 (2) 0.009 (2) 6 (1)

TS,RF 0.030 (3) 0.021 (1) 0.014 (3) 0.030 (3) 0.030 (2) 0.010 (2) 4 (1)

TS,SVM 0.019 (2) 0.016 (1) 0.010 (2) 0.061 (3) 0.023 (2) 0.009 (2) 5 (1)

PH,RF 0.029 (3) 0.018 (1) 0.011 (3) 0.061 (3) 0.023 (2) 0.017 (4) 3 (1)

PH,SVM 0.023 (3) 0.017 (1) 0.010 (3) 0.061 (3) 0.023 (2) 0.017 (4) 3 (1)

RF,SVM 0.033 (4) 0.015 (1) 0.012 (3) 0.061 (2) 0.022 (2) 0.021 (4) 4 (1)

TF,TS,PH 0.014 (1) 0.016 (1) 0.010 (2) 0.030 (2) 0.023 (2) 0.010 (2) 6 (2)

TF,TS,RF 0.025 (3) 0.021 (2) 0.014 (4) 0.030 (3) 0.031 (3) 0.008 (2) 3 (0)

TF,TS,SVM 0.021 (2) 0.017 (1) 0.011 (3) 0.030 (1) 0.025 (2) 0.012 (2) 6 (2)

TF,PH,RF 0.016 (1) 0.016 (1) 0.010 (2) 0.030 (1) 0.022 (2) 0.008 (2) 6 (3)

TF,PH,SVM 0.034 (3) 0.017 (1) 0.011 (3) 0.045 (2) 0.025 (2) 0.007 (2) 5 (1)

TF,RF,SVM 0.024 (3) 0.017 (1) 0.010 (3) 0.030 (2) 0.024 (2) 0.011 (2) 5 (1)

TS,PH,RF 0.017 (2) 0.017 (1) 0.010 (2) 0.030 (2) 0.025 (2) 0.007 (1) 6 (2)

TS,PH,SVM 0.023 (2) 0.015 (1) 0.010 (2) 0.030 (2) 0.023 (1) 0.008 (2) 6 (2)

TS,RF,SVM 0.024 (2) 0.019 (1) 0.012 (2) 0.045 (2) 0.027 (2) 0.009 (2) 6 (1)

PH,RF,SVM 0.027 (3) 0.010 (1) 0.007 (2) 0.045 (3) 0.015 (2) 0.018 (4) 3 (1)

TF,TS,PH,
RF

0.024 (2) 0.015 (1) 0.010 (2) 0.030 (2) 0.023 (2) 0.009 (2) 6 (1)

TF,TS,PH,
SVM

0.022 (2) 0.017 (1) 0.010 (3) 0.045 (2) 0.024 (2) 0.008 (2) 6 (1)

TF,TS,RF,
SVM

0.025 (3) 0.017 (1) 0.012 (2) 0.030 (2) 0.024 (2) 0.006 (1) 5 (2)

TF,PH,RF,
SVM

0.017 (2) 0.016 (1) 0.009 (3) 0.030 (2) 0.024 (2) 0.009 (2) 6 (1)

TS,PH,RF,
SVM

0.023 (2) 0.016 (1) 0.010 (3) 0.030 (2) 0.023 (2) 0.005 (1) 6 (2)

TF,TS,PH,
RF, SVM

0.024 (2) 0.020 (1) 0.013 (2) 0.030 (2) 0.028 (2) 0.009 (2) 6 (1)

 136 Page 32 of 50 Empir Software Eng (2022) 27:136

Table 8 The sum of the cases
where the rank is higher than the
rank of the KE approach or the
highest rank (the sum of the
COUNT values)

ILA The sum of the
COUNT values

TS,PH,RF,SVM 111

TS,PH,RF 110

TF,RF,SVM 106

TS,RF 104

TF,TS,SVM 103

TF,TS,PH,SVM 101

TS,PH 100

TF,TS,PH,RF 98

TF,TS,PH 97

TF,TS,RF,SVM 96

TF,TS,PH,RF,SVM 95

TS 94

TF,PH,RF 94

TF,TS 93

TS,PH,SVM 93

TF,PH 91

TF,SVM 91

TF,PH,RF,SVM 91

TS,RF,SVM 90

TF,TS,RF 88

TF,PH,SVM 88

PH,RF,SVM 88

TF 84

TS,SVM 84

TF, RF 83

PH,SVM 83

PH,RF 81

RF,SVM 80

PH 73

RF 69

SVM 66

KE 56

7.2 Why Does the TF Approach Generally WorkWell in Detecting Defect-Fixing
Commits?

Observation 10) Developing software products is conducted in a short time interval
over multiple occurrences. Figure 6 shows the number of appearances of each issue report
label for each month between the initial commit month to the end of 2013 in the Avro
project. We classified issue report labels into each month based on the dates of their linked
commits. We show their labels (e.g., Bug, Improvement, and New Feature) as line
plots. Note that we allow the same issue report label to be counted repeatedly if such an

Empir Software Eng (2022) 27:136 Page 33 of 50 136

Table 9 All the median absolute differences between the ground-truth result and the results of the combina-
tion of TS, PH, RF, and SVM approaches

Project Delete
rate

AUC F1 Pre Rec MCC Brier COUNT

10 0.016 (1) 0.014 (1) 0.008 (1) 0.030 (1) 0.020 (1) 0.010 (2) 6 (5)

20 0.015 (2) 0.013 (1) 0.008 (1) 0.045 (1) 0.018 (1) 0.008 (2) 5 (4)

Avro 30 0.014 (1) 0.012 (1) 0.006 (1) 0.030 (1) 0.018 (1) 0.008 (1) 6 (6)

40 0.027 (2) 0.011 (2) 0.009 (2) 0.045 (1) 0.016 (2) 0.012 (3) 5 (1)

50 0.023 (2) 0.016 (1) 0.010 (3) 0.030 (2) 0.023 (2) 0.005 (1) 6 (2)

10 0.009 (1) 0.016 (1) 0.013 (1) 0.047 (2) 0.016 (1) 0.003 (1) 5 (5)

20 0.006 (1) 0.024 (2) 0.019 (4) 0.041 (3) 0.026 (2) 0.002 (2) 1 (1)

Tez 30 0.010 (2) 0.017 (1) 0.020 (3) 0.029 (1) 0.020 (1) 0.004 (2) 5 (3)

40 0.008 (2) 0.024 (1) 0.026 (2) 0.041 (2) 0.024 (1) 0.005 (3) 4 (2)

50 0.010 (3) 0.029 (2) 0.022 (2) 0.053 (5) 0.032 (1) 0.005 (3) 2 (1)

10 0.008 (4) 0.009 (3) 0.010 (3) 0.020 (1) 0.013 (2) 0.007 (4) 2 (1)

20 0.006 (1) 0.017 (2) 0.013 (1) 0.020 (2) 0.020 (3) 0.005 (1) 4 (3)

ZooKeeper 30 0.006 (1) 0.010 (1) 0.012 (3) 0.017 (1) 0.011 (1) 0.008 (4) 6 (4)

40 0.006 (1) 0.010 (1) 0.012 (2) 0.027 (1) 0.012 (1) 0.006 (2) 6 (4)

50 0.008 (3) 0.013 (2) 0.015 (3) 0.027 (2) 0.017 (2) 0.009 (3) 6 (0)

10 0.014 (3) 0.026 (3) 0.021 (4) 0.026 (2) 0.036 (2) 0.009 (3) 0 (0)

20 0.006 (1) 0.027 (2) 0.024 (2) 0.026 (2) 0.039 (2) 0.009 (3) 4 (1)

Chukwa 30 0.014 (1) 0.026 (2) 0.028 (3) 0.026 (2) 0.039 (3) 0.010 (2) 3 (1)

40 0.013 (3) 0.020 (1) 0.017 (3) 0.051 (3) 0.030 (1) 0.006 (3) 5 (2)

50 0.017 (4) 0.028 (2) 0.028 (3) 0.026 (1) 0.043 (1) 0.007 (1) 6 (3)

10 0.007 (3) 0.013 (2) 0.007 (1) 0.041 (2) 0.020 (1) 0.007 (3) 4 (2)

20 0.006 (1) 0.006 (1) 0.009 (2) 0.033 (1) 0.008 (1) 0.008 (3) 5 (4)

Knox 30 0.007 (1) 0.009 (1) 0.007 (1) 0.041 (3) 0.015 (1) 0.004 (4) 5 (4)

40 0.007 (2) 0.008 (1) 0.007 (1) 0.026 (1) 0.012 (1) 0.006 (2) 5 (4)

50 0.005 (1) 0.016 (2) 0.007 (1) 0.041 (4) 0.026 (4) 0.005 (1) 5 (3)

issue report links to two or more commits. The vertical dotted lines indicate the month in
which a new version was released as described on the Avro release page (Apache Software
Foundation 2009a).

We observed that each label has spikes around release dates. This result implies that
developers commit their addition/modification/deletion related to issue reports in a short
time interval. In addition, we observed many commits that correspond to issue reports
labeled Bug are gathered around a short time interval through our manual analysis on the
Git repository. We observed the same tendency on the Tez and ZooKeeper projects7. This
may be a reason why the TF approach generally works well.

7The Chukwa project does not show the dates of all release dates. The TF approach does not work well in
the Knox project. Hence, we ignored these projects in this analysis.

 136 Page 34 of 50 Empir Software Eng (2022) 27:136

Fig. 6 The number of appearances of each issue report label for each month between the initial commit
month to the end of 2013 in the Avro project

7.3 Which Time Interval is the Best to Detect Defect-Fixing Commits?

Observation 11) The 10-minute time interval is the best setting to detect defect-fixing
commits in our studied projects. Table 11 indicates the performance of the TF approach in
terms of detecting defect-fixing commits in different time intervals. The gold cells indicate
over 0.7. The values in the parentheses show the ranks that were computed by the Scott-
Knott ESD test for each evaluation measure across five time intervals. The delete rate is
50%. We observed two findings: the smaller the time interval, the better the performance
in terms of precision; the larger the time interval, the better the performance in terms of
recall and the TP rate (deleted). This is because these evaluation measures are the trade-off.
Hence, we focused on the harmonic evaluation measure, F1. As the TF approach does not
work well in the Knox project (RQ1), we only studied the other four projects.

The time intervals of 10 and 30 minutes achieved rank 1 once in the Scott-Knott ESD
test. The time interval of 5 minutes achieved rank 1 twice. However, the time interval of
5 minutes achieved rank 4 in the Tez project. Although the time interval of 10 minutes
achieved rank 1 once, it achieved rank 2 in the other projects. Therefore, we concluded that
the time interval of 10 minutes is well balanced. This result implies that the 10-minute time
interval detects many defect-fixing commits while keeping the number of false-positive
defect-fixing commits low.

7.4 Do ILAs Affect the Effort-Aware Defect Prediction PerformanceMeasures?

Motivation and Approach: Just-in-time defect prediction models help in identifying
whether a commit is likely to be defective. If such a commit is identified as defective,
developers use their test effort to inspect this commit to modify the defect; however, their
test effort is limited. Hence, considering the test effort is also important to evaluate defect
prediction models.

To evaluate this perspective, we can use effort-aware measures (Ni et al. 2020; Kamei
et al. 2013). Generally, developers need more test effort to inspect more commits. In addi-
tion, large-size commits (e.g., including many added/deleted lines) need more test effort
to be inspected than small-size commits. Hence, effort-aware measures use the number of
commits and lines that are inspected by developers to evaluate defect prediction models. In

Empir Software Eng (2022) 27:136 Page 35 of 50 136

Table 10 The links of newly
identified missing defect-fixing
commits and issue ids by the RF
approach in the high-quality
dataset. The non-green cells are
actual links that were confirmed
manually by two of the authors

Answer Issue ID Commit Hash

AVRO-4 9b14a2a7

AVRO-14 e6d1fca4

AVRO-262 1acc9913

AVRO-401 79c09800

AVRO-555 7eaba5aa

AVRO-656 50768496

AVRO-718 e623053d

Avro AVRO-746 34d6f3ac

AVRO-900 d7dbac1a

AVRO-1077 5e8664c1

AVRO-1123 196011b4

AVRO-1131 eaa43dbc

AVRO-1140 ab5eb854

AVRO-1251 267bda89

AVRO-1320 258f800d

AVRO-1540 0478e9ce

TEZ-243 a167e861e

TEZ-254 778ad2438

TEZ-258 c35702d6f

TEZ-739 ea345bab5

TEZ-740 9138f7906

TEZ-846 816e2e5a9

TEZ-924 aca83090e

Tez TEZ-2479 4e57a922b

TEZ-2479 c1d334b4d

TEZ-2924 40e864d14

TEZ-3001 a0d63ed05

TEZ-3423 cbd4eacb0

TEZ-1963 4bc64b5c3

TEZ-2046 a6bfc1ad3

TEZ-2046 5b2f011f1

ZOOKEEPER-55 1d2a7863

ZOOKEEPER-76 f1f13a37

ZooKeeper ZOOKEEPER-138 5d56e6d2

ZOOKEEPER-181 03f0f816

ZOOKEEPER-554 e8d31e67

ZOOKEEPER-1943 86ebdc9a

Chukwa CHUKWA-117 47f2f79

CHUKWA-411 9b5ee68

Knox KNOX-71 ad693b0e7

 136 Page 36 of 50 Empir Software Eng (2022) 27:136

Table 11 The performance of the time filtering approach in terms of detecting defect-fixing commits in five
different time intervals with the delete rate of 50%

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

(a) The Avro project

5 0.839 (1) 0.774 (5) 0.805 (1) 0.777 (5)

10 0.757 (2) 0.821 (4) 0.788 (2) 0.824 (4)

)3(626.003 0.860 (3) 0.724 (3) 0.860 (3)

)4(825.006 0.877 (2) 0.660 (4) 0.876 (2)

)5(564.0021 0.897 (1) 0.612 (5) 0.895 (1)

(b) The Tez project

5 0.894 (1) 0.660 (5) 0.760 (4) 0.664 (5)

10 0.847 (2) 0.776 (4) 0.810 (2) 0.777 (4)

30 0.768 (3) 0.858 (3) 0.811 (1) 0.858 (3)

60 0.706 (4) 0.884 (2) 0.785 (3) 0.884 (2)

)5(226.0021 0.909 (1) 0.738 (5) 0.909 (1)

(c) The ZooKeeper project

5 0.955 (1) 0.700 (5) 0.808 (2) 0.701 (5)

10 0.908 (2) 0.771 (4) 0.834 (1) 0.774 (4)

30 0.784 (3) 0.816 (3) 0.800 (3) 0.816 (3)

60 0.716 (4) 0.843 (2) 0.774 (4) 0.844 (2)

)5(356.0021 0.856 (1) 0.741 (5) 0.856 (1)

(d) The Chukwa project

5 0.828 (1) 0.652 (5) 0.729 (1) 0.651 (5)

10 0.730 (2) 0.706 (4) 0.718 (2) 0.704 (4)

)3(506.003 0.760 (3) 0.674 (3) 0.760 (3)

)4(065.006 0.783 (2) 0.653 (4) 0.783 (2)

)5(515.0021 0.810 (1) 0.630 (5) 0.810 (1)

(e) The Knox project

5 0.893 (1) 0.392 (5) 0.545 (5) 0.394 (5)

10 0.867 (2) 0.451 (4) 0.594 (4) 0.452 (4)

30 0.808 (3) 0.575 (3) 0.672 (3) 0.572 (3)

60 0.759 (4) 0.637 (2) 0.692 (1) 0.636 (2)

)1(776.0)2(186.0)1(976.0)5(386.0021

this discussion, we investigate whether ILAs affect this perspective in just-in-time defect
prediction.

We computed effort-aware measures for the results of RQ2. Similar to RQ2, we inves-
tigated the difference between the ground truth result and the ILA results. We use four
effort-aware evaluation measures that were applied by the prior study (Ni et al. 2020): IFA,
PII@L, CostEffort@L, and Norm(Popt).

IFA measures the number of commits that need to be inspected before the first defect-
inducing commit is identified. The smaller IFA implies that defect prediction models
identify defect-inducing commits at an early time. PII@L and CostEffort@L measure the
number of commits that need to be inspected and the number of identified defect-inducing
commits, respectively, when developers can inspect L lines of code. We used the same
L as the prior study (Ni et al. 2020): 20%, 1000, and 2000. Norm(Popt) indicates the

Empir Software Eng (2022) 27:136 Page 37 of 50 136

Table 12 The sum of the cases
where the rank is higher than the
rank of the KE approach or the
highest rank (the sum of the
COUNT values)

ILA The sum of the
COUNT values

KE 166

TF,TS,SVM 157

TF,PH,SVM 156

TF,TS,PH 155

SVM 154

TS,PH 154

TF,PH,RF,SVM 153

TF,TS 152

TF,PH 152

TF,TS,PH,SVM 152

TF,TS,RF,SVM 152

RF,SVM 149

TF,PH,RF 149

TS,PH,SVM 149

TF,RF 148

TS,PH,RF,SVM 148

RF 147

TF,SVM 145

TS,RF 145

PH,RF 145

TF,RF,SVM 144

PH,RF,SVM 144

TS,SVM 143

TF,TS,PH,RF,SVM 143

TF 142

PH 142

TF,TS,RF 142

TF,TS,PH,RF 142

TS,RF,SVM 141

TS,PH,RF 140

PH,SVM 138

TS 134

similarity between the prediction result and the optimized case where defect prediction
models perfectly predict defect-inducing commits according to the number of lines of
code (Kamei et al. 2013). The range is between 0 to 1; the higher the value, the better the
prediction result is implied.

Results: Observation 12) The KE approach is the best approach in terms of the effort-
aware evaluation measures. In RQ2, the KE approach is the worst approach. However, no
ILAs achieved a higher sum of the COUNT values than the KE approach in terms of the
effort-aware evaluation measures (Table 12). As a result, all ILAs may not work well in
terms of the effort-aware evaluation measures. However, the difference between the largest

 136 Page 38 of 50 Empir Software Eng (2022) 27:136

sum of the COUNT values and the smallest one is 32 (166-134) in this analysis while that in
RQ2 is 55 (111-56). Also, because we used eight effort-aware evaluation measures (PII@L

and CostEffort@L have three variants), the maximum value is 200 while that in RQ2 is
150. If we consider this difference, the difference ratio between the largest value and the
smallest value in RQ2 is two times larger than this analysis. Hence, the difference between
the best approach and the worst approach in terms of the effort-aware evaluation measures
may be small. Future studies are necessary to investigate the relationship between ILAs and
effort-aware evaluation measures.

7.5 The False-positive/negative Defect-fixing Commits in the Ground Truth Data

As we described in Section 5.1, we found that our ground truth data (defect-fixing commits)
are accurate through manual inspection. However, there exist a few false-positive/negative
defect-fixing commits.

For example, the commit cf3318e1b in the Tez project is labeled a defect-fixing com-
mit. However, this is a false-positive defect-fixing commit. The commit message includes
two issue ids: TEZ-1594 labeled Sub-task and TEZ-8 labeled Bug. As the KE
approach links this commit to these two issue reports, this commit is referred to as a defect-
fixing commit; however, the link to TEZ-8 is a false-positive link because TEZ-8 is not
directly related to this commit. Hence, this commit is a false-positive defect-fixing commit.

The commit 0b74bd5e in the Avro project is an example of a false-negative defect-
fixing commit. This commit does not include any issue ids in its commit message. However,
CHANGES.txt, which is a changed file, includes an issue id labeled Bug. Hence, this
commit should be a defect-fixing commit.

Finally, this manual inspection provides us with an interesting suggestion. Our basic
restriction (Section 5.2) may exclude defect-fixing commits that do not fix source code (i.e.,
noise). For example, the commit message of the commit c89e352e0 in the Tez project
includes an issue id, TEZ-2885 labeled Bug. Hence, prior KE approaches may link this
commit and the issue report. However, this commit only modifies CHANGES.txt while the
actual defect-fixing commit is the commit 6eb2cb551. This may occur if developers for-
get to modify CHANGES.txt. This kind of defect-fixing commit should be excluded from
the defect prediction research. Because our basic restriction excludes these commits, we
suggest researchers and practitioners use the basic restriction at least. This kind of restriction
is employed by prior work (McIntosh and Kamei 2018).

7.6 Answer to This Paper: Which ILAs ShouldWe Use?

In summary, researchers and practitioners need to select the ILAs according to their partic-
ular purpose. If researchers and practitioners want to evaluate the defect prediction models
in the low-quality dataset scenario, we recommend using the best ILA in terms of the abso-
lute differences with the ground-truth defect prediction performance: the combination of
the TS, PH, RF, and SVM approaches. This is because, in the low-quality dataset scenarios,
this ILA can reduce the absolute differences of defect prediction performance from that in
the high-quality dataset scenario with the KE approach (RQ2).

If researchers and practitioners investigate the defect-fixing commits, we recommend
using the ILA that achieves the highest precision: the RF approach because researchers and
practitioners do not need to worry about false-positive defect-fixing commits (RQ1).

If researchers and practitioners want to identify almost all missing defect-fixing com-
mits, we recommend using the TF approach or TS approach because these ILAs achieve

Empir Software Eng (2022) 27:136 Page 39 of 50 136

the highest TP rate in different projects (RQ1) while being a very simple approach. How-
ever, the precision value is lower than those of the other accurate ILAs. Researchers and
practitioners need to consider false-positive defect-fixing commits.

Finally, in defect prediction, we recommend using the basic restriction to exclude noise
of defect-fixing commits. In particular, considering the dates of the commit and the issue
report is a simple but effective approach to detect defect-fixing commits.

8 Threats to Validity

8.1 Construct Validity

The reliability of the issue reports in the studied issue-tracking system (i.e., JIRA) is a
threat in this study. Ramler and Himmelbauer (2013) described this challenge. Herzig et al.
(2013) reported that 39% of files that are labeled as defective are not defective on average.
Bachmann et al. (2010) reported that some defects are only reported on the mailing list. In
addition, such defects are very important because the core developers in the Apache projects
use the mailing list. Future studies are necessary to investigate the quality of issue-tracking
system to improve the reliability of our findings.

Defect-fixing commits could include addition/modification/deletion that is not related
to defect fixing. For example, Mills et al. (2018) reported that around 63.1% (848/1,344)
of modified files in defect-fixing commits are not related to defect fixing. If we removed
such files from the defect-fixing commits, this might result in different defect prediction
performance for each ILA. Future studies are necessary to investigate whether our results
are consistent with removing such files.

We used the results of the keyword extraction approach as our ground-truth data. The
keyword extraction approach uses a regular expression to extract issue ids from commit
messages. Unfortunately, this process may induce false-positive/negative defect-fixing com-
mits. Such commits would affect our experimental results, though we manually inspected
the accuracy of ground truth data and found the accuracy is high.

To execute the natural language text similarity approach, we removed the issue ids from
commit messages on the missing defect-fixing commits to make our experimental setting
closer to a practical situation. However, commit messages also frequently include issue
report titles because of their commit rule (Apache Software Foundation 2020). This JIRA

 136 Page 40 of 50 Empir Software Eng (2022) 27:136

title may make our experimental setting artificial and unfair. We kept the JIRA title because
we assume that developers forget to add issue ids only.

In this paper, we mainly focus on the ILAs while defect prediction includes several
factors such as the process of detecting defect-inducing commits. Hence, the results of
our study are restricted by our experimental setting in defect prediction. Future studies
are necessary to investigate the relationship between ILAs and the other factors in defect
prediction.

8.2 External Validity

To generalize our results, we applied our experiments to five open-source software projects
on the Apache Software Foundation. These studied projects contain two domains. However,
all the projects are Apache projects and have high-quality commit messages. Future studies
are necessary to investigate whether our results generalize to other projects.

We carefully chose our studied ILAs from prior studies that were collected by our sys-
tematic literature study with the snowballing approach. However, we decided not to use a
few ILAs and we may have overlooked a few prior studies that proposed ILAs. Future stud-
ies are necessary to investigate such ILAs with software projects in which we can use all
necessary information.

8.3 Internal Validity

We summarized our validation technique and ILAs as Python packages (Kondo 2021b, c).
In addition, we made the replication package (Kondo 2021a). Researchers and practitioners
may easily repeat our experiments.

We manually investigated the correctness of the identified links in Section 7.1. This
investigation was conducted by two of the authors, and we double-checked the result. How-
ever, the result may include mistakes. In addition, we manually inspected the accuracy of
the ground truth data. This manual inspection has been carefully done. However, it may
include mistakes.

To remove the merge commits, we used the --no-merges option of the git log com-
mand (Git community 2020). Hence, the accuracy to identify the merge commits depends
on this option.

9 Conclusion

The impact of false-positive/negative defect-inducing commits on the defect prediction per-
formance is important when evaluating defect prediction models. To reduce the number of
false-positive/negative defect-inducing commits, many prior studies have proposed ILAs to
detect defect-fixing commits accurately (Fischer et al. 2003a; Śliwerski et al. 2005; Bach-
mann and Bernstein 2009a, 2010; Bird et al. 2010; Sureka et al. 2011; Wu et al. 2011;
Nguyen et al. 2012; Bissyandé et al. 2013; Le et al. 2015; Schermann et al. 2015; Sun et al.
2016, 2017a, b; Xie et al. 2019; Tu and Menzies 2020). However, challenges still exist, such
as dataset inconsistency and small comparisons. Our work is the first large-scale study to
evaluate the ILAs on the same experimental settings. In addition, we summarized the prior
ILAs as our related work through our systematic literature study.

In the following, we summarize the main recommendations. We recommend selecting
ILAs according to the particular purpose.

Empir Software Eng (2022) 27:136 Page 41 of 50 136

Recommendation 1: For researchers and practitioners who need to evaluate defect
prediction models in the low-quality dataset scenario, we recommend using the com-
bination of the natural language text similarity, Phantom heuristics, random forest,
and support vector machine approaches. Our experiments in RQ2 show that the studied
ILAs prevented the defect prediction model from being affected by missing defect-fixing
commits. In particular, the combination of the natural language text similarity, Phantom
heuristics, random forest, and support vector machine approaches achieved the most similar
defect prediction performance with the ground-truth defect prediction performance across
all the studied ILAs. If researchers and practitioners use this combination, they would
not need to worry about the impact of missing defect-fixing commits to defect prediction
performance.

Recommendation 2: For researchers and practitioners who need defect-fixing
commits without false-positive defect-fixing commits, we recommend using the ran-
dom forest approach. Our experiments in RQ1 have shown that the random forest
approach achieved the highest precision. Hence, using this ILA rarely induces false-positive
defect-fixing commits while reducing missing defect-fixing commits.

Recommendation 3: For researchers and practitioners who need defect datasets
without missing defect-fixing commits, we recommend using the time filtering
approach or the natural language text similarity approach. Our experiments in RQ1
have shown that the time filtering approach and the natural language text similarity approach
performed the highest TP rate compared with the other accurate ILAs in different projects.
Hence, using the time filtering approach or the natural language text similarity approach
reduces the number of missing defect-fixing commits. In addition, these ILAs are very sim-
ple. Note that when using these approaches, researchers and practitioners need to consider
false-positive defect-fixing commits.

Recommendation 4: Considering the dates of the commit and the issue report help
exclude noise of defect-fixing commits. Our manual inspection discussed in Section 7.5
shows that our basic restriction can exclude defect-fixing commits that do not fix source
code. Hence, using our basic restriction that uses the dates excludes such noise of defect-
fixing commits for defect prediction.

Appendix

A Overview of ILAs

In this Appendix, we describe the details of each of the ILAs.

A.1 Keyword Extraction (KE)

The keyword extraction approach is the simplest and most popular approach to link issue
reports with commits. Our implementation is as follows:

1. Extract issue ids from commit messages by using regular expressions.
2. Link issue reports to commits whose commit messages include issue ids.

Especially, our studied projects adhere to rules to write commit messages. For example,
developers need to write “ZOOKEEPER-jiraNumber: jiraTitle” as the commit

 136 Page 42 of 50 Empir Software Eng (2022) 27:136

message in the ZooKeeper project (Apache Software Foundation 2020). Hence, the link
rates are very high.

A.2 Time Filtering (TF)

The time filtering approach compares created/updated/resolved dates of issue reports or its
comment dates and commit or author dates of commits. Our implementation is as follows:

1. Extract issue resolution dates and commit dates from an issue-tracking system and a
software repository.

2. Subtract the date of a commit date from an issue resolution date to compute the
difference (time interval).

3. If the time interval is less than a certain threshold, such a pair is linked.

This approach is frequently used in previous studies (Śliwerski et al. 2005; Sureka et al.
2011; Wu et al. 2011; Nguyen et al. 2012; Schermann et al. 2015; Sun et al. 2016). For
example, Wu et al. (2011) reported that 93% of comments were posted within 24 hours after
pushing the associated commits to the repository.

A.3 Natural Language Text Similarity (TS)

The natural language text similarity approach uses the similarity of text between issue
reports and commits. If a commit message is similar to a description and comments of an
issue report, such a pair would be linked.

In this approach, the preprocessing of text is important. A previous study (Wu et al. 2011)
used the following preprocessing:

1. Remove stop words (e.g., remove “the”).
2. Conduct stemming analysis (e.g., “played” would be “play”).
3. Replace words into a common synonym.

In our implementation, we improved the preprocessing as follows:

1. Make text lower case
2. Tokenize words
3. Remove punctuation
4. Remove stop words
5. Replace words into a common synonym
6. Conduct stemming analysis

After this preprocessing, we converted the text into numerical vectors based on the TFIDF
vectorization (Sparck Jones 1972). Finally, we computed the cosine similarity (scikit-learn
developers 2020) between issue reports and commits and if the similarity value is over a
certain threshold, we tagged such pairs as linked pairs. The threshold is 0.3 that was decided
by our preliminary study.

The input text is:

– Description and comments from an issue report
– Commit message from a commit

Empir Software Eng (2022) 27:136 Page 43 of 50 136

A.4 Natural Language Text Similarity withWord Association (WA)

The natural language text similarity approach still has a challenge: wording between issue
reports and commits are different. For example, let us assume we have an issue with a reg-
istration system. Then we might discuss a password system as well; however, the code fix
would be applied to the registration system only. In this case, we need to make an asso-
ciation between “password” and “registration.” The natural language text similarity with
word association approach addresses this challenge. The original paper describes the detail
concept (Nguyen et al. 2012). The procedure that we used in this paper is as follows:

1. Extract the description and all the comments for each issue report and parse them by
lscp (lightweight source code preprocessor) (Thomas 2012).

2. Extract all commit messages for all commits and parse them by lscp.
3. Execute the keyword extraction approach to prepare the training data.
4. Compute the formula (1) to (3) in the original paper (Nguyen et al. 2012) for each word

pair.
5. If the value of formula (3) is over the threshold, such a word pair is considered as an

associated word pair. The threshold is 0.5 that is decided by our preliminary study.

A.5 Message Generation from Source Code (GS)

Commit messages are not enough information. Hence a previous study (Le et al. 2015) used
a code comment generation technique to add more information. We call this approach as the
message generation from source code approach. Recently, code comment generation tech-
niques based on deep learning techniques become a popular research area; and therefore,
we can also use such techniques. These techniques use javadoc comments as the supervised
data in Java; and therefore, we use the javadoc comments instead of using code comment
generation techniques in order to add clean information.

The procedure is the same as the natural language text similarity approach. One differ-
ence is that we used the javadoc comments instead of commit messages for each commit.
Such comments were extracted from all modified files on the target commit.

A.6 Loner Heuristics (LO)

Schermann et al. (2015) proposed two new scenarios called Loner and Phantom scenarios.
The Loner scenario indicates the case where only one commit addresses one issue report;
such an issue report links with only one commit. The Phantom scenario indicates the case
where a set of commits addresses an issue report; such an issue report links with multiple
commits. The original paper (Schermann et al. 2015) extracted heuristics of such scenarios
respectively in order to improve the accuracy of detecting defect-fixing commits.

We studied these heuristics as ILAs. Note that we excluded the heuristics about
developers from these heuristics. The procedure of the Loner heuristics is as follows:

1. Execute the keyword extraction approach and remove the links that were detected by
the keyword extraction approach (we call the output as (1)).

2. Apply the time filtering approach to (1) (we call the output as (2)). Since not only the
time filtering approach but also other heuristics are applied, we used 30 minutes as the
time interval.

3. If the pairs in (2) meet the following conditions, the pairs remain; otherwise, the pairs
are excluded:

 136 Page 44 of 50 Empir Software Eng (2022) 27:136

– A pair has one issue report and one commit.
– The issue report in the pair is not reopened.

We considered the remained pairs as the output of the Loner heuristics. Note that since it is
difficult to extract the data whether an issue report is reopened, we skipped to check whether
the issue report is reopened in our implementation.

A.7 PhantomHeuristics (PH)

The procedure of the Phantom heuristics is as follows:

1. Execute the keyword extraction approach and classify commits into linked commits and
non-linked commits.

2. Make pairs between linked commits and non-linked commits (we call the output as (1)).
3. Exclude pairs of (1) if the dates of a linked commit and a non-linked commit are not

within the interval (we call the output as (2)). The interval is five days.
4. Exclude pairs of (2) if the overlap of the modified files is less than DUPLICATE RATE

(the original paper (Schermann et al. 2015) and we use 66% as DUPLICATE RATE).

We considered the remained pairs as the output of the Phantom heuristics.

A.8 Modified Text Files (MT)

Sun et al. (2016) stated that we have focused on commit messages; however, we did not
focus on natural language files in the source code repository such as CHANGE.txt. The
modified text files approach regards such files as a representation of a commit. The algo-
rithm is the same as the natural language text similarity approach. However, we used
different input:

– Description and comments from issue reports
– Natural language texts from commits (i.e., files with .txt or .md extension)

We used a different threshold value for the cosine similarity results. The threshold is 0.2
that was decided by our preliminary study.

A.9 PU Learning (PU)

PU learning (positive and unlabeled learning) is a learning method (Elkan and Noto 2008).
We can build a model based on positive examples and unlabeled examples in this learning
method. Since there might exist many unlabeled (false-negative) links between issue reports
and commits, prior study (Sun et al. 2017a) used the PU learning to predict positive links
based on such unclear data.

The procedure of the PU learning approach as an ILA is as follows:

1. Extract links by the keyword extraction approach.
2. Extract five features (the proportion of modified source files, the number of modified

source files, the time difference, the time difference type, the cosine similarity of text).
3. Normalize all features except for binary features by z-score (Kondo et al. 2019).
4. Train a PU model.
5. Classify all links by the PU model.

Empir Software Eng (2022) 27:136 Page 45 of 50 136

The proportion of modified source files is the proportion of modified Java files in a commit.
The number of modified source files is the number of modified Java files in a commit. The
time difference is the time difference of a commit date and an issue resolved date in seconds.
The time difference type is a binary value; if an issue resolved date is after a commit date,
it would be one; otherwise, it would be zero. The cosine similarity of text is the cosine
similarity values that are computed on the natural language text similarity approach.

A.10Machine Learning (ML)

The PU learning approach used a PU model to predict links. However, we can also apply
other machine learning models to this task. We used two machine learning models: a random
forest model (scikit-learn developers 2020a) and a support vector machine model (scikit-
learn developers 2020c) instead of a PU model. The procedure is the same as the PU learning
approach. The only difference is to use a PU model or machine learning models. We call
this approach as the machine learning approach.

Acknowledgments This work has been supported by JSPS KAKENHI Japan (Grant Numbers: JP19J23477
and JP18H03222) and JSPS International Joint Research Program with SNSF (Project “SENSOR”). We
would like to thank Editage (www.editage.com) for English language editing.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agrawal A, Menzies T (2018) Is “better data” better than “better data miners”? In: Proceedings of the 40th
International Conference on Software Engineering (ICSE). IEEE, pp 1050–1061

Apache Software Foundation (2009a) Apache AvroTM Releases, https://avro.apache.org/releases.html
Apache Software Foundation (2009b) Avro, https://avro.apache.org/
Apache Software Foundation (2009) Chukwa, http://chukwa.apache.org/
Apache Software Foundation (2020) HowToContribute, https://cwiki.apache.org/confluence/display/

ZOOKEEPER/HowToContribute
Apache Software Foundation (2013) Knox. https://knox.apache.org/
Apache Software Foundation (2014) Tez. https://tez.apache.org/
Apache Software Foundation (2008) ZooKeeper. https://zookeeper.apache.org/
Ayari K, Meshkinfam P, Antoniol G, Di Penta M (2007) Threats on building models from cvs and bugzilla

repositories: The mozilla case study. In: Proceedings of the 2007 Conference of the Center for Advanced
Studies on Collaborative Research. IBM Corp., pp 215–228

Bachmann A, Bernstein A (2009) Data retrieval, processing and linking for software process data analysis.
Technical report, IFI-2009.0003b

Bachmann A, Bernstein A (2009) Software process data quality and characteristics: a historical view on open
and closed source projects. In: Proceedings of the Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops (IWPSE-Evol).
ACM, pp 119–128

Bachmann A, Bird C, Rahman F, Devanbu P, Bernstein A (2010) The missing links: bugs and bug-fix com-
mits. In: Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, pp 97–106

www.editage.com
http://creativecommons.org/licenses/by/4.0/
https://avro.apache.org/releases.html
https://avro.apache.org/
http://chukwa.apache.org/
https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute
https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute
https://knox.apache.org/
https://tez.apache.org/
https://zookeeper.apache.org/

 136 Page 46 of 50 Empir Software Eng (2022) 27:136

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.
IEEE Trans Softw Eng 22(10):751–761

Bennin KE, Keung J, Phannachitta P, Monden A, Mensah S (2017) Mahakil: Diversity based oversampling
approach to alleviate the class imbalance issue in software defect prediction. IEEE Trans Softw Eng
44(6):534–550

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(10):281–
305

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: bias in
bug-fix datasets. In: Proceedings of the 7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, pp 121–130

Bird C, Bachmann A, Rahman F, Bernstein A (2010) Linkster: enabling efficient manual inspection and
annotation of mined data. In: Proceedings of the 19th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, pp 369–370

Bissyandé TF, Thung F, Wang S, Lo D, Jiang L, Réveillère L (2013) Empirical evaluation of bug linking.
In: Proceedings of the 17th European Conference on Software Maintenance and Reengineering. IEEE,
pp 89–98

Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using matthews
correlation coefficient metric. PloS one 12(6):e0177678

Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic press
Čubranić D, Murphy GC (2003) Hipikat: Recommending pertinent software development artifacts. In:

Proceedings of the 25th International Conference on Software Engineering (ICSE). IEEE, pp 408–418
Da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2016) A framework for evalu-

ating the results of the szz approach for identifying bug-introducing changes. IEEE Trans Softw Eng
43(7):641–657

Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: Proceedings of the
14th International Conference on Knowledge Discovery and Data Mining (SIGKDD). ACM, pp 213–220

EU (2016) Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46/ec (general data protection regulation) (text with eea relevance).
Official J Eur Union (OJ) L 119:1–88

Fan Y, Xia X, Alencar da Costa D, Lo D, Hassan AE, Li S (2019) The impact of changes mislabeled by szz
on just-in-time defect prediction. IEEE Trans Softw Eng. to appear

Fischer M, Pinzger M, Gall H (2003) Analyzing and relating bug report data for feature tracking. In:
Proceedings of the 10th Working Conference on Reverse Engineering (WCRE). IEEE, pp 90–99

Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and
bug tracking systems. In: Proceedings of the 2003 International Conference on Software Maintenance
(ICSM). IEEE, pp 23–32

Fu W, Nair V, Menzies T (2016) Why is differential evolution better than grid search for tuning defect
predictors? arXiv:1609.02613

Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) An empirical study of just-in-time
defect prediction using cross-project models. In: Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR). ACM, pp 172–181

German DM, Adams B, Stewart K (2019) cregit: Token-level blame information in git version control
repositories. Empir Softw Eng 24(4):2725–2763

Git community (2020) git-log - Show commit logs. https://git-scm.com/docs/git-log
Gyimóthy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software

for fault prediction. IEEE Trans Softw Eng 31(10):897–910
Herbold S, Trautsch A, Trautsch F (2019) Issues with szz: An empirical assessment of the state of practice

of defect prediction data collection. arXiv:1911.08938
Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug prediction.

In: Proceedings of the 2013 International Conference on Software Engineering (ICSE). IEEE Press,
pp 392–401

Herzig K, Zeller A (2013) The impact of tangled code changes. In: Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR). IEEE, pp 121–130

Jung Y, Oh H, Yi K (2009) Identifying static analysis techniques for finding non-fix hunks in fix revisions.
In: Proceedings of the ACM First International Workshop on Data-intensive Software Management and
Mining. ACM, pp 13–18

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time
defect prediction using cross-project models. Empir Softw Eng 21(5):2072–2106

http://arxiv.org/abs/1609.02613
https://git-scm.com/docs/git-log
http://arxiv.org/abs/1911.08938

Empir Software Eng (2022) 27:136 Page 47 of 50 136

Kamei Y, Shihab E (2016) Defect prediction: Accomplishments and future challenges. In: Proceedings of the
23rd International Conference on Software Snalysis, Evolution, and Reengineering (SANER), pp 33–45

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kawrykow D, Robillard MP (2011) Non-essential changes in version histories. In: Proceedings of the 33rd
International Conference on Software Engineering (ICSE). IEEE, pp 351–360

Kim S, Whitehead Jr E J, Zhang Y (2008) Classifying software changes: Clean or buggy? IEEE Trans Softw
Eng 34(2):181–196

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Proceedings of the 33rd
International Conference on Software Engineering (ICSE). IEEE, pp 481–490

Kim S, Zimmermann T, Pan K, James Jr E et al (2006) Automatic identification of bug-introducing changes.
In: Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, pp 81–90

Kondo M (2021a) MKmknd/EMSE2021 ILA. https://doi.org/10.5281/zenodo.5712318
Kondo M (2021b) MKmknd/ILA. https://doi.org/10.5281/zenodo.5573591
Kondo M (2021c) MKmknd/ILA Validation. 10.5281/zenodo.5612161
Kondo M, Bezemer C-P, Kamei Y, Hassan AE, Mizuno O (2019) The impact of feature reduction techniques

on defect prediction models. Empir Softw Eng 24(4):1925–1963
Kondo M, German DM, Mizuno O, Choi E-H (2020) The impact of context metrics on just-in-time defect

prediction. Empir Softw Eng 25(1):890–939
Le T-DB, Linares-Vásquez M, Lo D, Poshyvanyk D (2015) Rclinker: automated linking of issue reports and

commits leveraging rich contextual information. In: Proceedings of the 23rd International Conference
on Program Comprehension (ICPC). IEEE, pp 36–47

McIntosh S, Kamei Y (2018) Are fix-inducing changes a moving target? a longitudinal case study of just-in-
time defect prediction. IEEE Trans Softw Eng 44(5):412–428

Mills C, Pantiuchina J, Parra E, Bavota G, Haiduc S (2018) Are bug reports enough for text retrieval-
based bug localization? In: 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp 381–392

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In:
Proceedings of the 2000 International Conference on Software Maintenance (ICSM), pp 120–130

Neto EC, da Costa DA, Kulesza U (2018) The impact of refactoring changes on the szz algorithm: An
empirical study. In: Proceedings of the 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, pp 380–390

Neto EC, da Costa DA, Kulesza U (2019) Revisiting and improving szz implementations. In: Proceedings
of the 2019 International Symposium on Empirical Software Engineering and Measurement (ESEM).
IEEE, pp 1–12

Nguyen AT, Nguyen TT, Nguyen HA, Nguyen TN (2012) Multi-layered approach for recovering links
between bug reports and fixes. In: Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM

Nguyen HA, Nguyen AT, Nguyen TN (2013) Filtering noise in mixed-purpose fixing commits to improve
defect prediction and localization. In: Proceedings of the 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, pp 138–147

Nguyen ThanhHD, Adams B, Hassan AE (2010) A case study of bias in bug-fix datasets. In: 2010 17th
Working Conference on Reverse Engineering. IEEE, pp 259–268

Ni C, Xia X, Lo D, Chen X, Gu Q (2020) Revisiting supervised and unsupervised methods for effort-aware
cross-project defect prediction. IEEE Trans Softw Eng

Pan K, Kim S, Whitehead EJ (2009) Toward an understanding of bug fix patterns. Empir Softw Eng
14(3):286–315

Rahman F, Posnett D, Herraiz I, Devanbu P (2013) Sample size vs. bias in defect prediction. In: Proceedings
of the 9th Joint Meeting on Foundations of Software Engineering. ACM, pp 147–157

Ramler R, Himmelbauer J (2013) Noise in bug report data and the impact on defect prediction results. In:
Proceedings of the 2013 Joint Conference of the 23rd International Workshop on Software Measurement
and the 8th International Conference on Software Process and Product Measurement. IEEE, pp 173–180

Rosen C, Grawi B, Shihab E (2015) Commit guru: Analytics and risk prediction of software commits. In:
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
pp 966–969

Schermann G, Brandtner M, Panichella S, Leitner P, Gall H (2015) Discovering loners and phantoms in
commit and issue data. In: Proceedings of the 23rd International Conference on Program Comprehension
(ICPC). IEEE, pp 4–14

scikit-learn developers (2020a) 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier. https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://doi.org/10.5281/zenodo.5712318
https://doi.org/10.5281/zenodo.5573591
10.5281/zenodo.5612161
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

 136 Page 48 of 50 Empir Software Eng (2022) 27:136

scikit-learn developers (2020b) sklearn.linear model.LogisticRegression. https://scikit-learn.org/stable/
modules/generated/sklearn.linear model.LogisticRegression.html

scikit-learn developers (2020c) sklearn.linear model.SGDClassifier. https://scikit-learn.org/stable/modules/
generated/sklearn.linear model.SGDClassifier.html

scikit-learn developers (2020d) sklearn.metrics.cohen kappa score. https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.cohen kappa score.html

scikit-learn developers (2020) sklearn.metrics.pairwise.cosine similarity. https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.pairwise.cosine similarity.html

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings of the 2005
International Workshop on Mining Software Repositories (MSR). ACM, pp 1–5

Sparck Jones K (1972) A statistical interpretation of term specificity and its application in retrieval. J
Documentation 28(1):11–21

Sun Y, Chen C, Wang Q, Boehm B (2017a) Improving missing issue-commit link recovery using positive
and unlabeled data. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE Press, pp 147–152

Sun Y, Wang Q, Li M (2016) Understanding the contribution of non-source documents in improving missing
link recovery: An empirical study. In: Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM, pp 1–10

Sun Y, Wang Q, Yang Y (2017b) Frlink: Improving the recovery of missing issue-commit links by revisiting
file relevance. Inf Softw Technol 84:33–47

Sureka A, Lal S, Agarwal L (2011) Applying fellegi-sunter (fs) model for traceability link recovery between
bug databases and version archives. In: Proceedings of the 18th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, pp 146–153

Tan M, Tan L, Dara S, Mayeux C (2015) Online defect prediction for imbalanced data. In: Proceedings of
the 37th International Conference on Software Engineering (ICSE). IEEE, pp 99–108

Tantithamthavorn C, Hassan AE (2018) An experience report on defect modelling in practice: Pitfalls and
challenges. In: Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). ACM, pp 286–295

Tantithamthavorn C, Hassan AE, Matsumoto K (2018) The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. IEEE Trans Softw Eng 46(11):1200–1219

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling on
the performance and interpretation of defect prediction models. In: Proceedings of the 37th International
Conference on Software Engineering (ICSE). IEEE, pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization
of classification techniques for defect prediction models. In: Proceedings of the 38th International
Conference on Software Engineering, pp 321–332

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1–18

Thomas WS (2012) lscp: A lightweight source code preprocesser. https://github.com/doofuslarge/lscp
Tu H, Menzies T (2020) Better data labelling with emblem (and how that impacts defect prediction).

arXiv:1905.01719
Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software

engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, pp 1–10

Wu R, Zhang H, Kim S, Cheung S-C (2011) Relink: recovering links between bugs and changes. In: Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE). ACM, pp 15–25

Xie R, Chen L, Ye W, Li Z, Hu T, Du D, Zhang S (2019) Deeplink: A code knowledge graph based deep
learning approach for issue-commit link recovery. In: Proceedings of the 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, pp 434–444

Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep learning for just-in-time defect prediction. In: Proceedings
of the International Conference on Software Quality, Reliability and Security (QRS). IEEE, pp 17–26

Yedida R, Menzies T (2021) On the value of oversampling for deep learning in software defect prediction.
IEEE Trans Softw Eng

Zhang F, Zheng Q, Zou Y, Hassan AE (2016) Cross-project defect prediction using a connectivity-based
unsupervised classifier. In: Proceedings of the 38th International Conference on Software Engineering
(ICSE). ACM, pp 309–320

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://github.com/doofuslarge/lscp
http://arxiv.org/abs/1905.01719

Empir Software Eng (2022) 27:136 Page 49 of 50 136

Masanari Kondo currently works as an assistant professor in the Principles of Software engineering and
programming Languages Lab. (POSL) at Kyushu University, Kyushu, Japan. He was a Ph.D. student in the
Software Engineering Laboratory (SEL) at the Kyoto Institute of Technology, Kyoto, Japan. He was also
a Young Scientist of JSPS Research Fellowships (DC1) (2019.4-2021.3) and a visiting researcher in the
Software Analysis & Intelligence Lab (SAIL) at Queen’s University, Kingston, Canada (2018.3-2019.3).
His research interests include supporting software developers by providing tools and methods for software
quality assurance activities based on software repository mining, machine learning, and statistical analysis
techniques. He received his BSc, MSc, and Ph.D. degrees from the Kyoto Institute of Technology (2017,
2019, and 2021). More about Masanari can be read on his website: https://mkmknd.github.io/

Yutaro Kashiwa is a research assistant professor at Kyushu University, Japan. He worked for Hitachi Ltd. as a
full-time software engineer for two years before spending three years as a research fellow of the Japan Society
for the Promotion of Science. He received his Ph.D. degree in engineering from Wakayama University in
2020. His research interests include empirical software engineering, specifically the analysis of software
bugs, testing, refactoring, and release.

https://mkmknd.github.io/

 136 Page 50 of 50 Empir Software Eng (2022) 27:136

Yasutaka Kamei is an associate professor at Kyushu University in Japan. He has been a research fellow of
the JSPS (PD) from July 2009 to March 2010. From April 2010 to March 2011, he was a postdoctoral fellow
at Queen’s University in Canada. He received his B.E. degree in Informatics from Kansai University, and
the M.E. degree and Ph.D. degree in Information Science from Nara Institute of Science and Technology.
His research interests include empirical software engineering, open source software engineering and Min-
ing Software Repositories (MSR). His work has been published at premier venues like ICSE, FSE, ESEM,
MSR and ICSM, as well as in major journals like TSE, EMSE, and IST. He served as a program-committee
co-chair of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER 2016) and the 15th International Conference on Mining Software Repositories (MSR 2018). More
information about him is available online at http://posl.ait.kyushu-u.ac.jp/kamei/.

Osamu Mizuno received M.E. and Ph.D. degrees from Osaka University in 1998 and 2001, respectively.
Currently, he is a Professor at the Faculty of Information and Human Sciences, Kyoto Institute of Technology.
His current research interests include software repository mining, fault-prone module prediction, software
process improvement, and risk evaluation and prediction of software development. He is a member of IEEE.

http://posl.ait.kyushu-u.ac.jp/kamei/

	An empirical study of issue-link algorithms: which issue-link algorithms should we use?
	Abstract
	Introduction
	Motivating Example
	Defect Prediction and ILAs
	Data Preparation:
	Model Construction:
	Evaluation:

	Do ILAs Affect Defect Prediction?

	Related Work
	Challenges of the SZZ Algorithm
	Detecting Defect-Inducing Commits Based on Multiple-Purpose Defect-Fixing Commits
	Issue-Link Algorithm: Detecting Defect-Fixing Commits Based on Incomplete Information
	Defect Data Quality in Defect Prediction Research

	Experimental Design
	A running example.

	Methodology
	Studied Datasets
	Studied ILAs
	Commit-Link Algorithm
	Studied Defect Prediction Model
	Evaluation Measures
	Detecting Defect-Fixing Commits
	Detecting Defect-Inducing Commits
	The Scott-Knott ESD test

	Preprocessing for Predicting Defect-Inducing Commits
	Resampling Approach
	Validation Schemes

	Results
	RQ1: Which Issue-Link Algorithm is the Best to Detect Defect-Fixing Commits?
	Motivation and Approach:
	Results:
	Observation 1)
	Observation 2)
	Observation 3)
	Observation 4)
	Observation 5)

	RQ2: Which Issue-Link Algorithm is the Best to Prevent a Defect Prediction Model From Being Affected by Missing Defect-Fixing Commits in Defect Prediction?
	Motivation and Approach:
	Results:
	Observation 7)
	Observation 8)

	Discussion
	Can the RF Approach Detect Missing Defect-Fixing Commits in the High-Quality Dataset?
	Observation 9)

	Why Does the TF Approach Generally Work Well in Detecting Defect-Fixing Commits?
	Observation 10)

	Which Time Interval is the Best to Detect Defect-Fixing Commits?
	Observation 11)

	Do ILAs Affect the Effort-Aware Defect Prediction Performance Measures?
	Motivation and Approach:
	Results:

	The False-positive/negative Defect-fixing Commits in the Ground Truth Data
	Answer to This Paper: Which ILAs Should We Use?

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusion
	Appendix:
	A Overview of ILAs
	A.1 Keyword Extraction (KE)
	A.2 Time Filtering (TF)
	A.3 Natural Language Text Similarity (TS)
	A.4 Natural Language Text Similarity with Word Association (WA)
	A.5 Message Generation from Source Code (GS)
	A.6 Loner Heuristics (LO)
	A.7 Phantom Heuristics (PH)
	A.8 Modified Text Files (MT)
	A.9 PU Learning (PU)
	A.10 Machine Learning (ML)
	References

