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Abstract

Software products are pivotal for our daily life such as infrastructure, work,

and communication. Therefore, defects in such software products may cause

widespread catastrophes. Indeed, several accidents have been reported whose

causes were software defects.

Due to such importance of software products, software developers carefully

manage the quality of software products by software quality assurance (SQA)

activities (e.g., software testing, code review, and CI/CD). For example, software

testing inspects if software products meet all the requirements. However, recently

software products have become enormous in size and depend on numerous envi-

ronments; it is difficult to inspect the entire software products by SQA activities.

Defect prediction distinguishes defective software entities (e.g., file) by a defect

prediction model. Such a defect prediction model enables developers to allocate

their SQA activities to defective entities and reveal more defects than applying

SQA activities without such a model. Hence, defect prediction attracts interests

by practitioners and researchers, and becomes an active research area in software

engineering.

Defect prediction models are usually machine learning models that are trained

on software features of past software entities. Since machine learning models rely

on such software features, prior studies used feature engineering on defect predic-

tion to improve the prediction performance. Feature engineering is a process to

create or improve features by our domain knowledge. For example, several stud-

ies retrieved new features from a software product. However, defect prediction
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still has challenges that can be addressed by feature engineering: (1) the compar-

ison of feature reduction techniques, (2) using the context lines of source code as

features, and (3) using semantic properties as features with a deep learning model

on change-level defect prediction.

In this thesis, to address these challenges, we (1) conducted a large-empirical

comparison across feature reduction and selection techniques, (2) constructed

context features retrieved from context lines, and (3) used semantic properties with

a deep learning model on change-level defect prediction. Our results showed that

(1) feature reduction and selection techniques improve the prediction performance

while reducing the number of features, (2) context features improve the prediction

performance, and (3) semantic features with a deep learning model significantly

outperform a previous deep learning model.
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Chapter 1

Introduction

1.1 Background

1.2 Thesis overview

1.3 Thesis contribution

1.1 Background

Defects in software products currently have severe impacts on our daily life.

Indeed, Krasner [86] reported that poor quality software products cost approxi-

mately $2.8 trillion in the US in 2018 only. Hence, software developers need to

carefully inspect their software products and exclude defects.

To exclude defects, developers apply software quality assurance (SQA) activities

to software products such as software testing, code review, and CI/CD. For exam-

ple, software testing is an essential phase in software development [13]. In this

phase, developers inspect if their software products meet all the requirements.

However, SQA activities are time consuming and expensive in software develop-

ment [156]; and therefore, developers need to be selective when deciding where

to focus their limited SQA effort.

Defect prediction models help developers focus their SQA effort on software

1
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entities (e.g., package, file, and commit) that are the most likely to include de-

fects [71,77,82,83]. Such defect prediction models attract interests from researchers

and practitioners. Indeed, numerous defect prediction studies exist in software

engineering. For example, we conducted a systematic literature review [48,63,80]

in the top journals (IEEE Transactions on Software Engineering (TSE), ACM

Transactions on Software Engineering and Methodology (TOSEM), and Empiri-

cal Software Engineering (EMSE)) and conferences (International Conference on

Software Engineering (ICSE), Symposium on the Foundations of Software En-

gineering (FSE), International Conference on Automated Software Engineering

(ASE), International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), and International Conference on Mining Software Repositories

(MSR)) in the past three years (Jan. 2018 to Oct. 2020). We searched three digital

libraries (IEEE Xplore, ACM Digital Library, and Springer) for the papers that

include one of three keywords (“defect prediction”, “fault prediction”, and “bug

prediction”). Finally, we read the abstract and excluded non-defect prediction

papers. We collected 52 papers that are shown in Table 1.1. Hence, even in the

top journals and conferences in the past three years, there are 52 defect prediction

studies.

Defect prediction models are typically constructed by training a machine learn-

ing model on features that are related to software development. As more informa-

tive features improve the prediction performance of such a model, prior studies

have been reporting various features so far [9, 19, 24, 28, 50, 52, 54, 71, 77, 85, 97, 98,

110,113,132]. Such features can be classified into some categories such as process

features, product features and developer features. For example, one of the suites

of the process features is the change features [71, 110]. The change features in-

clude features that can be retrieved from each commit/change in version control

systems. One of the suites of the product features is the object-oriented (OO)

features [9, 24]. The OO features can be retrieved from software entities written

in object-oriented languages such as classes in Java. We discuss the details of the
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Table 1.1: All the retrieved papers by our systematic literatuer review.

Venue Reference

[158], [30], [114], [11], [173], [57], [100], [170], [161], [123]

TSE [165], [152], [56], [58], [179], [36], [130], [93], [120], [138]

[21], [166], [67], [172]

TOSEM [72]

EMSE [12], [82], [64], [109], [8], [34], [68], [83], [108], [6]

ICSE [3], [33], [18], [26], [178], [22], [92], [154]

MSR [27], [62]

ASE [129], [42]

SANER [125], [94], [174], [180], [5]

features in Chapter 2.

Whereas using such features is useful in defect prediction, we can also use

other features that capture the semantic properties of source code to construct

defect prediction models [62,66,76,91,105,155,171,176]. Here, we refer to semantic

properties as the meaning of source code. For example, Wang et al. [171] converted

source code to abstract syntax tree (AST) nodes, and extracted semantic properties

with a deep learning model from the AST nodes. The output of the deep learning

model is used as their features. Tan et al. [155] used bag-of-words [184] to extract

semantic properties. We discuss the details of the semantic properties in Chapter 2.

Because of a variety of features, researchers and practitioners who want to

construct defect prediction models need to select an appropriate suite of features

for their data. This is because keeping the number of features small avoids some

problems such as the problem of multicollinearity [4]. To do so, we can use

feature selection/reduction techniques. Indeed, several researchers applied feature

selection [20, 39, 41, 43, 44, 69, 70, 101, 111, 115, 116, 133, 136, 137, 149, 175, 186] and



4 Introduction Chapter 1.

reduction techniques [20, 28, 41, 112, 117, 119, 133, 134, 175] to defect prediction

models. For example, Ghotra et al. [41] compared 30 feature selection techniques

on defect prediction models. They found that a correlation-based filter-subset

feature selection technique with a BestFirst search method outperformed other

feature selection techniques.

Such prior studies aimed to improve the defect prediction performance by

investigating features based on their domain knowledge (a.k.a. feature engineer-

ing [185]), though defect prediction still has challenges that can be addressed by

feature engineering. In particular, we found the following three challenges are

ignored: (1) the comparison of feature reduction techniques, (2) using the context

lines of source code as features, and (3) using semantic properties as features with

a deep learning model on change-level defect prediction.

In this thesis, we applied feature engineering to defect prediction to address

three remaining challenges. More specifically, we conducted the following inves-

tigations:

(1) We conducted an empirical comparison across feature reduction techniques

and between feature reduction techniques and feature selection techniques

in defect prediction. We found that neural network-based feature reduction

techniques outperformed the other feature reduction/selection techniques in

terms of the prediction performance on unsupervised defect prediction mod-

els, while the best-performing feature selection techniques outperformed

the feature reduction techniques on supervised defect prediction models

(Chapter 3).

(2) We constructed context features and their extensions retrieved from context

lines of source code. We found that our extended context features signifi-

cantly outperformed the other studied features in terms of two out of three

evaluation measures. In addition, we found that the prediction performance

of context features varies with the parameters of context lines such as the

number of context lines (Chapter 4).
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(3) We applied a deep learning model (convolutional neural network) to mod-

ified source code to retrieve semantic properties. In particular, we con-

structed a change-level (a.k.a. just-in-time) defect prediction model called

W-CNN. We found that our W-CNN improved the defect prediction perfor-

mance compared to a previous just-in-time defect prediction model with a

deep learning model (Chapter 5).

1.2 Thesis overview

Here, we described a brief overview of this thesis organization. We described

each chapter below.

1.2.1 Features in defect prediction (Chapter 2)

In this chapter, we briefly summarized existing features in defect prediction. In

particular, we described features for each feature category: product features, process

features, organization features, developer features, and features of semantic properties.

Finally, we clarified three challenges that we described above.

1.2.2 The impact of feature reduction techniques on defect pre-

diction models (Chapter 3)

Feature selection and reduction techniques can help to reduce the number of

features in a defect prediction model. Feature selection techniques reduce the

number of features in a model by selecting the most important ones, while feature

reduction techniques reduce the number of features by creating new, combined

features from the original features. Numerous recent studies have investigated

the impact of feature selection techniques on defect prediction [20, 39, 41, 43, 44,

69, 70, 101, 111, 115, 116, 133, 136, 137, 149, 175, 186]. However, there do not exist

large-scale studies in which the impact of multiple feature reduction techniques
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on defect prediction is investigated.

In this chapter, we studied the impact of eight feature reduction techniques

on the performance and the variance in performance of five supervised and five

unsupervised defect prediction models. In addition, we compared the impact

of the studied feature reduction techniques with the impact of the two best-

performing feature selection techniques according to prior work [41, 175].

1.2.3 The impact of context features on just-in-time defect pre-

diction (Chapter 4)

Traditional just-in-time defect prediction approaches have been using changed

lines of software to predict defective changes in software development. However,

they disregard information around the changed lines. Our main hypothesis is

that such information has an impact on the likelihood that the change is defective.

To take advantage of this information in defect prediction, we considered n-lines

(n = 1, 2, · · ·) that precede and follow the changed lines (which we call context

lines), and proposed features that measure them, which we call “Context Features.”

Specifically, these context features are defined as the number of words/keywords

in the context lines.

In this chapter, we conducted a large-scale empirical study using six open

source software projects. We compared the performance of using our context

features, traditional code churn features (e.g., the number of modified subsys-

tems), our extended context features which measure not only context lines but also

changed lines, and combination features that use two extended context features at

a prediction model for defect prediction.
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1.2.4 Deep learning based just-in-time defect prediction with

semantic properties as features (Chapter 5)

Several prior studies used semantic properties of source code as their features

to construct a defect prediction model [62, 66, 76, 91, 105, 155, 171, 176]. However,

they overlooked to use a deep learning model to retrieve semantic properties in

just-in-time defect prediction.

In this chapter, we proposed a novel approach for defect prediction called

Word-Convolutional Neural Network (W-CNN), which applies a CNN to the mod-

ified source code itself. We compared our approach to a prior defect prediction

model that uses change features with a deep learning model in seven open-source

projects.

1.2.5 Conclusion and future work (Chapter 6)

In this chapter, we concluded the findings and implications of this thesis. In

addition, we presented the possibility of future studies on this topic.

1.3 Thesis contribution

In this thesis, we applied feature engineering to the challenges in defect prediction

that were overlooked by prior studies. In doing so, we have several contributions

to defect prediction in software engineering. We highlighted some of the key

contributions as follows:

1. We provided practitioners with advice on which feature selection/reduction

technique to use in combination with a defect prediction model (Chapter 3).

2. We showed that context lines are informative to predict defective changes

in just-in-time defect prediction. In addition, we formulated the context

features based on context lines (Chapter 4).
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3. We showed that a deep learning model can be used to retrieve semantic

properties from modified source code for just-in-time defect prediction. In

addition, we presented that our proposed model can improve the effec-

tiveness of defect prediction with a small overhead on the prediction time

(Chapter 5).



Chapter 2

Features in Defect Prediction

2.1 Product features

2.2 Process features

2.3 Organization features

2.4 Developer features

2.5 Features of semantic properties

2.6 Chapter summary

In the defect prediction research filed, numerous features have already been

proposed and evaluated so far. Hence, some prior studies summarized existing

features. For example, Madeyski et al. [95] summarized popular product features

and process features. Tiwari et al. [164] conducted a systematic literature review

and summarized the studies that are related to the evolution of coupling and

cohesion features.

In feature engineering, summarizing existing features provides us with an

overview of existing studies. Therefore, in this chapter, we also summarized the

existing features. In particular, we classified the existing features into five cate-

gories (i.e., product features, process features, organization features, developer features,

and features of semantic properties) and described popular features with some ref-

9
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erences for each category. Consequently, we clarified three challenges that have

not been addressed yet in defect prediction.

2.1 Product features

Product features [9, 24, 50, 52, 98] measure the size or complexity of software

entities. For example, one of the most popular features is lines of code (LOC).

LOC counts the number of lines for an entity. For example, the number of lines

in a file is LOC.

One of the suites of the product features is the object-oriented features [9, 24].

The object-oriented features measure the complexity of source code written in

object-oriented languages such as Java. The Chidamber and Kemerer (CK) fea-

tures [24] are one of the most popular suites of the object-oriented features that

consists of six features. For example, they proposed the weighted methods per

class (WMC). WMC measures the complexity of a class by its methods. The

McCabe cyclomatic complexity features (McCabe features) [98] measure the com-

plexity of source code by using the control flow graph of source code. In particular,

the McCabe features count the number of nodes, edges, and connected compo-

nents in the control flow graph. The product features also include other features

such as the Halstead features [50]).

The product features are typically applied to a complete software entity such

as a file, class, and method. Hence, researchers and practitioners use the product

features in coarse grained defect prediction such as file/package-level defect predic-

tion* frequently.

*The aim of file/package-level defect prediction is to identify defective files/packages.



Section 2.4 Process features 11

2.2 Process features

Process features (a.k.a. code churn features) measure the size, complexity, or

metadata of changes in software development [54, 71, 77, 85, 110, 132]. Some of

the product features can be used as process features. For example, LOC can be

applied to a change (e.g., commit), though LOC is a product feature. The number

of added lines in a commit can be used to measure the size of a commit. In

particular, we refer to LOC that counts the number of added lines as lines of code

added (LA); we refer to LOC that counts the number of deleted lines as lines of

code deleted (LD) [71]. However, changes may not be a complete source code; and

therefore, the McCabe features, for example, cannot be used as process features.

One of the most popular suites of process features is the change features [71].

The change features include 14 different features such as LA and LD. The change

features can be measured on changes such as commits. Therefore, we typically

use the change features on just-in-time defect prediction [38, 70, 71, 83, 176, 177].

2.3 Organization features

Organization features [19,113] are less popular than the product features and the

process features. The interest of the organization features is that the organization

features measure the characteristics of not only source code but also its organi-

zation. For example, Nagappan et al. [113] proposed eight organization features.

One of them is the number of engineers who contribute to source code and are

still employed by the company. This feature does not measure any characteristics

of source code.

2.4 Developer features

The concept of developer features [97] is similar to the organization features. In

particular, the developer features measure the characteristics of not only source
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code but also developers. Indeed, some prior studies [66, 122] used the charac-

teristics of developers in defect prediction. Matsumoto et al. [97] proposed two

types of developer features: the features of developers’ activities and the features

of modules by developers.

2.5 Features of semantic properties

Features that were described above convert characteristics of software entities,

organizations, and developers into numerical values. For example, LOC converts

the size of software entities into the number of lines. However, these conversions

may discard the characteristics of semantic properties. For example, if we modify

the same number of lines on a quick sort program and a fizz buzz program, LOC

could not capture the difference of complexity because of ignoring semantic prop-

erties. Some product features (e.g., the McCabe features) may capture semantic

properties; however, such features need a complete entity (e.g., an entire class).

Therefore, prior studies have investigated methods to capture the semantic

properties of source code [62, 66, 76, 91, 105, 155, 171, 176]. In particular, these

studies applied text classification models to source code. For example, Mizuno et

al. [105] applied a spam filter to a module to classify if a module is defective.

Wang et al. [171] applied a deep learning model to learn semantic differences of

source code.

Such text classification models provide several key advantages to capture

the semantic properties as a suite of features over the other features. These

text classification models 1) automatically learn semantic properties as a suite of

features 2) can be applied to a part of software entities. Hence, many prior studies

investigated the defect prediction performance of semantic properties by using

such text classification models.
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2.6 Chapter summary

As we described above, numerous features exist in defect prediction. Hence, it is

important to carefully select the suite of features that is used on defect prediction

models. Indeed, if we used too many features in a defect prediction model, the

problem of multicollinearity and the so-called “curse of dimensionality” would be

occurred and decrease the prediction performance. Hence, many of the existing

defect prediction models used feature selection or reduction techniques [20, 28,

39, 41, 43, 44, 69, 70, 101, 111, 112, 115–117, 119, 133, 134, 136, 137, 149, 175, 186].

Recent studies [41,175] investigated the impact of feature selection techniques

on the performance of defect prediction models. However, to the best of our

knowledge, nobody conducts a large-scale empirical study that compares the fea-

ture reduction techniques. Hence, we compared the feature reduction techniques

on defect prediction models (Chapter 3).

Although the features of semantic properties have been investigated so far [62,

66, 76, 91, 105, 155, 171, 176], they overlooked to use the context lines as features.

Hence, we proposed the context features that are retrieved from the context lines

and investigated the prediction performance of the defect prediction models with

the context features (Chapter 4).

Some of the previous studies used deep learning models to capture semantic

properties [62, 91, 171, 176]. However, they overlooked to apply a deep learning

model to retrieve semantic properties from changes in just-in-time defect predic-

tion by 2018. Hence, we proposed W-CNN and compared W-CNN to a prior

defect prediction model that uses a deep learning model with the change features

(Chapter 5).





Chapter 3

The Impact of Feature Reduction

Techniques on Defect Prediction

Models

3.1 Introduction

3.2 Methodology

3.3 Experimental setup

3.4 Results

3.5 Discussion

3.6 Threats to validity

3.7 Chapter summary

An earlier version of this chapter is published in the Empirical Software

Engineering Journal (EMSE) [82].
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3.1 Introduction

Software developers have limited time to test their software. Hence, developers

need to be selective when deciding where to focus their testing effort. Defect pre-

diction models help developers focus their limited testing effort on components

that are the most likely to be defective. Because detecting defects at an early stage

can considerably reduce the development cost [162], defect prediction models

have received widespread attention in software engineering research.

Many software features (e.g., software complexity features) can be used in

defect prediction models [9, 28, 54, 77, 110]. However, it is important to carefully

select the set of features that is used in such models, as using a set of features

that is too large does not automatically result in better defect prediction. For

example, prior studies showed that reducing the number of features avoids the

problem of multicollinearity [37] and the curse of dimensionality [10]. Hence,

many of the existing defect prediction models used feature selection or reduction

techniques [20, 28, 39, 41, 43, 44, 69, 70, 101, 111, 112, 115–117, 119, 133, 134, 136, 137,

149, 175, 186].

Feature selection techniques reduce the number of features in a model by

selecting the most important ones, while feature reduction techniques reduce the

number of features by creating new, combined features from the original features.

Recent studies [41, 175] investigated the impact of feature selection techniques on

the performance of defect prediction models. However, this chapter describes the

first large-scale study on multiple feature reduction techniques and their impact

on a large number of prediction models.

In this chapter, we compared the impact of the original features, features

that are generated using traditional feature reduction techniques (i.e., PCA [28],

FastMap [35], feature agglomeration [139], random projections [14], TCA [124]

and TCA+ [117]), and features that are generated using neural network-based fea-

ture reduction techniques (i.e., restricted Boltzmann machine (RBM) [151] and au-

toencoder (AE) [60]) on defect prediction models. In addition, we compared the
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impact of features that are generated using feature reduction techniques with

features that are selected using the best-performing feature selection techniques

in prior work (correlation and consistency-based feature selection) [41, 175]. We

compared the features along two dimensions: their performance (area under the

receiver operating characteristic curve (AUC)), and their performance variance

(interquartile range (IQR)). The receiver operating characteristic curve is created

by plotting the true positive rate against the false positive rate, hence, the AUC

represents the balance between the true positive rate and the false positive rate.

The IQR represents the variance of a data distribution.

We conducted experiments on three publicly available datasets that contain

software defects (the PROMISE [69], cleaned NASA [144], and AEEEM [28]

datasets). Our ultimate goal is to identify which feature reduction techniques

yield new, powerful features that preserve the predictive power of the original

features, and improve the prediction performance compared to feature selection

techniques. We studied the impact of feature reduction techniques on five super-

vised learning and five unsupervised learning models for defect prediction in our

experiments. In particular, we focus on the following research questions:

RQ1: What is the impact of feature reduction techniques on the performance

of defect prediction models?

Motivation: Reducing the number of features in a model can address the

multicollinearity problem [37] and the curse of dimensionality [10]. In this

RQ, we studied how feature reduction techniques impact the performance

of supervised and unsupervised defect prediction models.

Results: Feature agglomeration and TCA can reduce the number of fea-

tures, while preserving an AUC that is as good as that of the original fea-

tures for supervised models. In addition, the AUC of unsupervised defect

prediction models is significantly better when preprocessing the features

with neural network-based feature reduction techniques than other feature

reduction techniques.
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RQ2: What is the impact of feature reduction techniques on the variance of

the performance across defect prediction models?

Motivation: The AUC for a dataset can vary across defect prediction mod-

els. Hence, it can be challenging for practitioners to choose the defect

prediction model that performs best on their data. If all defect prediction

models have a small performance variance for a dataset, practitioners can

avoid having to make this challenging choice.

Results: Neural network-based feature reduction techniques (RBM and

AE) generate features that improve the variance of the performance across

different defect prediction models in many cases when used in a super-

vised or unsupervised defect prediction model. In addition, almost all

feature reduction techniques (except PCA) generate features that improve

the variance of the performance across different defect prediction models

in many cases when used in an unsupervised defect prediction model.

RQ3: How do feature selection techniques compare to feature reduction tech-

niques when applied to defect prediction?

Motivation: Prior work [41,175] showed that several feature selection tech-

niques outperform the original models. In this RQ, we studied how feature

selection techniques compare to feature reduction techniques.

Results: For the supervised defect prediction models, the studied feature

selection techniques (correlation and consistency-based feature selection)

outperform all the studied feature reduction techniques. However, for the

unsupervised defect prediction models, the neural network-based feature

reduction techniques (RBM and AE) outperform the other studied feature

selection/reduction techniques.

Our results provide practitioners with advice on which feature selection/reduction

technique to use in combination with a defect prediction model. In particular, we

recommend to use a feature selection technique when using a supervised de-

fect prediction model, and a neural network-based feature reduction technique
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when using an unsupervised defect prediction model, as these feature selec-

tion/reduction techniques improve the variance across defect prediction models,

while outperforming the other feature reduction techniques.

3.2 Methodology

In this section, we describe our methodology. In particular, we discuss our stud-

ied datasets, defect prediction models, feature selection techniques, feature reduc-

tion techniques, evaluation measure, our preprocessing steps, and our validation

scheme.

3.2.1 Studied datasets

In our work, we used three publicly available datasets (the PROMISE [69], cleaned

NASA [118] and AEEEM [28] datasets) that were used by prior work [181] on

supervised and unsupervised defect prediction models. Table 3.1 describes the

studied datasets. All datasets contain popular software features for measuring

source code complexity (see Table 3.2 for a summary of the used features). Each

entity in a dataset is labelled as defective or clean.

The PROMISE dataset contains several types of projects. We chose the 10

projects that were used by prior work [181], to ease the comparison of our results

with prior work. All studied PROMISE projects have the same number of features.

The PROMISE dataset contains the Chidamber and Kemerer (CK) features [24]

and an additional set of object-oriented (OO) features.

The NASA dataset [118] contains 11 projects. Each project in the NASA dataset

has a different number of features. The NASA dataset contains McCabe fea-

tures [98] and Halstead features [50]. We used the cleaned version [144] of the

NASA dataset, because prior studies [128, 144] showed that the original version

of the NASA dataset contains inconsistent and mislabeled data.

The AEEEM dataset [28] contains five projects. All projects have the same



20 Feature Reduction Techniques Chapter 3.

Table 3.1: Description of studied projects

Studied Dataset Project # of # of % Defective # of # of

Entities Defective Features∗ Studied Features∗

PROMISE Ant v1.7 745 166 22.3 24 20

Camel v1.6 965 188 19.5 24 20

Ivy v1.4 241 16 6.6 24 20

Jedit v4.0 306 75 24.5 24 20

Log4j v1.0 135 34 25.2 24 20

Lucene v2.4 340 203 59.7 24 20

POI v3.0 442 281 63.6 24 20

Tomcat v6.0 858 77 9.0 24 20

Xalan v2.6 885 411 46.4 24 20

Xerces v1.3 453 69 15.2 24 20

NASA CM1 327 42 12.8 38 37

JM1 7,782 1,672 21.5 22 21

KC3 194 36 18.6 40 39

MC1 1,988 46 2.3 39 38

MC2 125 44 35.2 40 39

MW1 253 27 10.7 38 37

PC1 705 61 8.7 38 37

PC2 745 16 2.1 37 36

PC3 1,077 134 12.4 38 37

PC4 1,287 177 13.8 38 37

PC5 1,711 471 27.5 39 38

AEEEM Eclipse JDT Core 997 206 20.7 291 212

Equinox 324 129 39.8 291 212

Apache Lucene 691 64 9.3 291 212

Mylyn 1,862 245 13.2 291 212

Eclipse PDE UI 1,497 209 14.0 291 212

∗ We removed features that are not related to source code. For instance, the name of the file, name of the class

and the version. Hence, the number of studied features are different from the total number of features.
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Table 3.2: Studied features

Studied Dataset Features Reference

PROMISE CK (OO) Chidamber et al. [24] and Basili et al. [9]

NASA McCabe McCabe [98]

Halstead Halstead [50]

AEEEM CK (OO) Chidamber et al. [24] and Basili et al. [9]

number of previous defects Kim et al. [77]

change features Moser et al. [110]

complexity code change features Hassan [54]

churn of CK and OO D’Ambros et al. [28]

entropy of CK and OO D’Ambros et al. [28]

number of features. Like the PROMISE dataset, the AEEEM dataset contains

the CK and OO features. However, the AEEEM data also contains the number of

previous defects [77], change features [110], complexity code change features [54],

and the churn and entropy of the CK and OO [28] features.

3.2.2 Studied defect prediction models

We focused on defect prediction models that were used by prior work [181], to

make our results easier to compare. We studied five supervised models and

five unsupervised models. Below we give a brief overview of the ideas behinds

these models. For a detailed overview, we refer the reader to the original papers

in which these models were introduced. We studied the following supervised

defect prediction models:

• Logistic Regression (LR) [99]: LR is one of the most commonly used models

for defect prediction. LR expresses the relationship between one or more

independent variables (i.e., the original features) and one dependent vari-

able (i.e., defective or clean) using a polynomial expression and a sigmoid

function [51].
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• Decision Tree (J48) [131]: J48 is a decision tree implementation in WEKA [45].

The decision tree uses a tree structure to decide on the dependent variable.

In this tree, each node corresponds to one of the independent variables with

a condition. J48 traverses the tree from the root to a leaf, while taking into

account the input entity and the conditions in the tree. Each leaf corresponds

to a value of the dependent variable.

• Random Forest (RF) [61]: RF is a popular ensemble learning model. RF builds

multiple decision trees based on subsets of training data that are randomly

selected. RF decides on a value of the dependent variable by taking the

result of a majority of the decision trees.

• Naive Bayes (NB) [182]: NB is a probability-based classifier that follows

Bayes’ theorem. Bayes’ theorem describes the probability of an event, given

knowledge of conditions that could be related to the event.

• Logistic Model Tree (LMT) [89]: LMT is a classifier which combines a decision

tree and a logistic regression model. Like the decision tree, LMT follows a

tree structure. However, LMT uses logistic regressions instead of values in

the leaves.

We used the caret library in R [88] to optimize the parameters of the supervised

models as suggested by Tantithamthavorn et al. [159].

We studied the following unsupervised defect prediction models:

• Spectral Clustering (SC) [169]: SC labels entities using a graph that is based

on similarities across entities. In this graph, each node is an entity and each

edge represents the similarity of the entities it connects. SC cuts sparse edges

in this graph by classifying eigenvectors of the Laplacian matrix [169] of the

graph. Following this process, SC divides the entities into two groups.

• k-means (KM) [53]: KM is a popular clustering approach. KM classifies

entities based on the distances between entities and the center of a class (i.e.,
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the mean of all entities in that class). In this chapter, we used the Euclidean

distance as the distance metric.

• Partition Around Medoids (PAM) [74]: PAM is an approach that is similar to

KM. While KM uses the center of a class, PAM uses medoids. A medoid is an

entity of which the sum of all the distances to the other entities in a class is

at its minimum. Because PAM uses the medoid instead of the center, PAM

is less likely to be affected by outliers than KM.

• Fuzzy C-Means (FCM) [32]: FCM is also an approach that is similar to KM.

While KM classifies each entity to only one class in its process, FCM allows

entities to be a member of more than one class. The membership is expressed

as a probability.

• Neural Gas (NG) [96]: NG is an approach that is similar to a self-organizing

map [81]. NG generates weighted points which have random features. Hence,

the weighted points are distributed across the feature space. For each learn-

ing iteration, the features of the weighted points are updated by distances

to closer entities. Finally, the weighted points become the class centers.

We used the default parameters of the implementations for the unsupervised

models. We set the number of clusters to two, as defect prediction is a binary

problem. Table 3.3 shows the libraries that we used for the implementation of the

defect prediction models.

Labeling technique in the unsupervised models: The unsupervised models

classify the data in two unlabeled clusters. We adopted the following heuristic to

identify the defective cluster: “For most features, software entities containing defects

generally have larger values than software entities without defects” [181]. In particular,

we used the sum of row average of the normalized features in each cluster, to

decide which cluster contains the defects [181]. To calculate the sum of row

average, we first summed the entity values in each cluster, respectively. Then, we
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Table 3.3: Packages used for experiments

Defect Prediction Models Packages

LR The caret package in R

RF The caret package in R

NB The caret package in R

J48 The caret package in R

LMT The caret package in R

SC Zhang et al.’s implementation [181]

KM The cclust package in R

PAM The cluster package in R

FCM The e1071 package in R

NG The cclust package in R

calculated the average values for each cluster. The cluster with the larger average

value was identified as the cluster with the defective entities.

3.2.3 Studied feature reduction techniques

In this section, we discuss the studied feature reduction techniques. We studied

two types of feature reduction techniques: traditional and neural network-based fea-

ture reduction techniques. We give a brief overview of the core concepts of each

feature reduction technique. For more precise details, we refer to the references

that are mentioned for each technique. Figure 3.1 shows a visualization of the tra-

ditional feature reduction techniques (PCA, FM, FA, TCA/TCA+, RP). Figure 3.2

gives an overview of neural network-based feature reduction techniques (RBM

and AE).

Traditional feature reduction techniques

We studied the following traditional feature reduction techniques.
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Figure 3.1: A visual overview of the core concepts of the traditional feature reduc-

tion techniques. The black symbols represent the original features (or entities in

FM and FA) and the purple symbols represent the newly-generated features (or

entities in FM and FA). RP (Random projection) transforms an original entity to a

new entity using M random-weight vectors.

• Principal Component Analysis (PCA): PCA is one of the most commonly used

feature reduction techniques in defect prediction [20,28,41,47,133,134,175].

PCA reduces the number of features by projecting the original set of features

on a smaller number of principal components.

• FastMap (FM): For N original features, FM [35] first generates a (N-1)-

dimensional orthogonal hyper-plane of the line between two entities that

are far from each other. Second, FM projects the other entities on this hyper-

plane. Because FM projects the entities on the N−1 orthogonal hyper-plane,

we can reduce one feature from the original features. FM repeats this proce-

dure until we get the required number of new features. For instance, if we

want three features to visualize our data from the N original features, we

repeat the procedure N-3 times.
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Figure 3.2: An overview of neural network-based feature reduction techniques

(RBM and AE). RBM and AE convert the original features (Vi), which values must

range between 0 and 1, into M new features (Hi). Note that the original input data

may need to be preprocessed to satisfy the 0-1 range requirement.

• Feature Agglomeration (FA): FA is a simple hierarchical clustering algorithm [139].

FA starts by creating a new feature from each original feature. Then, FA

merges the two nearest (based on their Euclidean distance) features into

one feature, and repeats this process until the desired number of features is

reached.

• Transfer Component Analysis (TCA and TCA+): TCA [124] creates new fea-

tures from the original features by projecting them on so-called transfer

components (similar to PCA). However, the goal of TCA is not to reduce
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the number of features, but to reduce the gap between the distribution of

the training and testing data. During this process, the number of features

is often reduced. Hence, TCA can be used as a feature reduction technique.

TCA+ [117] is an extension of TCA, which optimizes the data using a pre-

processing step according to the gap between the distribution of the training

and testing data, such as scaling the original features between 0 and 1 instead

of using the z-score.

• Random Projection (RP): RP projects the original N-dimensional features onto

M generated features (M ≪ N) using a N ×M random-weight vectors ma-

trix [14]. The equation of RP is as follows:

X = O × RN×M

where X is a generated M-dimensional vector entity, O = (O1,O2, ...,ON) is an

original entity, and RN×M is a random-weight vectors matrix. For example, if

we want three features from N original features, we prepare three random-

weight vectors with N random values in each of them. The random values

are selected such that X represents the original features.

Neural network-based feature reduction techniques

We studied the following neural network-based feature reduction techniques.

• Restricted Boltzmann Machine (RBM): An RBM [151] automatically extracts

important information from the original features as weights and biases on

a two-layered neural network. Each node in the first-layer corresponds to

an original feature, and each node in the second-layer corresponds to a new

feature. We use the output of the second-layer as the new features.

• Autoencoder (AE): AE [60] and RBM are similar, but trained differently. In

RBM, the network is trained based on a probability distribution. In AE,

the network is trained using the difference between the original and the

generated features.
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3.2.4 Studied feature selection techniques

We studied the correlation-based (CFS) and consistency-based feature selection

techniques (ConFS). These techniques were reported as the best-performing fea-

ture selection techniques in prior studies [41,175]. Below, we give a brief overview

of these techniques.

• Correlation-based feature selection (CFS) [46]: CFS selects a subset of fea-

tures based on their correlation. The selected features have strong correlations

with the class label (clean or defective), while having a low correlation with

each other.

• Consistency-based feature selection (ConFS) [29]: ConFS uses the consistency

of the class label across the entities instead of the correlation. For example,

if file A has a feature set (10, 20, 40, defective) and file B has a feature set

(10, 20, 30, clean), we can identify the defective and clean entities using the

third feature. However, if a feature reduction technique removes the third

feature, file A and file B have the same feature set except for the class label.

In that case, these entities are inconsistent. Using this information, ConFS

selects the best feature subset from the original features.

3.2.5 Area under the receiver operating characteristic curve (AUC)

We used the Area Under the receiver operating characteristic Curve (AUC) as

the performance measure since AUC is not affected by the skewness of defect

data [158, 181]. The receiver operating characteristic (ROC) curve is created by

plotting the false positive rate (on the x-axis) and the true positive rate (on the

y-axis) at various thresholds. In our experiment, the false positive rate is defined

as the portion of clean entities that are identified as defective; the true positive

is defined as the portion of defective entities that are identified as defective. The

threshold is used to label an entity as clean or defective by checking whether its

predicted probability is over the threshold. The AUC is the area under the ROC
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curve. The values of the AUC range between 0 and 1; a perfect classifier has an

AUC of 1, while a random classifier has an AUC of 0.5.

3.2.6 Preprocessing

Most feature reduction techniques require the data to be preprocessed. We detail

the preprocessing step below.

Preprocessing for traditional feature reduction techniques

The traditional feature reduction techniques require features that are normalized

to a mean of 0 and a variance of 1 using the z-score [181]. The z-score is calculated

as follows:

Xz =
Xorg − µ
σ

(3.1)

where µ is a mean of the value of the feature for all entities and σ is the standard

deviation of the value of the feature for all entities.

Preprocessing for neural network-based feature reduction techniques

The neural network-based feature reduction techniques require either binary fea-

tures or features that are between 0 and 1. Hence, we scale the original features

as follows:

Xscaled =
Xorg − Xmin

Xmax − Xmin
(3.2)

where Xorg is a vector of the value of a particular feature for all entities. Xmin is

the smallest value of the feature and Xmax is the largest value of the feature for all

entities [1].

3.2.7 Out-of-sample bootstrap sampling

Bootstrap sampling is a validation technique that is used to estimate the perfor-

mance of a model for unseen data. The technique is based on random sampling



30 Feature Reduction Techniques Chapter 3.

with replacement. Out-of-sample bootstrap sampling is a bootstrap sampling tech-

nique that estimates the future performance of a defect prediction model more

accurately than a cross-validation scheme [158, 160]. Hence, we used the out-of-

sample bootstrap sampling technique instead of a conventional validation tech-

nique such as 10-fold cross-validation. The process of the out-of-sample bootstrap

sampling is as follows:

1. Sample N data points following the distribution of the original dataset, with

N data points, while allowing for replacement.

2. Train a model using the sampled N data points, and test it using the data

points that were not sampled.

3. Repeat steps 1 and 2 M times.

4. Report the average/median performance as the performance estimate.

We used the out-of-sample bootstrap sampling under the condition where M =

100 and we report the median performance.

3.3 Experimental setup

In this section, we give an overview of the setup of our experiments. The results

are presented in Section 3.4. Figure 3.3 shows the steps of our experiments. We

first conducted the out-of-sample bootstrap sampling on our studied datasets

to generate and select features using each of the studied feature reduction and

selection techniques. We then preprocessed the original features of each bootstrap

sample as described in Section 3.2.6. We generated eight new feature sets (one

for each feature reduction technique) for each bootstrap sample. Hence, we

generated 800 new feature sets using feature reduction in total. Furthermore,

the two studied feature selection techniques selected two feature subsets (one for

each feature selection technique) for each bootstrap sample. Hence, we selected

200 feature subsets using feature selection in total.
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Figure 3.3: Overview of our experimental design. We first generate/select 100

(the out-of-sample bootstrap) feature sets using each feature reduction/selection

technique for each studied dataset. The second step is different for each RQ. We

conduct correlation analysis and clustering analysis for discussion in the third

step.
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The smallest number of features in the studied datasets is 20 (i.e., in the

PROMISE dataset). Hence, to be able to observe the impact of a feature reduction

technique, we configured each feature reduction technique to generate 10 features

(H1–H10). However, PCA uses variance to decide on the number of generated

features [28,41]. Therefore, each bootstrap sample results in a different number of

generated features using PCA. We configured PCA to retain 95% of the variance

in the data [28, 41]. The median number of generated features by PCA in our

experiments was 12 in the PROMISE dataset, 10 in the NASA dataset and 34 in

the AEEEM dataset.

The experimental setup for each RQ is discussed in the next section.

3.4 Results

In this section, we present the results of our experiments. For each RQ, we discuss

the motivation, approach and results.

3.4.1 RQ1: What is the impact of feature reduction techniques

on the performance of defect prediction models?

Motivation: Reducing the number of features that are used in a defect prediction

model can be beneficial for addressing the curse of dimensionality and multi-

collinearity of the model. There exist two ways to reduce the number of features

in a model: (1) by selecting the most important features, and (2) by reducing the

number of features by creating new, combined features from the original features.

Prior work has systematically studied the impact of feature selection techniques

on defect prediction [41, 175], but no work has conducted a large-scale study of

the impact of feature reduction techniques on defect prediction. Hence, in this

RQ, we studied the impact of feature reduction techniques on the performance

(AUC) of defect prediction models.

Approach: We used each feature set that was generated by a feature reduction
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technique as input to the studied five supervised and five unsupervised defect

prediction models. We used the AUC as the performance measure. Because we

calculated the AUC of a defect prediction model using the out-of-sample bootstrap

sampling 100 times for each feature reduction technique, each model has 100 AUC

values. Hence, we used the median value to represent the median performance

of a defect prediction model using a certain feature reduction technique. Because

we studied 26 projects, our experiments yielded 260 median AUC values for each

feature reduction technique (5 supervised models*26 projects+5 unsupervised

models*26 projects). For comparison, we also calculated the performance of the

studied defect prediction models without applying a feature reduction technique

(indicated as ORG). Note that we did within-project defect prediction in our

experiments.

We used the Scott-Knott ESD test [160] (using a 95% significance level) to

compare the median AUC values across feature reduction techniques. The Scott-

Knott test is a hierarchical clustering algorithm that ranks the distributions of

values. In particular, distributions that are not statistically significantly different

are placed in the same rank. The Scott-Knott ESD test is an extension of the

Scott-Knott test, which not only ranks based on significance, but also on Cohen’s

d effect size [25]. The Scott-Knott ESD test places distributions which are not

significantly different, or have a negligible effect size, in the same rank. We used

the ScottKnottESD R package* that was provided by Tantithamthavorn [159].

Project-level analysis: the aforementioned procedure combines the results of

all projects. However, this procedure prevents us from understanding differences

for each project. Hence, we also studied the performance at the project-level.

We compared the ratios of the AUCs (the median AUCs across all bootstrap

samples) of each feature reduction technique to the original models. We calculated

this ratio as follows:

ratio =
AUCFR

AUCORG

*https://github.com/klainfo/ScottKnottESD
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Where AUCORG is the AUC of a prediction model using the original features, and

AUCFR is the AUC of a prediction model using the features that were generated

by a particular feature reduction technique. Hence, a ratio larger than 1 indicates

that the feature reduction technique improved the AUC compared to the original

models, while a ratio smaller than 1 indicates that the feature reduction tech-

nique reduced the AUC. We computed the median ratio across the five studied

supervised and unsupervised prediction models.

We used the aforementioned ratio to analyze performance at the project-level.

The project-level analysis shows the impact of the different feature reduction tech-

niques in every single project and dataset. Figure 3.6 shows the distributions of

the ratios for each studied project for the supervised and unsupervised prediction

models, respectively. Each boxplot contains 40 ratio values (5 prediction models

* 8 feature reduction techniques). In addition, we show the median ratios for

the best-performing feature reduction techniques as tables for deeper analysis

(Table 3.4). These median ratios were computed from five AUC values (one for

each studied prediction model).

Results: FA and TCA can preserve the performance of the original defect

prediction models, while at the same time reducing the number of features.

Figure 3.4(a) and Figure 3.4(b) show that the performance of the supervised and

unsupervised defect prediction models does not decrease when applying FA or

TCA. Hence, these feature reduction techniques can safely be applied to reap

the benefits of a reduced number of features. In particular, FA and TCA work

well for supervised models. Interestingly, the performance of the supervised and

unsupervised defect prediction models is significantly lower when using TCA+

(which is an extension of TCA), compared to the original TCA.

The neural network-based feature reduction techniques (RBM and AE),

significantly outperform traditional feature reduction techniques for the unsu-

pervised defect prediction models. Figure 3.4(b) shows the AUC values and the

results of the Scott-Knott ESD test for the unsupervised models after applying the
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Figure 3.4: The Scott-Knott ESD test results for the supervised (logistic regression,

random forest, naive Bayes, decision tree, and logistic model tree) and the unsu-

pervised (spectral clustering, k-means, partition around medoids, fuzzy C-means,

neural-gas) models. Each color indicates a rank: models in different ranks have

a statistically significant difference in performance. Each boxplot has 130 median

AUC values (5 defect prediction models times 26 projects). The x-axis refers to

the feature reduction techniques; the y-axis refers to the AUC values.

studied feature reduction techniques.

The highest rank contains only the two studied neural network-based tech-

niques: RBM and AE. Hence, the neural network-based feature reduction tech-

niques can significantly improve the AUC compared to the original models and

other feature reduction techniques. However, these neural network-based fea-

ture reduction techniques do not outperform ORG for the supervised models. In

Section 3.5 we further investigate why neural network-based feature reduction

techniques work well for the unsupervised, but not for the supervised defect

prediction models.

The supervised models with feature reduction techniques significantly out-
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Table 3.4: The median AUC ratios of the feature reduction techniques. A ratio

larger than 1 indicates that the feature reduction/selection technique improved

the AUC compared to the original models. The gray cells refer to the ratios that

are greater than 1.0. The “Improved” row indicates the number of projects for

which a feature reduction/selection technique improved the performance.

(a) The supervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.015 1.004 0.983 0.896 0.995 0.956 0.962 0.962 1.012 1.006

Camel v1.6 0.973 0.979 0.921 0.880 0.996 0.962 0.948 0.948 0.962 0.956

Ivy v1.4 1.065 1.081 1.005 1.005 1.026 0.999 1.036 1.020 1.062 1.037

Jedit v4.0 1.012 0.996 0.971 0.775 1.011 0.921 0.952 0.947 0.984 0.996

Log4j v1.0 1.047 1.034 1.000 0.960 1.012 0.895 0.961 0.954 0.993 1.002

Lucene v2.4 1.016 0.956 0.940 0.804 0.978 0.886 0.962 0.955 0.990 0.978

POI v3.0 0.932 0.899 0.955 0.739 0.993 0.946 0.965 0.971 1.016 1.003

Tomcat v6.0 1.014 1.016 0.947 0.875 0.997 0.925 0.985 0.990 1.045 1.026

Xalan v2.6 0.861 0.912 0.987 0.698 0.992 0.970 0.993 0.985 1.012 0.998

Xerces v1.3 1.032 1.022 0.969 0.817 1.019 1.017 1.034 1.033 1.005 1.012

N
A

SA

CM1 1.004 0.979 0.939 0.984 0.974 0.995 0.949 0.940 1.028 0.981

JM1 1.004 1.001 0.997 0.923 0.999 1.003 1.008 0.956 1.000 1.001

KC3 0.910 0.944 0.901 0.923 1.010 0.924 0.905 0.874 1.025 0.985

MC1 0.956 1.021 0.932 0.901 0.999 0.915 0.980 0.932 1.001 0.973

MC2 1.019 1.014 0.955 0.947 1.037 1.014 0.976 0.972 0.973 0.968

MW1 1.005 1.016 0.949 0.984 1.019 0.991 0.952 0.963 1.016 1.015

PC1 0.906 0.830 0.936 0.972 1.013 0.976 0.971 0.925 1.004 1.021

PC2 1.039 1.019 0.931 0.994 1.020 0.999 0.935 0.933 1.169 1.028

PC3 0.944 0.971 0.985 0.921 0.997 0.988 1.001 0.968 1.026 0.995

PC4 0.793 0.806 0.931 0.651 0.906 0.862 0.866 0.870 1.003 0.986

PC5 0.999 0.982 0.994 0.798 0.990 0.977 0.989 0.986 0.986 0.997

A
EE

EM

Eclipse JDT Core 1.028 1.010 1.019 0.874 1.007 0.959 1.015 0.986 0.993 1.012

Equinox 1.074 1.043 1.006 0.973 1.028 0.996 1.000 1.010 1.060 1.024

Apache Lucene 1.112 1.079 1.090 1.045 1.009 1.063 1.030 1.039 1.021 1.035

Mylyn 1.089 1.057 0.980 0.921 1.052 0.951 1.066 1.065 1.037 1.023

Eclipse PDE UI 1.071 1.058 1.075 0.861 1.035 0.944 1.020 0.905 0.995 1.006

Improved 17 15 5 2 14 4 8 5 17 15
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(b) The unsupervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.005 1.000 1.001 0.739 0.896 0.695 0.918 0.748 1.002 1.006

Camel v1.6 0.989 0.980 1.002 0.894 0.979 0.848 0.984 0.933 0.977 0.988

Ivy v1.4 1.040 1.011 1.006 0.938 0.850 0.750 0.991 0.874 0.937 0.928

Jedit v4.0 1.055 1.038 1.000 0.895 1.033 0.888 0.966 0.802 0.939 0.962

Log4j v1.0 0.993 0.989 1.001 0.950 0.973 0.694 0.924 0.790 0.954 0.986

Lucene v2.4 1.110 1.131 1.001 0.870 0.989 0.894 0.966 0.858 0.984 1.004

POI v3.0 0.919 0.924 1.002 0.755 1.036 0.875 0.610 0.755 0.962 0.982

Tomcat v6.0 1.041 1.007 0.997 0.762 0.956 0.652 1.007 0.763 1.010 0.968

Xalan v2.6 1.070 1.065 0.997 0.885 0.936 0.965 1.084 0.848 0.964 0.974

Xerces v1.3 1.244 1.210 1.008 0.885 1.259 0.893 1.201 0.939 1.106 1.017

N
A

SA

CM1 1.008 0.996 0.997 0.967 0.979 1.049 0.983 0.844 1.030 0.949

JM1 0.992 1.023 1.002 0.953 1.036 0.997 1.011 0.849 1.008 1.001

KC3 0.970 0.987 1.000 0.974 1.014 0.997 0.998 0.850 0.968 0.955

MC1 1.005 1.023 1.000 0.891 1.021 1.000 0.994 0.816 1.081 1.023

MC2 1.073 1.043 1.000 0.981 1.018 0.985 0.995 0.862 0.993 0.991

MW1 0.939 0.971 1.000 0.973 0.966 0.990 0.957 0.746 1.017 1.019

PC1 0.990 0.996 0.996 0.927 1.027 0.935 0.993 0.855 1.102 1.041

PC2 0.985 0.976 0.994 0.975 0.985 0.993 0.966 0.774 1.035 0.940

PC3 1.074 1.090 1.000 0.940 0.954 0.758 1.041 0.831 1.213 1.123

PC4 0.986 0.982 0.998 0.902 1.062 0.829 0.961 0.818 1.123 0.991

PC5 0.971 0.975 0.999 0.866 0.971 0.987 0.932 0.857 1.030 0.997

A
EE

EM

Eclipse JDT Core 1.121 1.089 0.997 0.888 0.957 0.995 1.107 0.805 1.017 1.007

Equinox 1.029 1.105 1.000 0.913 1.069 1.033 1.073 0.900 1.025 1.033

Apache Lucene 1.031 1.053 1.000 0.863 0.989 1.006 1.024 0.740 0.956 0.981

Mylyn 1.006 1.015 1.001 0.829 0.996 0.892 0.994 0.827 1.009 0.996

Eclipse PDE UI 1.015 1.024 1.000 0.827 0.980 0.977 0.993 0.793 1.003 1.024

Improved 16 15 9 0 10 3 8 0 16 11
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Figure 3.5: The Scott-Knott ESD test results for both the supervised and unsu-

pervised models. Each color indicates a rank: models in different ranks have a

significant difference in performance. Each boxplot has 130 median AUC values

(5 defect prediction models times 26 projects). The x-axis refers to the feature

reduction techniques; the y-axis refers to the AUC values. In the x-axis, the

“SVL ”-prefix refers to the 5 supervised defect prediction models; the “USVL ”-

prefix refers to the 5 unsupervised defect prediction models.

perform the unsupervised models with feature reduction techniques. Figure 3.5

shows the AUC after applying the feature reduction techniques to the supervised

and unsupervised models. The supervised models significantly outperform the

unsupervised models. Prior research [181] reported that spectral clustering (SC)

is the only studied unsupervised defect prediction model that outperforms the

supervised models.

The reason that the unsupervised models perform worse than the supervised

models in Figure 3.5 is that we consider all the unsupervised models together,

to be able to provide a more generic conclusion. However, as Figure 3.5 shows,

some unsupervised defect prediction models perform better than others.

In the AEEEM dataset, the feature reduction techniques improve the predic-
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(b) The unsupervised models

Figure 3.6: The ratios of the AUCs of the supervised and unsupervised prediction

models. Each boxplot contains 40 ratio values (5 prediction models * 8 feature

reduction techniques). The dashed blue line indicates a ratio of 1.0. A ratio

larger than 1.0 indicates that the feature reduction technique improved the AUC

compared to the original models.
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tion performance of the supervised models for most projects. We observe that

the feature reduction techniques did not improve the prediction performance in

many projects, as the median values of several boxplots in Figure 3.6 are lower

than 1.0. However, the studied feature reduction techniques improved the pre-

diction performance of the supervised models for many projects in the AEEEM

dataset (Figure 3.6(a)). We further investigate this phenomenon in Section 3.4.3.

The neural network-based techniques improve the prediction performance

of the supervised/unsupervised prediction models for most projects. Table 3.4

shows the median ratios for the feature reduction techniques. We observe that the

neural network-based feature reduction techniques RBM and AE have the most

gray cells for the supervised/unsupervised prediction models in combination with

the feature reduction techniques.

However, almost all feature reduction techniques did not improve the pre-

diction performance in the NASA dataset except for FA with the unsupervised

prediction models. FA combined with the unsupervised prediction models im-

proved over half of the projects in the NASA dataset. We further investigate why

the feature reduction techniques work well for the AEEEM dataset but not for the

other datasets in Section 3.4.3.

3.4.2 RQ2: What is the impact of feature reduction techniques

on the variance of the performance across defect prediction

models?

Motivation: A challenge in applying defect prediction for practitioners is to select

the best-performing model for their data from many possible defect prediction

models [40, 43]. In this RQ, we studied the variance in performance across defect

prediction models of the studied feature reduction techniques for a particular

dataset. If this variance is small, the practitioner does not need to worry about

the choice at all, as the models perform similarly across datasets.
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Figure 3.7: The Scott-Knott ESD test results for the IQR of the supervised and

unsupervised models. Each color indicates a rank: feature reduction techniques

in different ranks have a significant difference in variance (IQR). Each boxplot has

26 IQR values (one for each project). The x-axis refers to the feature reduction

techniques; the y-axis refers to the IQR values.

Approach: We used the interquartile range (IQR) which captures the perfor-

mance variance across the studied defect prediction models for a given project

and feature reduction technique. We used the AUC values of all the studied

supervised and unsupervised models for all bootstrap samples to conduct a new

bootstrap sampling to calculate the IQR for each reduction technique and each

project. We calculated an IQR value as follows:

1. Sample 100 AUC values at random from the 100 AUC values for each studied

supervised/unsupervised model allowing for replacement.

2. Compute the median AUC value across the sampled 100 AUC values.

3. Repeat steps 1 and 2 100 times.

4. Compute the IQR value for the 500 sampled median AUC values (5 super-

vised/unsupervised prediction models * 100 median AUC values) for each

feature reduction/selection technique for each studied project.

Where the IQR values are computed as follows:

IQR = Q3 −Q1
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where Q1 is the first quartile of the 500 sampled median AUC values, and Q3 is

the third quartile of the 500 sampled median AUC values. The first quartile is the

median between the smallest and the median of the 500 AUC values, and the third

quartile is the median between the median and the largest of the 500 AUC values.

As we studied 26 projects, we have 26 IQR values for each feature reduction

technique. We used the Scott-Knott ESD test to compare the distributions of

IQRs for each feature reduction technique. Figure 3.7 shows the results of the

Scott-Knott ESD test.

In addition, we compared the IQR values of the prediction models across

the feature reduction techniques for each project. Table 3.5 shows the results

of the IQR analysis at the project level. Each cell contains an IQR value that

was computed from 500 bootstrapped median AUC values of the supervised and

unsupervised prediction models.

Results: The neural network-based feature reduction techniques, RBM and

AE, generate features that result in less variance across the supervised models

than the original features. Figure 3.7(a) shows that the original features (ORG)

are in the second rank, and RBM and AE belong to the first rank. Hence, RBM and

AE significantly improve the variance of the performance across the supervised

defect prediction models.

Almost all feature reduction techniques (except PCA) generate features that

have a significantly smaller performance variance across the unsupervised mod-

els than the original features. Figure 3.7(b) shows that the unsupervised models

that use features that were generated by PCA, or the original features are in

the lowest rank. Hence, using the feature reduction techniques (except PCA)

in combination with an unsupervised defect prediction model results in a small

performance variance, which is helpful for practitioners.

The neural network-based feature reduction techniques improve the per-

formance variance of the supervised models for the largest number of projects.

Table 3.5(a) shows that the features that were generated by the neural network-
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Table 3.5: The IQR ratio for the feature reduction techniques in the studied super-

vised and unsupervised prediction models. The gray cells refer to the ratios that

are greater than 1.0. The “Improved” row indicates the number of gray cells in

the column.

(a) The supervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.769 1.330 0.849 0.439 1.024 0.943 0.975 1.006 1.294 1.031

Camel v1.6 3.885 3.027 0.842 0.809 0.774 0.777 1.312 1.357 1.637 1.466

Ivy v1.4 1.841 2.964 1.978 2.197 2.001 1.151 3.641 1.233 1.340 2.072

Jedit v4.0 1.018 1.180 0.562 0.501 0.771 0.595 0.688 0.718 0.767 0.683

Log4j v1.0 1.335 2.643 1.030 5.212 1.388 1.898 1.252 1.189 1.361 1.377

Lucene v2.4 1.737 0.661 0.554 0.473 0.635 1.141 0.666 0.647 0.800 0.658

POI v3.0 0.973 0.586 0.628 0.241 0.959 1.642 0.894 0.977 1.268 1.157

Tomcat v6.0 1.351 1.429 0.671 0.657 1.096 0.739 0.854 0.921 1.369 1.204

Xalan v2.6 0.762 0.615 0.863 0.495 0.725 0.750 0.531 0.556 0.972 0.841

Xerces v1.3 1.918 1.749 0.806 1.022 0.847 0.943 1.064 1.078 1.171 1.417

N
A

SA

CM1 0.196 0.227 0.241 0.311 0.329 0.683 0.389 0.430 0.589 0.453

JM1 2.502 2.579 1.886 0.604 0.804 0.972 1.036 0.758 0.892 0.986

KC3 0.582 0.955 1.509 1.130 0.661 1.093 0.906 0.751 1.871 1.710

MC1 0.639 0.670 0.605 0.734 0.980 0.810 1.227 0.967 0.831 2.011

MC2 1.087 1.080 0.545 1.074 0.808 0.835 0.734 0.679 1.121 1.169

MW1 1.199 1.451 0.722 4.598 2.933 1.166 2.113 1.697 1.792 1.274

PC1 0.826 0.984 0.649 1.078 1.326 1.936 2.501 0.875 1.179 1.578

PC2 0.541 0.565 0.454 0.788 1.067 1.317 0.937 0.898 0.796 0.389

PC3 1.060 1.522 0.684 0.985 1.274 0.718 0.862 0.695 1.331 1.145

PC4 0.885 1.504 0.548 0.397 0.852 1.055 0.681 0.750 5.539 1.138

PC5 0.796 1.892 0.752 0.344 0.908 0.705 0.723 0.757 0.798 1.009

A
EE

EM

Eclipse JDT Core 1.332 1.433 1.246 0.434 1.556 0.998 1.373 0.970 1.072 1.393

Equinox 1.989 2.927 1.543 0.821 1.076 0.822 1.075 1.129 1.438 1.337

Apache Lucene 1.373 1.844 0.936 0.608 0.989 1.678 1.014 0.993 0.881 1.022

Mylyn 5.981 4.024 0.940 0.946 5.923 1.155 1.289 1.282 1.992 2.406

Eclipse PDE UI 1.574 1.208 1.096 0.224 0.392 0.374 0.434 0.384 0.475 0.452

Improved 17 18 7 7 11 11 12 8 16 19
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(b) The unsupervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 2.693 1.772 1.035 2.539 3.228 3.217 1.447 4.320 0.335 0.245

Camel v1.6 1.224 1.715 1.331 0.961 1.659 0.778 0.503 0.680 0.209 0.301

Ivy v1.4 2.881 4.073 0.924 2.096 3.690 3.628 3.317 3.076 2.809 2.153

Jedit v4.0 3.221 3.229 1.012 1.704 4.387 2.213 3.346 4.496 0.671 0.790

Log4j v1.0 3.400 3.445 1.221 1.346 0.542 0.977 1.562 0.783 0.762 0.793

Lucene v2.4 0.460 0.982 0.653 0.796 0.577 1.865 0.945 0.560 0.176 0.163

POI v3.0 0.764 0.582 1.152 7.759 1.425 7.589 4.332 2.842 0.415 0.927

Tomcat v6.0 2.993 1.985 1.116 2.326 3.566 4.079 1.512 5.814 0.630 0.904

Xalan v2.6 2.028 3.317 0.763 2.339 1.363 3.747 0.829 0.907 0.362 2.860

Xerces v1.3 8.508 6.308 1.132 11.297 6.729 10.673 2.089 10.157 4.720 0.980

N
A

SA

CM1 2.032 2.820 1.074 0.694 1.274 1.535 1.573 3.922 1.238 0.688

JM1 1.206 5.044 0.988 0.983 1.360 1.304 39.761 154.852 1.210 1.009

KC3 0.920 0.753 0.936 1.280 0.639 0.780 0.946 3.250 0.591 0.750

MC1 5.284 3.674 1.035 0.576 3.833 1.261 5.611 3.635 1.132 0.971

MC2 1.377 2.056 1.839 0.778 1.670 1.919 2.709 4.491 1.457 1.441

MW1 2.059 1.207 0.952 1.043 0.897 1.008 1.325 1.520 0.814 0.816

PC1 2.413 2.298 0.996 1.047 1.405 0.866 3.256 3.491 0.964 0.748

PC2 2.058 1.900 1.014 2.441 5.610 1.035 5.055 7.867 2.231 1.436

PC3 2.293 2.230 1.069 2.318 4.411 7.025 13.146 13.203 2.622 1.182

PC4 4.032 3.431 0.917 4.188 1.266 3.476 9.617 10.161 1.653 1.177

PC5 5.900 11.856 1.025 18.438 4.839 2.096 30.503 5.129 1.355 1.267

A
EE

EM

Eclipse JDT Core 15.497 15.262 0.973 1.727 1.290 3.088 20.680 8.202 1.104 1.505

Equinox 3.504 7.741 0.684 3.573 1.155 1.420 6.460 9.422 0.676 0.601

Apache Lucene 8.221 6.507 0.989 0.521 4.423 1.610 5.717 8.040 0.659 0.920

Mylyn 10.940 9.597 1.038 8.177 1.099 1.036 17.600 11.010 0.980 0.889

Eclipse PDE UI 3.237 2.806 1.068 0.690 1.235 0.465 5.627 6.956 0.389 0.366

Improved 23 23 15 18 22 21 22 22 11 9
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based feature reduction techniques (RBM and AE) improved the performance

variance (IQR) across the studied supervised prediction models for the largest

number of projects compared to the other feature reduction techniques, and the

original models. RBM and AE also belong to the first rank of the overall perfor-

mance variance result (Figure 3.7(a)).

The neural network-based feature reduction techniques improve the perfor-

mance variance of the unsupervised models for the largest number of projects.

Table 3.5(b) shows that the features that were generated by the neural network-

based feature reduction techniques (RBM and AE) improved the performance

variance across the studied unsupervised prediction models for the largest num-

ber of projects. Interestingly, in terms of overall performance variance, TCA and

TCA+ belong to the first and the second rank (Figure 3.7(b)). However, the dif-

ference with the neural network-based feature reduction techniques is only small

(TCA+) and negligible (TCA), according to the Cliff’s delta effect size.

3.4.3 RQ3: How do feature selection techniques compare to fea-

ture reduction techniques when applied to defect predic-

tion?

In this RQ, we compare feature reduction and selection techniques along two

dimensions: the performance and the performance variance of the defect pre-

diction models. We study the correlation-based (CFS) and consistency-based

(ConFS) feature selection techniques, as they performed best according to prior

studies [41, 175].

Motivation: In RQ1 and RQ2, we found that several feature reduction tech-

niques (FA, RBM and AE) outperform the original features (ORG) in terms of

performance or performance variance of the defect prediction models. Prior

work [41, 175] showed that several feature selection techniques outperform the

original models as well. In this RQ, we compare the performance (AUC) and
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Figure 3.8: The Scott-Knott ESD test results for the supervised (logistic regression,

random forest, naive Bayes, decision tree, and logistic model tree) and unsuper-

vised (spectral clustering, k-means, partition around medoids, fuzzy C-means,

neural-gas) models. Each color indicates a rank: models in different ranks have

a statistically significant difference in performance. Each boxplot has 130 median

AUC values (5 defect prediction models times 26 projects). The x-axis refers to

the feature reduction/selection techniques; the y-axis refers to the AUC values.

the performance variance (IQR) of the feature reduction and selection techniques

when applied to defect prediction models.

Approach: The experimental procedure is the same as the procedures of RQ1

and RQ2 (only we use the two feature selection techniques CFS and ConFS instead

of the feature reduction techniques).

Results: The feature selection techniques (correlation-based feature selec-

tion (CFS) and consistency-based feature selection technique (ConFS)) signif-

icantly outperform the original features (ORG) in the supervised models, and

perform as well as the feature agglomeration (FA) reduction technique. Fig-

ure 3.8(a) shows the AUC values and the results of the Scott-Knott ESD test for
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Figure 3.9: The Scott-Knott ESD test results for IQR in the supervised and unsuper-

vised models. Each color indicates a rank: feature reduction/selection techniques

in different ranks have a significant difference in variance (IQR). Each boxplot

has 26 IQR values (one for each project). The x-axis refers to the feature reduc-

tion/selection techniques; the y-axis refers to the IQR values.

the supervised models after applying the studied feature reduction and selection

techniques.† Each boxplot shows the median AUC values for the projects using

a certain feature reduction/selection technique. CFS, ConFS and FA are in the

highest rank by themselves, which indicates that the subsets of features that were

selected by CFS or ConFS perform as well as the feature sets that were generated

by FA for the supervised models.

The neural network-based feature reduction techniques (RBM and AE) sig-

nificantly outperform the feature selection techniques (CFS and ConFS) for

the unsupervised defect prediction models. The highest rank contains only the

two studied neural network-based feature reduction techniques (Figure 3.8(b)).

The studied feature selection techniques (CFS and ConFS) belong to the second

rank, together with the original models (ORG). Hence, the studied feature selec-

tion techniques have a worse performance than the neural network-based feature

reduction techniques for the unsupervised defect prediction models.

†Note that the ranks are slightly different from Figure 3.4 due to the fact that Scott-Knott ESD

is a clustering algorithm, and hence affected by the total set of input distributions. For more

information see https://github.com/klainfo/ScottKnottESD.
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In the supervised models, applying the neural network-based feature re-

duction techniques, RBM and AE, or the feature selection techniques, CFS and

ConFS, significantly outperforms the original models in terms of performance

variance. The original models (ORG) belong to the third rank (Figure 3.9(a)). The

neural network-based feature reduction techniques and the feature selection tech-

niques belong to the first or second rank, hence they have a smaller performance

variance than the original models.

In the unsupervised models, all feature reduction techniques (except PCA)

significantly outperform the feature selection techniques in terms of perfor-

mance variance. The feature selection techniques belong to the worst rank to-

gether with the original models (ORG) and PCA (Figure 3.9(b)). Hence, the stud-

ied feature selection had a larger performance variance than almost all the studied

feature reduction techniques for the unsupervised defect prediction models.

Our above findings for RQ3 are confirmed by our project-level analysis.

Table 3.4 shows the median ratios of the performance of each feature reduc-

tion/selection technique compared to the original models. We calculated this ratio

as follows:

ratio =
AUCFRS

AUCORG

Where AUCORG is the AUC (the median AUC across all bootstrap samples) of a

prediction model using the original features, and AUCFRS is the AUC of a predic-

tion model using the features that were generated/selected by a particular feature

reduction or selection technique. We computed the median ratio across the five

studied supervised and unsupervised prediction models. Table 3.4 confirms our

above findings about the performance of the studied feature selection techniques

compared to that of the feature reduction techniques.

Table 3.5 shows the IQR ratio values of each feature reduction/selection tech-

nique. We define this ratio as follows:

ratio =
IQRFRS

IQRORG
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Where IQRORG is the IQR (the median IQR across all bootstrap samples) of a

prediction model using the original features, and IQRFRS is the IQR of a prediction

model using the features that were generated/selected by a particular feature

reduction or selection technique. We calculated the median IQR value for the

supervised models using bootstrap samples as follows:

1. Sample 100 values following the distribution of the 100 AUC values for each

studied supervised model while allowing for replacement.

2. Compute the median AUC value across the sampled 100 values.

3. Repeat steps 1 and 2 100 times.

4. Compute the IQR value for the 500 sampled median AUC values (5 su-

pervised prediction models * 100 median AUC values) for each feature

reduction/selection technique for each studied project.

We repeated the above procedure for the unsupervised models. Table 3.5(a)

shows that the project-level results confirm our findings above, as the RBM and

AE feature reduction techniques and the CFS and ConFS feature selection tech-

niques improve the performance variance of most projects compared to the other

techniques. In addition, Table 3.5(b) shows that all feature reduction techniques

improve the performance variance of more projects than the CFS and ConFS

feature selection techniques.

Why do feature reduction techniques work well in the AEEEM dataset?

Motivation: We observed that the feature reduction techniques work better for the

projects in the AEEEM dataset than for the projects in the other datasets. Ghotra

et al. [41] applied PCA to the data of each project to capture its richness. We use

the same analysis to investigate whether the dataset richness is an explanation of

why feature reduction techniques work better for the AEEEM dataset.
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Approach: The idea behind Ghotra et al.’s analysis [41] is to generate features

from a dataset using PCA that (together) retain at least 95% of the variance of

the original dataset. Ghotra et al. reason that a larger number of generated

features indicates a richer dataset. Likewise, they interpret that a small number

of generated features indicates redundancy in the original dataset. We applied

PCA to each project and counted the number of generated features.

Results: The PROMISE, NASA, and AEEEM datasets have different data

richness characteristics, however; the characteristics of the projects within each

dataset are consistent. Table 3.6 shows the number of generated features. While

the number of generated features is approximately the same for the PROMISE and

NASA projects, the proportion of generated features compared to the number of

original features is different. In addition, this proportion is even lower for the

AEEEM projects. Hence, we conclude that the datasets have different character-

istics in terms of data richness. However, within each dataset, the projects have

approximately the same richness characteristics.

The original features of the projects in the AEEEM dataset are more diverse

than the projects of the other datasets. We observe that 36 principal compo-

nents are needed to cover 95% of the variance of the Eclipse JDT Core project

in Figure 3.10, compared to 12 components for the Ant project and 11 for the

CM1 project. Hence, the original features of the AEEEM dataset are much more

diverse than those of the PROMISE and the NASA datasets. The diversity of the

AEEEM dataset could be a reason why feature reduction techniques improve the

performance of this dataset.

Comparing feature selection and reduction techniques along the dimensions

of understandability and execution time

The understandability of the features in a defect prediction model is important,

as understandable features make the model, and its predictions, easier to ex-

plain [148]. Feature reduction techniques combine the original features into one
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Table 3.6: The number of generated features (principal components) that are

needed to account for 95% of the data variance.

Studied Studied # of Studied # of Generated % of Generated

Dataset Project Features Features Features

PROMISE Ant v1.7 20 12 60.0

Camel v1.6 20 12 60.0

Ivy v1.4 20 10 50.0

Jedit v4.0 20 12 60.0

Log4j v1.0 20 12 60.0

Lucene v2.4 20 12 60.0

POI v3.0 20 12 60.0

Tomcat v6.0 20 12 60.0

Xalan v2.6 20 12 60.0

Xerces v1.3 20 12 60.0

NASA CM1 37 11 29.7

JM1 21 8 38.1

KC3 39 10 25.6

MC1 38 15 39.5

MC2 39 11 28.2

MW1 37 11 29.7

PC1 37 12 32.4

PC2 36 10 27.8

PC3 37 13 35.1

PC4 37 14 37.8

PC5 38 15 39.5

AEEEM Eclipse JDT Core 212 36 17.0

Equinox 212 31 14.6

Apache Lucene 212 33 15.6

Mylyn 212 46 21.7

Eclipse PDE UI 212 38 17.9
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Figure 3.10: The number of principal components (features that were generated

by PCA) that are needed to account for the original data variance for the Ant,

CM1 and Eclipse projects in the PROMISE, NASA and AEEEM datasets. The

x-axis indicates the number of principal components. The y-axis indicates the

cumulative proportion of the variance. The other projects of the datasets showed

a similar pattern.

or more newly-generated features. Hence, these newly-generated features are by

definition harder to understand than the features that are a subset (i.e., they were

selected) of the original features. We inspected the feature sets that were generated

during our experiments, and we observed that almost all generated feature sets

consist of features that are a complex combination of all available original fea-

tures. Hence, defect prediction models that are generated using feature reduction

techniques are harder to understand than those that use feature selection.

In addition, the execution time of a feature reduction/selection technique and

a defect prediction model is important – models that take too long to build or

execute are not very useful in practice. To conduct our experiments in a timely

manner, we ran them on a cluster of servers in parallel. Hence, it is difficult to

compare the execution time of the experiments. In general, the execution time of

our feature reduction/selection techniques and defect prediction models was short

(i.e., in the range of minutes). Therefore, execution time is not a very problematic
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metric for practitioners who wish to apply feature reduction or selection to their

defect prediction models.

3.5 Discussion: Which features are generated by the

feature reduction techniques?

In RQ1, RQ2, and RQ3, we observed that some feature reduction/selection tech-

niques generate/select features that perform defect prediction better and less

variance than the features that were generated/selected by other feature reduc-

tion/selection techniques. In particular, we found that RBM and AE outperform

the other studied feature reduction/selection techniques for the unsupervised

models. However, RBM and AE are less-performing feature reduction techniques

than the original models (ORG) for the supervised models. In this discussion, we

take a closer look at the generated features to investigate why neural network-

based feature reduction techniques perform well for the unsupervised defect

prediction models, but not for the supervised models. In this section, we discuss

possible explanations for the differences in AUC and variance of the performance.

Approach: We focused our discussion on the RBM and AE feature reduction

techniques, as these techniques generate new features by assigning (combinations

of) weights to the original features. For example, a newly generated feature

may be generated by 0.5 times original feature 1 and 0.5 times original feature

2. These weight sets allow us to study how the new features are related to

the original features, and to the features that were generated by other feature

reduction techniques, and extract possible explanations for the improved and

small variance of the performance. RP and PCA also generate new features

by assigning weights to the original features, however, the weights of RP are

randomly generated, and PCA generates a different number of features for each

project, which makes them difficult to compare. Hence, we focused our discussion

on RBM and AE. As we generated 100 new feature sets of 10 features using
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RBM and AE, we generated 1,000 weight sets using these two feature reduction

techniques for each project. For each feature reduction technique, we randomly

selected 10 (out of the 100) generated feature sets for our investigation.

We conducted correlation analysis and clustering analysis on the studied fea-

ture sets to study their similarity within and across projects. The correlation

analysis shows how independent the features that are generated for a project are.

Highly correlated features can negatively impact the performance of regression

models [37] and this effect can affect our supervised models as well. We first

calculated the Spearman rank correlation [188] between the generated features in

a feature set within a project. Each generated feature was normalized using the

z-score. We chose Spearman rank correlation because it is non-parametric, and

therefore requires no assumption about the distribution of the studied data.

To study the similarity of the generated feature sets across projects within

a dataset, we compared the weight sets of the generated features. First, we

normalized all weights using z-score normalization. Second, we used k-means to

cluster the weight sets of the features, and then we used t-distributed stochastic

neighbour embedding (t-SNE) [168] to visualize the clustering results. t-SNE is

commonly used for visualizing high dimensional features in scatter plots [167].

In particular, t-SNE models high-dimensional objects (i.e., feature sets) by two- or

three-dimensional points such that similar objects are close, and dissimilar objects

are further away from each other.

The goal of our clustering analysis is to find out how similar the generated

features are across projects within a dataset. Hence, we configured k-means to

search for 10 clusters (as we are generating 10 new features). We visualized the

clustering results using the default settings of t-SNE.

Results: RBM generates feature sets in which all features are strongly corre-

lated with each other. Figure 3.11(a) shows the Spearman rank correlation of one

set of RBM-generated features for the Ant project in the PROMISE dataset using

a heatmap.
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(a) RBM-generated features

in the Ant project in the

PROMISE dataset.
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(b) RBM-generated features

in the Eclipse project in the

AEEEM dataset.
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(c) RBM-generated features

in the Eclipse project us-

ing change features in the

AEEEM dataset.
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(d) AE-generated features in

the Log4j project in the

PROMISE dataset.
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(e) AE-generated features in

the Camel project in the

PROMISE dataset.

Figure 3.11: The Spearman rank correlation of generated features in the studied

datasets. The darker colours indicate a strong absolute correlation (close or equal

to one). The lighter colours indicate a weak absolute correlation (close or equal to

zero).
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We observe that all correlations are close to 1 (dark red), which means that

all RBM-generated features in the feature set are strongly correlated (and hence

similar) to each other. We observe similar correlations for the other studied feature

sets for the PROMISE and NASA datasets. RBM generates weakly correlated

features for several projects in the AEEEM dataset (e.g., for the Eclipse project:

Figure 3.11(b)). However, if we use a smaller set of original features from that

dataset, such as only the change features, RBM generates strongly correlated

features for these projects as well (e.g., for the Eclipse project: Figure 3.11(c)).

We observe similar correlations in feature sets that were generated by AE.

However, the correlation within the AE-generated feature sets appeared to be

linked to the specific project. For example, AE generates sets of features that

are strongly correlated to each other for the Log4j project (see Figure 3.11(d)),

but features that are not as strongly correlated for the Camel project (see Fig-

ure 3.11(e)). Hence, a possible explanation of the reason for the small variance

of the performance of features that were generated by the neural network-based

feature reduction techniques (i.e., RBM and AE) could be the strong correlation

within the generated feature sets.

RBM mostly generates the same feature sets across projects. Figure 3.12(a)

shows the k-means clustering result for one bootstrap sample of the RBM-generated

weight sets in the PROMISE dataset using t-SNE [167]. Each shape refers to a

project, and each color refers to a cluster that was identified by k-means cluster-

ing. The x-axis and y-axis refer to the t-SNE features that were generated from the

260 RBM-generated weight sets (10 weight sets on each project) by t-SNE. Hence,

if there are 10 clearly identifiable groups of different shapes with the same colour

in the t-SNE plot, we can conclude that the generated weight sets (and hence

the features) are the same across projects. We observe that each colored cluster

contains all shapes, which indicates that each cluster contains all projects. Hence,

in this bootstrap sample, RBM generated the same feature sets across projects in

the PROMISE dataset. We noticed a similar pattern for the other projects in the
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PROMISE dataset for the other bootstrap samples.

Figure 3.12(b) shows the result for the RBM-generated weight sets in the NASA

dataset. The figure shows that RBM generated different feature sets across projects

in the NASA dataset. A possible reason is that the original features in the NASA

dataset are different in each project (Table 3.1).

Figure 3.12(c) shows the result for the RBM-generated weight sets in the

AEEEM dataset. The figure shows that RBM generated different feature sets

across projects in the AEEEM dataset. The explanation is similar to our observa-

tion during the correlation analysis. If we use one type of features, such as only

the change features, Figure 3.12(d) shows that RBM generates the same feature

sets across projects. However, if we use complexity code change features, we

observe that RBM generates different feature sets across projects (Figure 3.12(e)).

AE generated different features across projects (Figure 3.12(f), 3.12(g) and 3.12(h)).

From the discussion results, we can extract several possible explanations for

the fact that RBM and AE significantly improve the variance of the performance

across the unsupervised models, but not across the supervised models, and for

why these feature reduction techniques perform well for the unsupervised mod-

els. As the studied neural network-based feature reduction techniques appear to

generate strongly correlated features for a project, these feature sets suffer from

multicollinearity [37], which is known to negatively affect the performance of the

supervised models. However, as the unsupervised defect prediction models do

not need to be trained, these models are not be affected by the multicollinearity

problem. In addition, because RBM generates strongly correlated features for

a project, the unsupervised models become much simpler, which seems to im-

prove the variance of the performance across the unsupervised defect prediction

models.
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(a) RBM-generated weight sets in the

PROMISE dataset.
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(b) RBM-generated weight sets in the NASA

dataset.
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(c) RBM-generated weight sets in the AEEEM

dataset.
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(d) RBM-generated weight sets using Change

features in the AEEEM dataset.
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(e) RBM-generated weight sets using com-

plexity code change features in the AEEEM

dataset.
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(f) AE-generated weight sets in the PROMISE

dataset.

40 20 0 20 40
t-SNE feature1

40

20

0

20

40

t-S
NE

 fe
at

ur
e2

(g) AE-generated weight sets in the NASA

dataset.
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(h) AE-generated weight sets using Change

features in the AEEEM dataset.

Figure 3.12: k-means clustering results with t-SNE for generated weight sets in

the studied datasets. Each shape represents a project, and each color represents a

cluster.
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3.6 Threats to validity

3.6.1 External validity

With regards to the generalizability of our results, we applied our experiments

to three publicly available datasets. These studied datasets (PROMISE, NASA

and AEEEM) were all used in many prior defect prediction studies. The projects

in these studied datasets span different domains, include both open source and

industrial projects and contain different features. Future studies are necessary to

investigate whether our results generalize to other projects.

In addition, we studied only a subset of the many existing feature reduction

and selection techniques and defect prediction models. We carefully selected

techniques and models that have been used before for defect prediction, and that

have an implementation readily available. Without such an implementation, it

is difficult and time-consuming to ensure that the implementation matches the

one used in prior studies. Future studies are necessary to investigate whether our

results apply to other feature reduction/selection techniques and defect prediction

models.

3.6.2 Internal validity

In our experiments, we used AUC as a performance measure. AUC is a popular

performance measure for defect prediction, as it does not require a threshold.

However, different software project teams may have different objectives. Hence,

future studies should investigate the impact of feature reduction techniques on

other performance measures, while keeping in mind the possible pitfalls of study-

ing threshold-dependent performance measures [157].

When using the out-of-sample bootstrap sampling, we encountered computa-

tional errors in two bootstrap samples. The errors occurred because two bootstrap

samples violated requirements of the NB and SC models (e.g., a generated feature

had a variance of zero which violates a requirement of the NB model). To mitigate
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this threat, we discarded these bootstrap samples and generated a new sample

instead.

We provide all experimental scripts that we used in our study.‡ This replication

package allows researchers and practitioners to replicate our experiments and

confirm our results.

3.7 Chapter summary

In defect prediction, reducing the number of features is an important step when

building defect prediction models [10, 37, 146, 149]. Prior studies indicated that

reducing the number of features avoids the problem of multicollinearity [37]

and the curse of dimensionality [10]. Feature selection and reduction techniques

help to reduce the number of features in a model. Feature selection techniques

reduce the number of features in a model by selecting the most important ones,

while feature reduction techniques reduce the number of features by creating new,

combined features from the original features.

Prior work [41, 175] studied the impact of feature selection techniques on de-

fect prediction models. Our work is the first large-scale study on the impact of

feature reduction techniques on defect prediction models. In particular, we stud-

ied the impact of eight feature reduction techniques on five supervised and five

unsupervised defect prediction models. In addition, we compared the impact

of feature reduction techniques on defect prediction with the impact of the two

best-performing feature selection techniques (according to prior work).

We studied the impact of feature reduction/selection techniques on defect

prediction models along two dimensions:

1. The defect prediction performance (AUC) of the features that are gener-

ated by the feature reduction/selection techniques, to study whether feature

‡https://sailhome.cs.queensu.ca/replication/featred-vs-featsel-defectpred/
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reduction/selection techniques can improve the performance of defect pre-

diction models.

2. The variance of the AUC across defect prediction models that use the features

that are generated by feature reduction or selected by feature selection tech-

niques. It is difficult to select the best performing model for each project,

since the best model may change per project [40, 43]. Hence, we studied

whether feature reduction or selection techniques can relieve the burden

for practitioners of having to choose the best performing defect prediction

model for their data.

Below, we summarize the main recommendations that follow from our work.

Recommendation 1: For the supervised defect prediction models, use the

correlation-based (CFS) or consistency-based (ConFS) feature selection tech-

niques. Our experiments in RQ3 show that, for the supervised models, CFS and

ConFS outperform the feature reduction techniques (except feature agglomera-

tion (FA)) and the original models. While FA has a similar performance, CFS

and ConFS have a smaller performance variance. Hence, using CFS or ConFS

in combination with a supervised defect prediction model allows practitioners

to improve the performance of their defect prediction models, while making the

choice for a particular defect prediction model easier as well.

Recommendation 2: For the unsupervised defect prediction models, use

a neural network-based technique (Restricted Boltzmann Machine (RBM) or

autoencoder (AE)). Our experiments in RQs 1 and 3 show that the RBM and

AE feature reduction technique can significantly improve the performance of

the unsupervised defect prediction models compared to the other feature reduc-

tion/selection techniques and the original models. In addition, we observed in

RQs 2 and 3 that RBM and AE significantly improve the performance variance

across the unsupervised models (except compared to the transfer component

analyses (TCA and TCA+)). While the transfer component analyses (TCA and

TCA+) have the smallest performance variance, they have a worse performance
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than RBM and AE. The effect size (Cliff’s Delta) between the transfer component

analyses and the neural network-based feature reduction techniques is negligi-

ble or small for the performance variance in favour of the transfer component

analyses, but small (TCA) or large (TCA+) for the performance in favour of the

neural network-based techniques. Hence, using a neural network-based feature

reduction technique to preprocess the data of the unsupervised defect prediction

models can improve both their performance and relieve the burden for practition-

ers of having to select the best-performing unsupervised defect prediction model

for their project.

Recommendation 3: If a project has diverse data, the neural network-based

techniques (Restricted Boltzmann Machine (RBM) or autoencoder (AE)) are

likely to improve its defect prediction performance and performance variance.

Our experiments showed that RBM and AE consistently improve the AUC and

IQR of projects in the AEEEM dataset, for both supervised and unsupervised

models. Practitioners should run PCA on their data to identify the diversity of

their project’s data (similar to what we did in Section 3.4.3). If the data turns

out to be rich, RBM and AE are good options to improve the defect prediction

performance and variance.
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4.1 Introduction

Software developers have limited resources to verify and test their source code. If

developers can identify defective components (e.g., files or commits) they would

be able to focus their effort on these components. Defect prediction supports this ac-

tivity, and prior work has reported that defect prediction can reduce development

cost for developers [162].

There exists plenty of work aimed at predicting defective components [9, 28,

54, 77, 110]. In particular, several prior research work has focused on predicting

defective changes called change-level defect prediction—also called just-in-time de-

fect prediction [38, 71, 76, 106]. Just-in-time defect prediction has the advantage

that it can determine if a commit is likely to be defective when the commit is

being performed [55] and providing faster feedback than other defect prediction

methods [71]. Previous research has used features based on measuring the code

changes (e.g., churn–changed lines) in just-in-time defect prediction [71, 76, 106].

To the best of our knowledge, no studies have considered using the information

in the lines that surround the changed lines of a commit, which we call context

lines. Our main hypothesis is that information in the context lines has an impact

on the likelihood that the change is defective. In this chapter, we evaluate the use

this information in just-in-time defect prediction. The dictionary defines context

as “the parts of something written or spoken that immediately precede and follow

a word or passage and clarify its meaning” [153]. In this chapter, we define the

context lines of a chunk of changed lines as the n-lines (n = 1, 2, · · ·) that precede the

chunk and the n-lines that follow the chunk.

This chapter proposes several context features. The different features vary

around three different axis: a) how many context lines around each change to use

(the size of the context, n), b) whether to use all context lines, or only those of added

or removed lines (the type of the change), and c) counting the number of words

or counting the number of keywords (as defined by the programming language)

in the context. We consider these axes as the parameters of context features. We
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refer to a context feature which uses a set of the parameters as a variant of context

features. We empirically study the best-performing variant in terms of defect

prediction performance. We also compare the context features that are the best-

performing variants with traditional code churn features (change features [71,76,106]

and indentation features [59]), extended context features and combination features that

use two extended context features. Indentation features use the total number of

white spaces in front of changed lines, and the total number of pairs of braces that

surrounded changed lines; we handle indentation features as code churn features,

since they are computed on changed lines. In order to improve the predicting

power of the context features in defect prediction, we also define extended context

features. Extended context features count the number of words/keywords in both,

the context lines and the changed lines. Hence, extended context features are

hybrids of the context features and traditional code churn features. In addition,

we use combination features that use two extended context features that count (1)

number of words and (2) number of a certain keyword (e.g., “goto”) at a prediction

model in order to improve the predicting power of the extended context features

in defect prediction.

Using six large open source software projects (from different domains) we

empirically evaluate the defect prediction power of context features and compare

them against traditional change features. This comparison is done using logistic

regression models and random forest models.

Specifically, we address the following three research questions:

RQ1: What is the impact of the different variants of context features on defect

prediction?

RQ2: Do context lines improve the performance of defect prediction?

RQ3: What is the impact of combination features of context features on defect

prediction?

The main findings of this chapter are as follows:
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int calculate(double value1, double value2){
        ...
        cons = 10;
 +     sum = value1*value2 + cons;

        ...
}

(a) Simple context lines.

int calculate(double value1, double value2){
        ...
        if (sum > 10) {
 +            sum = value1*value2 + cons;
        } else if (sum==10) { sum = cons;}
        ...
}

(b) Complex context lines.

Figure 4.1: An example of two changed functions each of which has one changed

line (in this case, an added line, in bold). We call the lines that precede or follow

the changed lines context lines (in italic with an underline). Other lines except the

context lines are same in both functions.

• The best performing context features are the ones that measure the context

of added-lines only.

• The prediction power of context features varies when different sizes of the

context (number of lines around the change) are used. The optimal size of

the context for the feature that uses number of words is smaller than the

optimal size for the feature that uses keywords.

• The number of “goto” statements in context lines and changed lines is a

good indicator of defective commits.

• Our proposed combination features of extended context features signifi-

cantly outperform all the features that are used in this chapter, and achieve

the best-performing features in all of the studied projects in terms of 2 of the

3 evaluation measures used (area under the receiver operation characteristic

curve, and Matthews correlation coefficient).
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4.2 Motivating example

Let us start from a simple example to illustrate the use of context lines to measure

the complexity of changes. Figure 4.1 shows an example of two changed functions.

The context lines are lines that precede or follow the changed lines. In this

example, the underlined text represents the context lines and the bold lines are

the changed lines. The function shown in Figure 4.1(a) has simple context lines:

there is one assignment before the changed line and one empty line after the

changed line. The changed function in Figure 4.1(b) has more complex context

lines: the “if” and “else” statements. If we use only the changed lines as an

input to compute the complexity of the changes these two changes have the same

complexity. In contrast, if we use the context lines as a measure of complexity,

these two functions have a different complexity.

To the best of our knowledge, there exists no research work that studies the

context lines in defect prediction. In this chapter, we introduce two types of new

features that use the context lines: context features and extended context features,

and evaluate their performance in defect prediction.

There are complexity features, such as Halstead’s complexity features [50] and

McCabe’s Cyclomatic complexity features [98], that can capture the complexity

of the function being changed and take into consideration the context; however,

(1) to compute these features we need all the lines of the functions, (2) these

features are limited because they require a parser, and (3) complexity features

are not optimized for code churn. In contrast, context features provide several

advantages; first, they are easy to compute (they only require the “diff” and—in

the case of number of keywords—a list of keywords of the programming language

as input) and they measure only the complexity that surrounds the change instead

of the entire function.
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4.3 Context features

In this section, we describe the implementation of the proposed context features.

As described in the previous sections, context information might be useful for

defect prediction since it provides a new perspective of changes. In addition, it

is easy to obtain context information (e.g., using the diff command in the version

control system). For example, for the changed function in Figure 4.1(b), we

consider only the lines in italic with an underline for context information.

Any modifications to a file can be described in terms of a unified diff. A unified

diff is a sequence of hunks; each hunk is composed of one or more sequences of

contiguously changed lines. Each of these sequences is composed of ‘+’ lines

(lines added to the file) or ‘-’ lines (lines removed from the file). For the sake of

simplicity, we refer to these sequences of changed lines as chunks. We consider

two types of chunks: ‘+’ chunks (which contain at least one ‘+’ line), ‘-’ chunks

(which contain at least one ‘-’ line). Finally, we will refer to any chunks (including

both ‘+’ and ‘-’ chunks) as ‘all’ chunks. Figure 4.2 shows an example of two

unified diffs (a part of output by git show). The above unified diff is a sequence

of two hunks that are divided by the lines prefixed with @@, <2>. Each hunk has

a chunk <3> and <4>, respectively. The above chunk, <3>, is of type ‘+’ and ‘all’.

The below chunk, <4>, is of type ‘-’, and ‘all’. The below unified diff has a hunk.

This hunk includes two chunks that are type ‘+’ and ‘all’ *.

Each chunk is surrounded by its context lines (the lines above and below

the chunk that indicate where the chunk is to be applied—prefixed with ‘ ’ in

the hunk). We refer to these context lines as the context of the chunk. We

also consider as a part of the context the full filename of the file being changed.

This is because we consider that the directories where the file is located can

contribute to the complexity of the context; i.e., more directories in the filename

indicate a more complex context than no-directories. We evaluated the use or the

*Note that a chunk is able to be of type ‘+’, ‘-’ and ‘all’ at once. In this case, a chunk includes

at least two lines that consist of at least one ‘+’ and ‘-’ line.
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chunk,
type ‘+’ and ‘all’

context
(d(f1,3),‘+’ and ‘all’)

chunk,
type ‘-’ and ‘all’

chunk,
type ‘+’ and ‘all’

chunk,
type ‘+’ and ‘all’

hunk
hunk

hunk

a unified diff d(f2,3)

filename

filename

f1 = ‘src/qt/Makefile.am’

f2 = ‘src/qt/rpcconsole.cpp’

a unified diff d(f1,3)

context
(d(f1,3),‘+’ and ‘all’)

D(c,3) = {d(f1,3), d(f2,3)}

context
(d(f1,3),‘-’ and ‘all’)

context
(d(f1,3),‘-’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

<1>

<2>

<3>

<2>

<4>

<2>

<3>

<3>

[Commit c: a92aded70ec2346c3f07ff1cf8eb97101a76912f]
git show a92aded70ec2346c3f07ff1cf8eb97101a76912f

diff --git a/src/qt/Makefile.am b/src/qt/Makefile.am
index 1d85113d7..d527f790e 100644
--- a/src/qt/Makefile.am
+++ b/src/qt/Makefile.am
@@ -276,6 +276,7 @@ BITCOIN_QT_CPP = \
   notificator.cpp \
   optionsdialog.cpp \
   optionsmodel.cpp \
+  peertablemodel.cpp \
   qvalidatedlineedit.cpp \
   qvaluecombobox.cpp \
   rpcconsole.cpp \
@@ -296,7 +297,6 @@ BITCOIN_QT_CPP += \
   overviewpage.cpp \
   paymentrequestplus.cpp \
   paymentserver.cpp \
-  peertablemodel.cpp \
   receivecoinsdialog.cpp \
   receiverequestdialog.cpp \
   recentrequeststablemodel.cpp \
diff --git a/src/qt/rpcconsole.cpp b/src/qt/rpcconsole.cpp
index 6a8bce25d..0d3e11f4a 100644
--- a/src/qt/rpcconsole.cpp
+++ b/src/qt/rpcconsole.cpp
@@ -15,7 +15,9 @@
 #include "util.h"

 #include "json/json_spirit_value.h"
+#ifdef ENABLE_WALLET
 #include <db_cxx.h>
+#endif
 #include <openssl/crypto.h>

 #include <QKeyEvent>

Figure 4.2: An example of unified diffs of a commit with context size equal to

three produced by git show (<1>) in Bitcoin project; due to the space limitation,

we remove the metadata of this commit (the commit comment and the author

information). This commit consists of two source code file diffs. The above diff

has two hunks (divided by the lines prefixed with @@, <2>). Each of both hunks

consists of only one chunk (sequence of changed lines). The first chunk is of type

‘+’ and ‘all’. The second one is of type ‘-’, and ‘all’. The below diff has a hunk.

This hunk consists of two chunks. Each of both chunks is of type ‘+’ and ‘all’.

The context lines of each chunk are the above and below the corresponding chunk

(above and below of <3> and <4>). The filename is prefixed with ‘+++ b/’.
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filename/directories in the context features for their prediction power and found

that when used, the performance of the context features improved.

For explaining context features, we define the following terminology:

• c: a commit.

• n: a context size that is the maximum number of lines that can precede or

follow a chunk we consider. (This is also a parameter of the diff command

in the version control system.)

• d( f ,n): a unified diff of a changed file f with context size n.

• D(c,n): a set of d( f ,n) for all the changed files in commit c.

For a given unified diff d( f ,n), we define the three types of contexts, based on

the three chunk types, with the following notation (refer to Table 4.1):

• context(d( f ,n), t): the concatenation of the full filename of f and the context

of all chunks of chunk type t in diff d( f ,n).

For a unified diff d( f ,n), we define the following two notations:

1. ncw(d( f ,n), t): the number of words in context(d( f ,n), t).

2. nckw(d( f ,n), t): the number of programming language keywords (Table 4.2

shows all studied keywords)† in context(d( f ,n), t).

Given a commit c, a context size (the number of context lines) n, and the chunk

type t, we define the following two kinds of context features:

NCW (c,n, t) =
∑

d( f ,n)∈D(c,n)

ncw(d( f ,n), t),

†The keywords refer to reserved words (statements) in C++ that are shown by Microsoft

Visual Studio [103]. Because the reserved words of C++ and Java are almost the same, we use the

keywords for the projects in Java. We separate the reserved words that include underscores. For

instance, we convert “ if exists” into “if” and “exists”.
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Table 4.1: Types of contexts. The context of chunk type t of a unified diff d( f ,n) is

the concatenation of the full filename of f and the contexts of the chunk type t in

the diff d( f ,n).

Types of contexts Definition

context(d( f ,n), all) Context of all chunks in diff d( f ,n)

context(d( f ,n), +) Context of all chunks in diff d( f ,n) that contain at least one ‘+’ line

context(d( f ,n), -) Context of all chunks in diff d( f ,n) that contain at least one ‘-’ line

Table 4.2: Studied programming language keywords.

break case catch continue default

do else except for goto

finally if exists not leave

return switch throw try while

NCKW (c,n, t) =
∑

d( f ,n)∈D(c,n)

nckw(d( f ,n), t).

The defined context features are described in Table 4.3. To compute the context

features of a commit m(c,n, t) —where m is either NCW or NCKW, c is a commit

id, n is the number of context lines, and t is the chunk type—we use the following

algorithm:

1. Compute the diffs D(c,n) of the source code files‡ of commit c with the given

number of lines of context, n, using the following command:

git show --unified=n c

2. For each diffd( f ,n) of a source code file, compute ncw(d( f ,n), t) or nckw(d( f ,n), t):

(a) Remove all chunks that are not of chunk type t, including their contexts.

(b) Remove comments.

‡Here, a source file is a file with the name ending in java, c, h, cpp, hpp, cxx, or hxx, since we

analyze both C++ and Java.
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Table 4.3: Different context features. “Keywords” refers to the keywords defined

in the programming language of the source code. c denotes a commit id, n denotes

the context size (size of the context of the diff), and t is either of ‘all’, ‘+’ or ‘-’.

Features Description

NCW(c,n, t) Sum of the number of words

in the contexts of all chunks of

chunk type t.

NCKW(c,n, t) Sum of the number of program-

ming language keywords in the

contexts of all chunks of chunk

type t.

(c) Create a string st with the concatenation of

• the full filename of the diff d( f ,n), and

• the contexts around the identified chunks.

(d) Use lscp§ [163] to convert st into a sequence of words. For ncw, count

the number of words in this sequence; for nckw, count the number of

programming language keywords in st.

3. Finally, the context feature NCW/NCKW of the commit is calculated as the

sum of values of ncw/nckw for all diffs of the source code files in the commit.

Figure 4.3 depicts an example showing how the context features are computed

from a unified diff. The left square corresponds to the first step in our algorithm.

(1) and (2) are corresponding to the second step; we have removed unrelated

code in (1), and convert the string into a sequence of words by lscp in (2). (3) is

corresponding to the step three; we compute the context features.

§https://github.com/doofuslarge/lscp. lscp separates complex identifiers into its component

words —e.g., converts GetBoolArg into Get, Bool, Arg).
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$ git show commit_hash —unified=1
commit commit_hash
Author: author_name <author_email>
Date:   date_of_this_commit

    commit comment

diff --git a/src/qt/rpcconsole.cpp b/src/qt/rpcconsole.cpp
index 6a8bce25d..0d3e11f4a 100644
--- a/src/qt/rpcconsole.cpp
+++ b/src/qt/rpcconsole.cpp
@@ -17,3 +17,5 @@
 #include "json/json_spirit_value.h"
+#ifdef ENABLE_WALLET
 #include <db_cxx.h>
+#endif
 #include <openssl/crypto.h>
$

 src/qt/rpcconsole.cpp
#include "json/json_spirit_value.h"
 #include <db_cxx.h>
 #include <openssl/crypto.h>

src qt rpcconsole cpp include json 
json spirit value include db cxx 
include openssl crypto

NCW = 15, NCKW = 0

(1)

(2)

(3)

Figure 4.3: Example showing how NCW and NCKW are computed from a unified

diff. The unified diff corresponds to the change from Figure 4.2; due to the

space limitation, we remove several hunks, the commit comment, the author

information, and the commit hash from the unified diff. The number of context

lines n is 1. The chunk type t is ‘+’. The commit hash c is ‘commit hash.’ The

changed file f is ‘src/qt/rpcconsole.cpp.’ The left square corresponds to the first

step in our algorithm. (1) and (2) are corresponding to the second step; we remove

unrelated code in (1), and convert the string into a sequence of words by lscp in

(2). (3) is corresponding to the step three; we compute the context features.

The intuition behind counting words or keywords:

Our definition of context features involves counting words or keywords in

the context of a change. We consider that a context with more words is likely

to be more complex than a context that has less words. Hence, we consider

that counting the number of words in the context of a change is a proxy of the

complexity of such change.

The main intuition behind using the number of keywords is that the number of

keywords in the context might indicate how deeply nested change is. Therefore, a

change with a larger number of keywords is likely to more complex that a change

that has fewer (or no) keywords around it.
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Finally, counting number of words/keywords is easy to compute in practice.

4.4 Case study design

In this section, we discuss our selection criteria for the studied indentation fea-

tures, data, validation technique, preprocessing, projects, resampling approach,

evaluation measures, and prediction models.

4.4.1 Indentation features

We compare context features with indentation features. We study two indenta-

tions features: Added Spaces (AS), defined by Hindle et.al [59]; AS is the sum of

the number of white spaces on all the ‘+’ lines in a commit.

We additionally define a new indentation feature Added Braces (AB). We con-

sider the number of braces as a logical indentation because the number of braces

in C++ and Java expresses how embedded one block of code is inside others. We

first count the number of left-braces Bleft and right-braces Bright from the head of

a function to each ‘+’ line, respectively. Second, we compute the difference Bdiff

between Bleft and Bright on each ‘+’ line. Finally, we sum Bdiff for all ‘+’ lines in a

commit.

The intuition of using the indentation features as way to predict defects:

The indentation features have been used as a proxy to measure complexity

of source code [59]. However, they have not been used in defect prediction.

The rationale behind their use in defect prediction is that modifications in more

indented code are likely to be more complex that modifications that happen in less

indented code because the person doing the changes not only has to be concerned

with what the code does, but also with the code that surrounds it. The code with

the larger indentation is likely to be inside more control blocks–e.g., while, for,

and if statements–than the code with the less indentation; we hypothesize that

more control blocks might create more brittle code. Hence, all things equal, we
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Table 4.4: Change features.

Dim. Name Definition

D
iff

us
io

n NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across each file

Si
ze

LA Lines of code added

LD Lines of code deleted

LT Lines of code in a file before the change

Pu
rp

os
e FIX Whether or not the change is a defect fix

H
is

to
ry NDEV The number of developers that changed the modified files

AGE The average time interval between the last and the current change

NUC The number of unique changes to the modified files

Ex
pe

ri
en

ce EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

expect that changes to code that has more indentation might result in more defects

that changes to code that has less indentation.

4.4.2 Preparing data using Commit Guru

The availability and openness of experimental data is a real challenge to evaluate

defect prediction approaches. Therefore, we use data provided by Commit Guru,

which Rosen et al. [141] provide publicly. Commit Guru is a web application,

which identifies and predicts defective commits for Git repositories and calcu-

lates the change features (Table 4.4) that are often used for just-in-time defect
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prediction [71].

In this chapter, we use Commit Guru to calculate the change features [71]. We

use the change features in RQ2 to compare with the context features in order to

study what is the impact of the context features on defect prediction. Then, we

use the change features, and their subsets (each of the change features) as studied

features.

We refer to each feature in the change features as a subset of the change

features. When using a subset of the change features, we pick up a feature from

the change features, and use that feature for defect prediction. This is because

each of the change features is also a churn feature. However, several features

do not strongly relate to code churn. For example, Purpose feature (i.e., FIX,

described in Table 4.4) is not affected by code churn. Hence, we remove three

types of features from all the change features when considering their subsets that

are Purpose feature (i.e., FIX), History features (i.e., NDEV, AGE, and NUC), and

Experience features (i.e., EXP, REXP and SEXP). Hence we use each of NS, ND,

NF, Entropy, LA, LD, and LT as a subset of the change features. We apply z-score

to each of the subsets to normalized to a mean of 0 and a variance of 1.

When using the change features, to avoid using several strongly correlated

features in the prediction, we apply the following preprocessing proposed and

described in [71]:

• Exclude ND and REXP since they are strongly correlated with NF and EXP.

• LA and LD are divided by LT to normalize LA and LD.

• LT and NUC are divided by NF to normalize LT and NUC.

Finally, we apply z-score [181] to the changed features to normalized to a mean of

0 and a variance of 1.
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… …

Training interval Tr
<latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit>

Test interval Te
<latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit>

t� Tr
<latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit>

t
<latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit>

t+ Te
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Figure 4.4: An example of the time sensitive change classification. The cross

in gray indicates the information of fixing a commit is not used in the training

interval.

4.4.3 Time sensitive change classification

Because we could use future commits to predict past commits, using 10-fold cross

validation has a risk to make the artificially good results such as high precision

and recall while studying just-in-time defect prediction [155]. In addition, while

using 10-fold cross validation, we label the commits in training data as defective

or not using all the commits information. However, this procedure also risks to

use future information for prediction. To address these two issues and validate

our experiments, we use time sensitive change classification [155].

Time sensitive change classification uses only past commits to label past com-

mits and build prediction models for future commits. Figure 4.4 shows an example

of the time sensitive change classification that uses the training interval between

t − Tr and t as training data and the test interval between t and t + Te as test data.

In this example, we use the commits in the training data to label its commits and

build prediction models for predicting commits in the test data.

However, Tan et al. [155] reported three challenges. First, because defective

commits are typically detected and fixed in 100–300 days [75], many undetected

defective commits in the training interval would be labeled clean. Second, this

validation is sensitive to the interval. For example, if the training interval is before

the release day, features in the test interval would be different with the training

interval. Third, if we take a long time gap between the training interval and
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Online change classification Training interval
Gap
Test interval (Unit) (30)

Start gap
End gap
(Gap + 365)

Project
History

NewOld

Analysis
period

Margin

(analysis period/2) - gap

First iteration

Start date End date

Second iteration

Slide the training interval, test
interval and gap into the future

A unit (test interval)

History

Figure 4.5: An overview of the online change classification. We show two itera-

tions as an example. The part of the rectangle in black is the training data (training

interval) labeled using the commits in the training interval and gap (in dark gray).

The part of the rectangle in light gray is the test data (test interval) labeled using

all of the commits in the project history including the end gap. Details of the

terms in this figure are described in Section 4.4.4.

the test interval, features such as developers and programming styles might have

changed between the training interval and the test interval. To address these three

challenges, Tan et al. [155] recommended to use online change classification.

4.4.4 Online change classification

Online change classification is a validation technique. We describe the online

change classification, and how this validation technique addresses these three

challenges. To address the first challenge, a gap is used between the training

interval and the test interval (Figure 4.5). The gap is used only during the labeling

of the commits in the training interval. This additional interval allows more

time to detect defective commits in the training interval and make labeling result

more precise. Typically, the gap is the average or medium time between a defect

inducing commit and a defect fixing commit; in our experiments, we use median



Section 4.4 Case study design 81

Table 4.5: Parameter values of the online change classification for each project

(days).

Project Start gap End gap Gap
Unit (test Training Iteration

interval) interval step size

Hadoop 925 526 151 30 510 17

Camel 743 416 40 30 1,110 37

Gerrit 375 523 137 30 900 30

Osmand 1,011 413 17 30 420 14

Bitcoin 789 459 77 30 600 20

Gimp 2,004 687 281 30 2,100 70

time for each project from our pre-experiment (Table 4.5).

To address the second and third challenges, the time sensitive change classification

is executed multiple times while updating the training interval, test interval and

gap. The multiple execution minimizes the bias from a certain test interval. The

training interval, test interval and gap slide into the future by a certain interval

(Figure 4.5). This certain interval is called unit. A unit is 30 days (one month) in

our experiments. The test interval is 30 days as well. Note that the unit and the test

interval are parameters, hence; different parameter values might have the impact

to the result of our experiments. We studied this point in Section 4.8. The result

shows that these parameters have little impact for the results of our experiments.

We also use start gap and end gap [155] that are intervals that we do not use

as training interval and test interval. The beginning of a software project history

may be inconsistent and unstable. The end of a software project history would be

labeled clean because defective commits would not be detected. Hence, the start

gap and end gap would support building better prediction models and improving

the quality of the analysis.

Table 4.5 shows the actual parameters for each project. We manually look at
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the number of commits and decide on the start date at a point after the number of

committed commits increases and decreases moderately (reach a peak). The start

gap is the interval between the first commit date and the start date. The reason

why we use this process is that after the number of committed commits increases

and decreases moderately, the project would have been released and would be in

a stable state.

To decide the end gap, we need to compute the analysis period, iteration step size

and training interval. In the following, analysis period is the maximum studied

days. We define the analysis period, iteration step size and the training interval as

follows:

analysis period = (CommDatelatest − start date) −margin,

iteration step size = (analysis period/2 − gap)/unit,

Tr = iteration step size · unit,

where (and hereafter)

• CommDatelatest is the latest commit date,

• margin is a margin to remove defective commits that may not be detected

yet, and

• Tr is the training interval.

We first compute the interval between the start date and the date that is margin

days before the latest commit date. This process removes the defective commits

that are not detected. We use 365 as the margin to compute the end gap. Hence,

the end gap is always 365 and over. Because we use unit as a test interval as well,

iteration step size shows that the rest of iterations that we can slide the training

interval, test interval and gap into the future as avoiding to use the commits that

are committed in the latest margin days. In addition, we use gap to compute

iteration step size. This additional gap avoids the commits that are in the latest

margin days plus the gap days and ensure that we consider enough commits to label



Section 4.4 Case study design 83

the commits in the test interval. The training interval is decided by iteration step size

and unit. Finally, we define the end date and the end gap as follows:

end date = start date + (Tr + gap + (iteration step size · unit)),

end gap = CommDatelatest − end date.

For labeling commits either defective or clean, we follow the labeling process

used by Commit Guru:

1. Collect commits cfix whose messages contain specific keywords (as described

by Rosen et al. [141]), such as “bug” or “fix”. Identify the modified lines l in

the commits cfix.

2. Find out previous commits cbad on which the lines l were added or modified

previously to the corresponding change in cfix. Label each commit cbad as

defective.

We conduct this procedure using the training interval and the gap for labeling

training data, and using all of the commits for labeling test data.

4.4.5 Preprocessing by z-score

z-score is a popular normalization approach in defect prediction [181]. z-score

normalizes the input data to mean 0 and variance 1. The equation of z-score is:

Xz−score =
Xorg − µ
σ

(4.1)

where µ is the mean of the values of a feature for commits. σ is the variance of

the values of a feature for commits. Xorg is a vector of all values (all commits) of a

feature. Xz−score is a vector of all values (all commits) of a normalized feature.

4.4.6 Studied projects

For our experiments, we use six open source projects: Hadoop, Camel, Gerrit,

Osmand, Bitcoin and Gimp. Table 4.6 shows details of the projects. The studied
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Table 4.6: Details of the studied projects. Defective rate refer to the commits

labeled using all commits.

Project Language Total Number of Commits Defective Rate

Hadoop Java 13,920 24.8 %

Camel Java 24,740 23.2 %

Gerrit Java 18,794 20.1 %

Osmand Java 31,366 14.0 %

Bitcoin C++ 11,093 14.4 %

Gimp C++ 37,149 22.5 %

projects include software for various fields, such as a server or an application, and

are written in two popular programming languages (C++ and Java). We calculate

the context features and the indentation features for each commit of these projects.

For more precise analysis, we study all the commits that have changed at least

one line in the source code.

4.4.7 Resampling approach

While learning the defect prediction model, the learning performance is affected

by imbalanced data [155]. In our case, Table 4.6 shows that “clean” commits

outnumber “defective” commits. Hence, if we use this data directly as training

data, the learning performance could decrease. General resampling approaches

remedy this problem, as shown by prior studies [71, 155, 176].

For our experiment, we use random under-sampling. Random under-sampling

reduces the majority class at random to make the size of the majority class equal

to the size of the minority class. Because we must evaluate our approach on real

data, we apply resampling only to training data, not to test data.
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4.4.8 Evaluation measures

To measure the impact of the context features for defect prediction, we use three

evaluation measures: the area under the receiver operation characteristic curve

(AUC), the Matthews correlation coefficient (MCC), and Brier score (Brier)¶. Pre-

cision and Recall are frequently used in defect prediction as evaluation mea-

sures. However, several researchers warned that these measures show biased

results [16, 23, 157].

AUC and Brier score are threshold-independent measures. Tantithamtha-

vorn et al. [157] suggested to use threshold-independent measures to address

pitfalls in defect prediction research. Although MCC is a threshold-dependent

measure, MCC is not affected by the skewness of defect data [15, 181] and we

want to better understand the predicting power of the features [70]. Therefore,

we also use MCC in this chapter. The threshold of MCC is 0.5.

We use the Scott-Knott ESD test [160] (using 95% significance level) that was

used in Chapter 3 to compare the context features and the traditional code churn

features. We also apply the Scott-Knott ESD test to the ranks that are computed

by the Scott-Knott ESD test.

The reason why we apply the Scott-Knott ESD test twice is to avoid the vari-

ances of the values of the evaluation measures across the studied projects. If there

exist the variances across the studied projects, it would be difficult to compare

the studied features over all the studied projects instead of each studied project.

This idea was proposed by Ghotra et al. [40]. They applied Scott-Knott test twice

to ensure that they recognized techniques that perform well across the studied

projects. They showed the following example: if a prediction model has an AUC

of 0.9 on project A, and 0.5 on project B, we would get worse result while us-

ing Scott-Knott test once for all projects. However, if an AUC of 0.5 is the best

¶Note that while higher values of AUC and MCC are better than lower values, lower values

of Brier score are better than higher values. This is because Brier score is the sum of the mean

squared differences between predicted probabilities and actual binary labels.
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AUC value in the project B, and 0.9 is also the best value in the project A, then

this classification technique should be the best-performing technique. The first

Scott-Knott test computes the rank within a project. And the second Scott-Knott

test computes the rank across the projects without the variance of the values of

the evaluation measures due to using the rank. We use the Scott-Knott ESD test

instead of the Scott-Knott test in order to consider the effect size. We call this

procedure as double Scott-Knott ESD test.

The results of the Scott-Knott ESD test and the double Scott-Knott ESD test are

a rank (number) for each feature. The smallest rank, 1, indicates the best rank.

The largest rank indicates the worst rank. A rank can contains multiple features

at once. We interpret features which have many smallest/smaller ranks as the

best features since it indicates that the features significantly outperform many

others. Hence, for the Scott-Knott ESD test, we used the top-3 ranks to evaluate

the features across the studied projects. We report features which have the most

top-3 ranks across the studied projects as the best features in the Scott-Knott ESD

test.

For the double Scott-Knott ESD test, we used boxplots to show the ranks of the

studied features for each evaluation measure. Each boxplot contains six ranks by

the Scott-Knott ESD test for all the studied projects. The double Scott-Knott ESD

test classifies these boxplots by the Scott-Knott ESD test. This analysis avoids the

variances of the actual performance differences across the studied projects due to

using the rank. Our interpretation is that features which have the smallest rank as

the best features since it indicates that the features significantly outperform many

others.

4.4.9 Prediction models

We use two defect prediction models, logistic regression model (LR) [99] and

random forest model (RF) [61] that were used in Chapter 3 as well.

Prior work [49,159] showed that the parameter optimization of the prediction
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models crucially affects the prediction performance. For example, Tantithamtha-

vorn et al. [159] showed that a simple automated parameter optimization can

dramatically improve the AUC performance of defect prediction models (the best

case is about 40 percentage points of AUC). Hence, considering the parameter

optimization is also an important aspect in our experiment.

For LR, we consider a parameter: C.

• C: C is a parameter which indicates the regularization strength. For example,

if we have many features but not much data, LR would optimize its parame-

ter for the training data excessively. Hence, LR provides worse performance

for the test data. To address this challenge, the regularization strength C is

used when optimizing the parameter. We study the C of 0.00001, 0.0001,

0.001, 0.01, 0.1, 1, 10, and 100 when using the change features and COMB.

For the other features, we do not use the C since the number of features is 1

at a prediction model.

In addition, we need to consider the correlation between the studied features.

If the studied features are correlated, LR would get multicollinearity problem [37].

When using the change features, we need to consider the correlation. To avoid

the correlated features, prior work [71] proposed a preprocessing. We follow the

same preprocessing of prior work [71] that was described in Section 4.4.2. COMB

has two features. However, they are not correlated (see Table 4.21). Hence, we do

not need to deal with the correlation in COMB.

For RF, we keep using the normalized change features for LR. In addition, we

consider two parameters: mtry and number of trees that are specific parameters in

RF.

• mtry: mtry is a parameter which indicates the number of features randomly

selected for each node in a tree. For example, if we set mtry=2, RF selects 2

features from the studied features to generate a node in a tree for splitting

the studied commits. We study the mtry of 1, 2, 5, 10, and 12 when using

the normalized change features, 1 and 2 when using COMB, and 1 when
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using other features since the number of normalized change features is 12,

the number of features in COMB is 2, and the number of other features is 1

at a prediction model.

• number of trees: Number of trees is a parameter which indicates the number

of trees which RF generates. RF merges all the outputs of the trees for

computing the final result. We study the number of trees of 2, 5, 10, 50, 100,

500, 1,000.

We optimize these parameters for each iteration. We split the training data to

80% of the training data and 20% of validation data. We use the training data to

train the model based on a parameter setting, and evaluate that parameter setting

on the validation data. We use the best parameter setting on the test data.

4.5 Research questions and methodology

4.5.1 Research questions

Our proposed context features have three parameters: commit c, context size n

and chunk type t. Hence, we first study which configurations of these parameters

are the best for predicting defective commits. Because c is a parameter that cannot

be optimized, we study n and t to design the best context features. To do this, we

formulate the following research question: (RQ1) What is the impact of the different

variants of context features on defect prediction?

RQ1 does not confirm what is the impact of the context features for defect

prediction compared to the traditional code churn features. Hence, we also study

the prediction performance of the context features compared to the traditional

code churn features that are the change features, their subsets and the indentation

features in order to confirm whether the context features are effective or not.

We additionally study the performance of extended context features, which are

combinations between the context features and the traditional code churn features
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for defect prediction in order to improve the predicting power of the context

features. The extended context features count (1) number of words and (2) number

of keywords in the context lines and the changed lines. To do this, we formulate

the following research question: (RQ2) Do context lines improve the performance of

defect prediction?

RQ2 compares the prediction performance across the context features, the

extended context features, and the traditional code churn features. However, we

do not study combination features between the context features; we use a context

feature alone on a prediction model in RQ1 and RQ2. Hence, in this RQ, we study

the impact of combination features that use two extended context features that

count (1) number of words and (2) number of a certain keyword (e.g., “goto”)

at a prediction model. To do this, we formulate the following research question:

(RQ3) What is the impact of combination features of context features on defect prediction?

4.5.2 Methodology

We explain our experimental methodology.

RQ1. What is the impact of the different variants of context features on defect

prediction?

We conduct two experiments in order to study the impact of chunk types and

context sizes for just-in-time defect prediction. We first study the impact of chunk

types. Second, we study the impact of context size based on a fixed chunk type.

In each experiment, we build the studied defect prediction models and predict

defective commits in the studied project histories.

We consider two supervised learning models as defect prediction models that

are LR and RF. Prior research showed inconsistent results that prediction models

provide significant difference [40] and no significant difference [90, 102, 143]. The

main point in this chapter is to evaluate the impact of the context features for

defect prediction, not the impact of the prediction models. Hence, we use only
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two models and do not consider the difference between the prediction models.

We split the set of commits into training data and test data using the online

change classification [155]. 10-fold cross validation is a frequently used validation

technique in defect prediction, however; cross validation has risks such as making

artificially good results due to mixing past and future commits. The online change

classification addresses the challenges of the cross validation and improves the

quality of the analysis in just-in-time defect prediction [155]. We described details

in Section 4.4.4.

We compute the context features for each chunk type for each commit. We

apply preprocessing to the context features in the training and test data. We

use z-score; the mean and the variance of z-score are decided from the training

data. We use the context feature as an input of the studied models. The models

are trained using training data, and compute prediction results using test data.

When training the model, we optimize the parameters of the prediction models.

We described details in Section 4.4.9.

Finally, we evaluate the results using three evaluation measures: AUC, MCC,

and Brier score. Each measure has multiple values that come from the number of

the iteration step sizes of the online change classification. We show the number

of iteration step sizes in Table 4.5. For example, it is 17 that is the number

of iteration step size of the Hadoop project. Hence, we get 17 values for each

of three evaluation measures. For each measure, we summarize the multiple

values with its median value. We conduct the above procedure for each studied

project. Therefore, each context feature has 12 median values in the online change

classification (for six projects times two prediction models).

We conduct this procedure for each chunk type. Then, we compare the context

features of the different chunk types w. r. t. the three evaluation measures. We

apply the Scott-Knott ESD test [160] to the context features for each evaluation

measure for each project. Each context feature has two values (results by LR and

RF models) for each project. Then, we evaluate statistically significant differences
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and effect sizes between the context features for each evaluation measure for each

project. The result is shown as a rank. For example, if a certain context feature A

has the best value on a certain evaluation measure, this context feature A achieves

the rank 1. If another context feature B has no significant difference to the context

feature A that achieves the rank 1, this context feature B also achieves the rank 1.

If another context feature C has significant difference to the context feature A and

B, this context feature C achieves rank 2.

Although we would get the rank from the first Scott-Knott ESD execution, the

rank is computed for each project. Hence, we would get different ranks for each

project on a context feature. To avoid the variances of the ranks across the studied

projects, we additionally apply the Scott-Knott ESD test to the ranks instead of the

actual values of the evaluation measures, the double Scott-Knott ESD test. Each

context feature has six ranks (results by all the studied projects) for each evalua-

tion measure. The additional Scott-Knott ESD test compares the studied context

features in terms of the rank. Then, we evaluate statistically significant differences

and effect sizes between the context features for each evaluation measure.

We conduct the same procedures on different context sizes instead of different

chunk types before we apply the Scott-Knott ESD test. In this comparison, we

then compare the values of evaluation measures for each iteration step between

different context sizes. We count the iteration steps for each context size that pro-

vide the best prediction performance value. We make histograms of the number

of iteration steps that provide the best prediction performance for each context

size for each evaluation measure and context feature. From these histograms,

we conclude the impact of different context sizes for the performance of defect

prediction. For example, let us suppose we conducted an experiment with that it-

eration steps are 100, context sizes are 1, 2, and 3; the context size 1 has 50 iteration

steps where the context size 1 has the best performance, the context size 2 has 20

iteration steps where the context size 2 has the best performance, and the context

size 3 has 30 iteration steps where the context size 3 has the best performance. In
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Table 4.7: The extended context features.

Features Description

NCCW(c,n, t) Extend NCW(c,n, t) using not only context lines but also changed lines.

NCCKW(c,n, t) Extend NCKW(c,n, t) using not only context lines but also changed lines.

this example, we would get histograms in which the context size 1 has 50, 2 has

20, and 3 has 30; hence, we would conclude that the context size 1 is the best.

From the results, we investigate the impact of the context features variants

(different chunk types and context sizes). The goal of this RQ1 is to find the

best context features variant for just-in-time defect prediction. The best context

features variant is considered as the context features in RQ2.

RQ2. Do context lines improve the performance of defect prediction?

To answer this RQ, we compare the best variant of the context features NCW and

NCKW (as determined in RQ1) with the change features and their subsets (both

described in Section 4.4.2), the indentation features (described in Section 4.4.1)

and the extended context features. We build the defect prediction models to

evaluate the features. The prediction procedure is similar to the procedure for

RQ1; however, the preprocessing has differences (the details are described later

in this section).

In order to improve the performance of defect prediction, we define two

new features based on NCW and NCKW that measure both the context and the

changed lines called extended context features. These features are NCCW (number

of words in the context and the changed lines) and NCCKW (number of keywords

in the context and the changed lines) in Table 4.7. NCCW and NCCKW use only

added-lines as the changed lines. This is because it is known that a change fea-

ture, “added-lines”, is one of the best indicator of change risk [145, 147]. These

features will show the results of the combination between the context features

and the traditional code churn features. From the results of RQ1, we choose the
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appropriate chunk type from ‘+’, ‘-’ and ‘all’, and the context size from one to ten

for NCCW and NCCKW.

We apply the preprocessing to the change features and their subsets that was

described in Section 4.4.9. For the context features, we apply z-score to normalize

to a mean of 0 and a variance of 1 since the subsets of the change features are also

normalized by z-score.

RQ3. What is the impact of combination features of context features on defect

prediction?

To answer this RQ, we use our new combination features that use both NCCW

and NCCKW. This is because, according to the results of RQ2, NCCW and NC-

CKW have better prediction performance than NCW and NCKW alone. NCCW

and NCCKW are strongly correlated with each other (see Section 4.7.3). Hence,

we need to remove the correlation in order to address the multicollinearity prob-

lem [37] for using them on a prediction model.

We, hence, modify NCCKW into counting only each specific keyword instead

of counting all keywords (Table 4.2, # of keywords: 20). Hence, we get 20 variants

of NCCKW. For example, a variant of NCCKW measures the number of “goto”

statements (in both the context and the changed lines). We call each of these

features as a modified NCCKW. There are 20 modified NCCKW. This modification

removes the strong correlation between NCCW and NCCKW. NCCW and each

modified NCCKW are rarely correlated.

We use NCCW and each of the modified NCCKW on a prediction model as

two explanation variables, and study the performance of each of the modified

NCCKW. From this result, we conclude the best combination features for NCCW

and a modified NCCKW. We call the combination features as COMB. We compare

COMB with the other features following the same procedures of the procedure

for RQ2.
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4.6 Case study results

4.6.1 RQ1. What is the impact of the different variants of context

features on defect prediction?

For the context features, the best chunk type is ‘+’.

Table 4.8 shows the ranks of the Scott-Knott ESD test results for each evaluation

measure for each context feature variant. Each cell shows the rank of a context

feature variant in an evaluation measure and a project. Note that we compared

variants with different chunk types with the same context size (n = 3, the default

context size of the diff command git show). The rank is computed across context

feature variants for each project and evaluation measure. For example, the gray

cells in Table 4.8 are a set where the Scott-Knott ESD test is conducted. We

summarize the number of projects that are the top three ranks for each context

feature variant (row) in columns of #R1, #R2, and #R3. Hence, the sum of numbers

between #R1 to #R3 in a row is 6 or less. The column of Sum is the sum of #R1,

#R2, and #R3. Due to space limitation, we shorten the project names in the table:

Bitcoin is B., Camel is C., Gerrit is Ge., Gimp is Gi., Hadoop is H., and Osmand is

O.

Regarding AUC, using only the ‘+’ chunk on NCW yields the best results and

statistically outperforms the other features except the Osmand project, i.e., the

rank is one in 5 of 6 projects. Regarding MCC, we find that the rank is one in 3 of

6 projects, and the rank is one, two or three in all projects when using ‘+’ chunk

on NCW or NCKW. Regarding Brier score, using the ‘+’ or ‘all’ chunk on NCKW

yields the best results and statistically outperforms the other features for 3 of 6

studied projects.

Figure 4.6 shows the results of the double Scott-Knott ESD test on the results

for each context feature in all projects; each boxplot contains six ranks of the first

Scott-Knott ESD test execution for the studied projects on a chunk type. The

x-axis indicates a chunk type; Plus, Minus, and All correspond to ‘+’, ‘-’, and ‘all’;
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Table 4.8: The ranks of the Scott-Knott ESD test results for each context feature

variant and studied project on three evaluation measures. Please see text for a full

explanation. The actual values of each evaluation measure by RF and LR models

are shown in Appendix (Table 4.15, 4.16, and 4.17).

Evaluation
Features

Chunk Projects Numbers of Ranks

Measures Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

+ 1 1 1 1 1 2 5 1 0 6

NCW - 2 5 4 4 2 4 0 2 0 2

AUC all 1 2 2 2 1 2 2 4 0 6

+ 1 2 2 3 1 1 3 2 1 6

NCKW - 2 4 5 5 2 3 0 2 1 3

all 1 3 3 3 1 1 3 0 3 6

+ 2 1 2 1 3 1 3 2 1 6

NCW - 3 4 4 4 4 2 0 1 1 2

MCC all 2 1 2 2 3 1 2 3 1 6

+ 1 2 2 3 1 1 3 2 1 6

NCKW - 2 3 3 4 3 1 1 1 3 5

all 2 2 1 2 2 1 2 4 0 6

+ 3 3 1 1 2 2 2 2 2 6

NCW - 3 3 2 1 2 2 1 3 2 6

Brier all 3 4 1 1 2 2 2 2 1 5

+ 1 2 1 3 2 1 3 2 1 6

NCKW - 2 1 2 2 1 2 2 4 0 6

all 2 2 1 2 1 1 3 3 0 6
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Figure 4.6: The results of the double Scott-Knott test on the results for each context

feature in all projects. Please see text for a full explanation.
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Figure 4.7: The numbers of iteration steps that provide the best prediction per-

formance for each context size. We use all iteration steps of all studied projects

on two prediction models (LR and RF). The sum of all iteration steps is 188 (17

+ 37 + 30 + 14 + 20 + 70 from Table 4.5). Hence, the sum of all values is 376

(188 iteration steps * 2 models). For example, the sum of the y-axis values in

Figure 4.7(a) between 1 to 10 is 376.
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(a) NCKW RF Hadoop (context size=10)
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(b) NCKW LR Hadoop (context size=10)

Figure 4.8: The numbers of studied commits in Hadoop project when the context

size is 10. The x-axis refers to the predicted probabilities using NCKW that were

computed by either RF (left) or LR (right) models.

the y-axis indicates the rank for each studied project in the first Scott-Knott ESD

test execution. We use two gray colors (dark gray and light gray) and two lines

(solid line and dashed line) indicate a rank according to the double Scott-Knott

ESD test. The different rank indicates a statistical significant difference with small

effect size or over. We observe that ‘+’ achieves the best median rank for all the

evaluation measures and the context features.

With one exception, ’+’ consistently performed better than other types of chuck

types. This exception is shown in Figure 4.6(f) shows that ‘all’ chunk statistically

outperforms ‘+’ chunk on NCKW on Brier score; however, the median, and 25

and 75 percentiles are same. Hence, we choose ‘+’ chunk as the best chunk type

for our context features.

A context size of 1, provides better prediction performance for NCW, while

a context size of 10, provides better prediction performance for NCKW.

Figure 4.7 shows the numbers of iteration steps that provide the best prediction

performance on different context sizes. The left column of Figure 4.7 (Figure 4.7(a),

4.7(c) and 4.7(e)) shows the results for NCW with chunk type ‘+’. The right column

of Figure 4.7 (Figure 4.7(b), 4.7(d) and 4.7(f)) shows the results for NCKW with
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chunk type ‘+’.

We can observe opposite results between the NCW and NCKW. On the NCW,

the context size of 1 has the highest histogram. This result indicates that the

context size of 1 provides the most best prediction performance in all the itera-

tion steps comparing to other context sizes. However, on the NCKW, the context

size of 10 has the highest histogram on AUC and Brier score. The context size

of 1 in MCC is slightly higher than the other context sizes. This result implies

that the threshold, 0.5, is not suitable for NCKW. Figure 4.8 shows the numbers

of studied commits with predicted probabilities that were computed by the pre-

diction models in Hadoop project when the context size is 10. The numbers of

commits in Figure 4.8(b) are gathered more closely around 0.5 and many defective

commits (orange) are lower than 0.5 (by LR), however, the numbers of commits

in Figure 4.8(a) are not gathered around 0.5 (by RF). Because the threshold 0.5

provides many defective commits that are identified as clean in Figure 4.8(b), this

distribution affects the results on MCC when using NCKW. Hence, the results are

best when the context size is 10 in AUC and Brier score, however; the result is not

best when the context size is 10 in MCC. We can observe the same tendency on

different studied projects.

From these results, as the appropriate context size, we use 1 for NCW, and 10

for NCKW. Hereafter, we refer to NCW(c, 1,+) and NCKW(c, 10,+) as NCW and

NCKW, respectively. In addition, we refer to NCCW(c, 1,+) and NCCKW(c, 10,+)

as NCCW and NCCKW, respectively.

4.6.2 RQ2. Do context lines improve the performance of defect

prediction?

The extended context feature NCCW, the indentation features, and lines added

(LA) provide many top three rank performance on just-in-time defect predic-

tion.

Table 4.9 shows the ranks according to the Scott-Knott ESD test results of the
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Table 4.9: The ranks of the Scott-Knott ESD test results for studied features. #R1

(#R2, or #R3) is the sum of the numbers of cases where the rank is one (two, or

three); Sum = #R1 + #R2 + #R3. The actual values that were computed by RF and

LR are shown in Appendix.

(a) AUC

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 6 8 5 4 4 2 0 1 0 1

Context NCKW(c,10,+) 7 8 7 4 3 2 0 1 1 2

NCCW(c,1,+) 1 3 3 1 2 2 2 2 2 6

NCCKW(c,10,+) 4 7 4 2 1 1 2 1 0 3

Indentation AS 1 1 1 2 2 2 3 3 0 6

AB 3 2 2 3 2 2 0 4 2 6

Changes 5 3 6 7 1 4 1 0 1 2

NS 12 10 10 9 7 7 0 0 0 0

ND 10 5 8 8 3 5 0 0 1 1

Traditional NF 8 4 5 6 2 3 0 1 1 2

Entropy 9 6 6 6 5 3 0 0 1 1

LA 2 1 3 1 1 2 3 2 1 6

LD 11 9 9 5 5 6 0 0 0 0

LT 13 11 11 10 6 8 0 0 0 0



Section 4.6 Case study results 101

(b) MCC

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 5 7 5 5 4 1 1 0 0 1

Context NCKW(c,10,+) 4 7 6 3 4 2 0 1 1 2

NCCW(c,1,+) 3 1 2 2 3 2 1 3 2 6

NCCKW(c,10,+) 3 5 3 1 2 1 2 1 2 5

Indentation AS 1 2 1 4 3 3 2 1 2 5

AB 2 3 2 2 4 3 0 3 2 5

Changes 5 5 5 8 1 7 1 0 0 1

NS 10 8 8 10 7 8 0 0 0 0

ND 8 4 5 9 4 4 0 0 0 0

Traditional NF 6 2 4 4 2 3 0 2 1 3

Entropy 7 6 5 7 5 5 0 0 0 0

LA 3 1 3 1 3 2 2 1 3 6

LD 8 8 7 6 5 6 0 0 0 0

LT 9 9 9 11 6 9 0 0 0 0
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(c) Brier Score

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 5 5 5 9 2 3 0 1 1 2

Context NCKW(c,10,+) 5 4 5 8 2 2 0 2 0 2

NCCW(c,1,+) 3 3 3 6 3 2 0 1 4 5

NCCKW(c,10,+) 3 3 4 6 2 2 0 2 2 4

Indentation AS 2 2 2 9 3 2 0 4 1 5

AB 3 2 3 11 3 2 0 2 3 5

Changes 1 1 1 1 1 1 6 0 0 6

NS 7 4 7 2 4 2 0 2 0 2

ND 7 4 6 5 3 4 0 0 1 1

Traditional NF 8 5 6 7 2 4 0 1 0 1

Entropy 6 3 5 3 3 4 0 0 3 3

LA 4 2 4 4 3 2 0 2 1 3

LD 8 5 6 10 3 4 0 0 1 1

LT 9 6 8 12 4 5 0 0 0 0
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three evaluation measures for each studied feature. Each cell includes the rank.

The rank is computed across the studied features for each project. For example,

the gray cells in Table 4.9(a) is a set where the Scott-Knott ESD test is computed.

The actual values of the three evaluation measures that are used in the Scott-Knott

ESD test are shown in Appendix as Table 4.18, 4.19 and 4.20. We summarize the

number of projects that are the top three ranks for each studied feature (row) in

columns #R1 to #R3, and the column Sum is the sum of #R1, #R2, and #R3. The

maximum value of Sum is six that is the number of the studied projects. Note that

“Changes” in the table (also in other tables and figures of this chapter) indicates

the change features.

NCCW (NCCW(c, 1,+)) provides the top three rank prediction performance in

all projects on AUC and MCC, and 5 of 6 projects on Brier score. NCCW does not

provide the top one rank prediction performance on Brier score. However, this

is not to be a challenge for just-in-time defect prediction. Brier score is the sum

of the mean squared differences between predicted probabilities, i.e., the outputs

computed by RF and LR models, and actual binary labels, i.e., clean or defect in

the studied commits. From this point, this result implies that the probabilities

that were computed by NCCW might be close to 0 or 1 (clean or defect) than

other studied features. The probabilities that are closer to 0 or 1 indicate that

the probabilities clearly indicate either clean or defect even if predicted results

are incorrect. However, the results on AUC and MCC are good. Hence, even

if incorrect results are far from correct results, NCCW still has strong predicting

power because of its MCC results and NCCW might provide better performance at

other thresholds on average because of its AUC results. This result indicates that

the extended context feature NCCW has strong predicting power for just-in-time

defect prediction in the studied churn features.

Added spaces (AS), added braces (AB) and lines of code added (LA) also

provide many top three rank prediction performance on AUC and MCC. For AS

and AB, all projects on AUC and 5 of 6 projects on MCC, for LA, all projects on
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AUC and MCC. This result also shows that the indentation features and a churn

feature LA have strong predicting power. All of the features do not provide the

top one rank prediction performance on Brier score as well. From the same reason

of the results of the extended context features, we conclude that AS, AB and LA

have strong predicting power.

The change features that use all of the churn features provide that all projects

are in the top three ranks on Brier score, while rarely providing the top three

rank performance on AUC and MCC. This result implies that the probabilities

that were computed by the change features might be close to 0.5 or the correct

label than probabilities given by the other studied features. The probabilities

that are close to 0.5 indicate that the probabilities are close to the correct label in

incorrect results. Figure 4.9 shows the number of studied commits with predicted

probabilities that were computed by the prediction models in the Camel project

using NCCW and the change features. We can observe that when using the RF

model, the probabilities that were computed by the change features are close to

0.5 than the NCCW.

When using the LR model, the probabilities that were computed by the NCCW

is close to 0.5 than the change features. However, the mean squared differences

(Brier score) of the results of the change features are smaller than NCCW in the

half of the projects (Table 4.20 in Appendix). To show this result in a simpler

manner, we define a difference between the probabilities and the actual labels in

LR model. In the following, Diff is the difference on a feature in a project, C is a

set of all of the studied commits c, abs is a function that computes absolute value,

pc is the predicted probabilities of a commit c and labelc is the actual label of a

commit c where defective commits are 1 and clean commits are 0. Based on these

parameters, we define the Diff as follows:

Diff =
∑

C

abs(pc − labelc).

This is a simple variant of the Brier score.

Table 4.10 shows the values of the difference of the LR model. The gray cells
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Figure 4.9: The number of studied commits in Camel project. The x-axis refers to

the probabilities using each feature on either RF (left column) or LR (right column)

models.

indicate the smallest values of the difference between the features in a project. We

can observe that the change features achieve gray cells in the majority (5 of 6) of

projects. This result implies that although probabilities that were computed by

the NCCW are close to 0.5 than the change features, the difference of the results

of the change features is smaller than NCCW. Hence, the probabilities are close to

the correct label than NCCW. This is the reason why the change features provide

that all projects are in the top three rank on Brier score.

The indentation feature, AS, is the best-performing feature on AUC and

MCC according to the double Scott-Knott ESD test.
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Table 4.10: The values of our proposed difference of the LR model. The gray cells

refer to the smallest difference values by the features within each project.

Feature
Features

Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 747 2,981 1,883 3,568 1,403 1,188

Context NCKW(c,10,+) 744 2,989 1,907 3,577 1,426 1,199

NCCW(c,1,+) 700 2,859 1,819 3,437 1,373 1,197

NCCKW(c,10,+) 700 2,913 1,856 3,529 1,402 1,202

Indentation AS 706 2,882 1,843 3,514 1,410 1,204

AB 758 2,885 1,849 3,688 1,403 1,204

Changes 675 2,509 1,749 2,898 1,212 1,203

NS 836 3,001 1,972 3,281 1,534 1,233

ND 818 2,921 1,937 3,411 1,431 1,222

Traditional NF 790 2,935 1,955 3,590 1,458 1,219

Entropy 782 2,815 1,847 3,395 1,388 1,194

LA 825 2,905 1,908 3,589 1,492 1,212

LD 830 3,032 2,022 3,673 1,526 1,220

LT 834 3,031 2,060 3,780 1,294 1,238

Figure 4.10 shows the results of the double Scott-Knott ESD test on the results

for each studied feature in all projects; each boxplot contains six ranks of the first

Scott-Knott ESD test execution for the studied projects on a studied feature. We

use two gray colors (dark and light gray) and two lines (solid and dashed lines)

to represent the ranks according to the double Scott-Knott ESD test; the adjacent

boxplots with the same gray color and line indicate the same rank. Otherwise, the

rank is changed at that point. The different rank indicates a statistical significant

difference with small effect size or over according to the double Scott-Knott ESD

test. We observe that AS is the best-performing feature on both AUC and MCC.

The change features are the best-performing features on Brier score, and AS is the

second best-performing feature. This result provides that AS is a top rank feature

across the studied projects on AUC and MCC, and the change features are the top
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rank features across the studied projects on Brier score.

The extended context feature, NCCW, and the churn feature, LA, are also

better features according to the double Scott-Knott ESD test.

LA provides the second-rank performance in AUC and Brier score, and the

first rank performance in MCC as well. The extended context feature NCCW

provides the third rank performance in AUC, the second rank performance in

Brier score, and the first rank performance in MCC as well. This result provides

that NCCW and LA are also better features across the studied projects on AUC

and MCC.

In this RQ, we study the features in terms of the prediction performance. How-

ever, we ignore other aspects such as detected defective commits. We closely look

at the detected defective commits, pair-wise relation across the studied features,

and the basic predicting power of the studied features in Section 4.7 (discussion).

4.6.3 RQ3. What is the impact of combination features of context

features on defect prediction?

“goto” statement is the best keyword for the modified NCCKW.

Figure 4.11 shows the results of the double Scott-Knott ESD test on the results

for each modified NCCKW in all projects. Each boxplot contains six ranks of the

first Scott-Knott ESD test execution within a studied project for all projects using a

studied keyword as the modified NCCKW. The x-axis indicates a keyword which

is used on the modified NCCKW; the y-axis indicates the rank for each studied

project in the first Scott-Knott ESD test execution. We use two gray colors (dark

and light gray) and two lines (solid and dashed lines) to represent the ranks

according to the double Scott-Knott ESD test; the adjacent boxplots with the same

gray color and line indicate the same rank. Otherwise, the rank is changed at that

point. The different rank indicates a statistical significant difference with small

effect size or over. The first Scott-Knott ESD test is applied to the values of the

evaluation measures that were computed by the results of the studied prediction
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(c) Brier score

Figure 4.10: The double Scott-Knott ESD test results for each studied feature in

all projects. Please see text for a full explanation.



Section 4.6 Case study results 109

●

●

●

●

●

●

●

●

●

3

6

9

LE
AVE

EXCEPT

GOTO

FIN
ALL

Y

CONTIN
UE

DO

EXIS
TS

SW
IT

CH
NOT

THROW

W
HIL

E

CAT
CH

BREAK

CASE

DEFA
ULT

TRY
FOR

ELS
E

RETURN IF

T
he

 fi
rs

t S
co

tt−
K

no
tt 

E
S

D
 te

st
 r

an
k

(a) AUC

●

●

● ●

●

●

●

5

10

GOTO

FIN
ALL

Y

EXCEPT

LE
AVE

SW
IT

CHDO

EXIS
TS

CONTIN
UE

BREAK

CASE

THROW

W
HIL

E

CAT
CH

TRY

DEFA
ULT

NOT
ELS

E IF
FOR

RETURN
T

he
 fi

rs
t S

co
tt−

K
no

tt 
E

S
D

 te
st

 r
an

k

(b) MCC

●

●

●

●

●

● ●

●

3

6

9

W
HIL

E
DO

EXIS
TS

THROW

CONTIN
UE

BREAK

SW
IT

CH

DEFA
ULT

FOR
CASE

CAT
CH

NOT
ELS

E

FIN
ALL

Y
TRY

EXCEPT IF

LE
AVE

GOTO

RETURN

T
he

 fi
rs

t S
co

tt−
K

no
tt 

E
S

D
 te

st
 r

an
k

(c) Brier score

Figure 4.11: The results of the double Scott-Knott ESD test on the results for each

modified NCCKW in all projects. Please see text for a full explanation.
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models that use NCCW and a certain modified NCCKW which uses a certain

keyword (e.g., “goto”) as the explanation variables.

We observe that the number of “goto” statement in the context and changed

lines achieves the top-1 or 2 rank in AUC and MCC. In addition, the median rank

value is the best in AUC and MCC. The number of “goto” statement achieves the

worst rank in Brier score. From the same reason of RQ2 results in Brier score,

we conclude that the modified NCCKW which counts the number of “goto”

statements is the strongest feature on the combination with NCCW. In addition,

the modified NCCKW is not strongly correlated with NCCW (see Table 4.21).

Hereafter, we refer to this variant (using the number of “goto” statement) of

the modified NCCKW as gotoNCCKW. We use NCCW and gotoNCCKW for a

prediction model in order to improve the prediction performance. We refer to the

combination features as COMB.

COMB provides the top-one rank prediction performance for all the studied

projects in AUC and MCC.

Table 4.11 shows the ranks according to the Scott-Knott ESD test results of the

three evaluation measures for each studied feature. We observe that COMB pro-

vides the top-one rank prediction performance for all the studied projects in AUC

and MCC. In addition, except AS in MCC, there exists no other studied features

that achieve the top-one rank prediction performance. This result indicates that

COMB are the best prediction features in all the studied features. COMB achieves

at least the top-three rank prediction performance for all studied projects in Brier

score.

COMB statistically outperforms the other studied features.

Figure 4.12 shows the results of the double Scott-Knott ESD test on the results

for each studied feature in all projects; each boxplot contains six ranks of the first

Scott-Knott ESD test execution for the studied projects on a studied feature. The

x-axis indicates a feature; the y-axis indicates the rank for each studied project in

the first Scott-Knott ESD test execution. We use two gray colors (dark and light
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Table 4.11: The ranks of the Scott-Knott ESD test results for studied features. #R1

(#R2, or #R3) is the sum of the numbers of cases where the rank is one (two, or

three); Sum = #R1 + #R2 + #R3. The actual values that were computed by RF and

LR are shown in Appendix.

(a) AUC

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 7 9 6 5 5 3 0 0 1 1

NCKW(c,10,+) 8 9 8 5 4 3 0 0 1 1

Context NCCW(c,1,+) 2 4 4 2 3 3 0 2 2 4

NCCKW(c,10,+) 5 8 5 3 2 2 0 2 1 3

COMB 1 1 1 1 1 1 6 0 0 6

Indentation AS 2 2 2 3 3 3 0 3 3 6

AB 4 3 3 4 3 3 0 0 4 4

Changes 6 4 7 8 2 5 0 1 0 1

NS 13 11 11 10 8 8 0 0 0 0

ND 11 6 9 9 4 6 0 0 0 0

Traditional NF 9 5 6 7 3 4 0 0 1 1

Entropy 10 7 7 7 6 4 0 0 0 0

LA 3 2 4 2 2 3 0 3 2 5

LD 12 10 10 6 6 7 0 0 0 0

LT 14 12 12 11 7 9 0 0 0 0
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(b) MCC

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 5 8 7 6 5 2 0 1 0 1

NCKW(c,10,+) 4 8 8 4 5 3 0 0 1 1

Context NCCW(c,1,+) 3 2 3 3 4 3 0 1 4 5

NCCKW(c,10,+) 3 6 5 2 3 2 0 2 2 4

COMB 1 1 1 1 1 1 6 0 0 6

Indentation AS 1 3 2 5 4 4 1 1 1 3

AB 2 4 4 3 5 4 0 1 1 2

Changes 5 6 7 9 2 8 0 1 0 1

NS 10 9 8 11 8 9 0 0 0 0

ND 8 5 7 10 5 5 0 0 0 0

Traditional NF 6 3 6 5 3 4 0 0 2 2

Entropy 7 7 7 8 6 6 0 0 0 0

LA 3 2 5 2 4 3 0 2 2 4

LD 8 9 8 7 6 7 0 0 0 0

LT 9 10 9 12 7 10 0 0 0 0
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(c) Brier Score

Feature
Features

Projects Numbers of Ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

NCW(c,1,+) 6 5 6 9 4 4 0 0 0 0

NCKW(c,10,+) 6 4 6 8 3 3 0 0 2 2

Context NCCW(c,1,+) 4 3 4 6 5 3 0 0 2 2

NCCKW(c,10,+) 4 3 5 6 3 3 0 0 3 3

COMB 3 3 2 2 2 1 1 3 2 6

Indentation AS 2 2 3 9 5 3 0 2 2 4

AB 4 2 4 11 5 3 0 1 1 2

Changes 1 1 1 1 1 2 5 1 0 6

NS 8 4 8 2 6 3 0 1 1 2

ND 8 4 7 5 5 5 0 0 0 0

Traditional NF 9 5 7 7 4 5 0 0 0 0

Entropy 7 3 6 3 5 5 0 0 2 2

LA 5 2 4 4 5 3 0 1 1 2

LD 9 5 7 10 5 5 0 0 0 0

LT 10 6 9 12 6 6 0 0 0 0
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Figure 4.12: The results of the double Scott-Knott ESD test on the results for each

studied feature in all projects. Please see text for a full explanation.
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gray) and two lines (solid and dashed lines) to represent the ranks according to

the double Scott-Knott ESD test; the adjacent boxplots with the same gray color

and line indicate the same rank. Otherwise, the rank is changed at that point. The

different rank indicates a statistical significant difference with small effect size or

over.

We observe that COMB are the best-performing features on both AUC and

MCC. This result provides that COMB are the top rank features across the studied

projects on AUC and MCC. Even on Brier score, COMB are the second rank

features. The best-performing features on Brier score is still the change features.

4.7 Discussion

4.7.1 Are the commits identified by the context features different

than the ones identified by the traditional churn features?

The proposed context features COMB identify some defective commits that

other churn features cannot; these commits tend to have large context lines.

We define unique defective commits as the commits that are only identified

by our proposed features (and not by other features). The existence of these

defective commits contributes to defect prediction since they cannot be identified

using traditional churn features. Hence, we study the commits identified as

defective by COMB.

Figure 4.13 shows the values of the context feature NCW for the commits

identified as defective in Hadoop project. We can observe that COMB identifies

the commits that have higher NCW values as defective compared to the other

features. For example, the median NCW value of COMB-Changes is higher than

the median NCW value of Changes-COMB (Figure 4.13(a) and 4.13(b)). The

results for the other projects show the same tendency except NCCW; NCCW has

higher NCW values in 4 of 6 projects since NCCW is also a context feature.

Because we use NCW values to show unique defective commits, this result
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Figure 4.13: The values of the context feature NCW for the commits identified as

defective in Hadoop project. The boxplots show the cases where COMB identified

the commits differently with the context feature NCCW, the change features, LA

and the indentation features on RF and LR models. For instance, COMB-AB refers

to the cases where commits are identified as defective by COMB but are identified

as clean by AB. The x-axis shows the features that are compared; the y-axis shows

the value of NCW.

may seem obvious. However, even if we use LA value to show unique defective

commits, the median LA value of COMB-LA is higher than the median LA value of

LA-COMB in several projects. Figure 4.14 shows the values of LA for the commits

identified as defective by LR model in Bitcoin project and Hadoop project. In

Bitcoin project, the median LA value of COMB-LA is higher than the median LA

value of LA-COMB, while LA-COMB has higher median LA value in Hadoop

project. This result implies that the result in Figure 4.13(a) and 4.13(b) indicates

that COMB can uniquely identify some defective commits.

The proposed context features NCW and NCKW, and the extended context

features NCCW and NCCKW can uniquely identify defective commits; and

these commits tend to have larger context lines than other churn features on

the LR model.

We observe the same tendency for the other context features on LR model,
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Figure 4.14: The values of LA for the commits identified as defective in Bitcoin

project and Hadoop project. The boxplots show the cases where COMB identified

the commits differently with the context feature NCCW, the change features, LA

and the indentation features on LR model. The y-axis shows the value of LA.

but not RF model. This result may be from the difference between RF and LR

models. To study the difference between the prediction models lies beyond the

scope of this chapter. In addition, there exist commits that the traditional code

churn features can identify that the context features cannot. Future studies are

necessary to investigate these points.

4.7.2 How much do the indentation features improve the defect

prediction performance?

Indentation features AS and AB have the potential to improve defect prediction

performance.

Our study is the first applying the indentation features to the defect prediction

problem. From our results, the indentation features are one of the best features

on defect prediction performance, and significantly outperform other studied

features without COMB. Hence, we observe that the indentation features have

the potential of predicting power for just-in-time defect prediction.
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4.7.3 How redundant are the context features compared to the

traditional features?

Motivation:

To our knowledge, prior work in defect prediction disregards information around

the changed lines, context lines. Hence, we propose the context features, and

study the impact of them in the defect prediction performance. However, we

did not study the redundancy of our context features compared to the traditional

features.

We present an in-depth analysis to understand the relation between our context

features and the traditional features. This result produces insights of why our

context features are not inducing redundancy, and why the context features can

uniquely identify defective commits compared to the traditional features. Finally,

we show the basic predicting power using information gain [140].

Approach:

We first study five context features (i.e., NCW, NCKW, NCCW, NCCKW, and

gotoNCCKW∥), two indentation features and 14 traditional change features based

on a correlation analysis [188] and the principal component analysis (PCA) [28]

to identify correlated features and find features that are important to represent

the variance of the original features. Second, we compute information gain [140]

for all the studied features in order to clarify the basic predicting power of the

studied features.

We first conduct a correlation analysis on the features. When we use strongly

correlated features as explanation variables for a prediction model, we get the

problem of multicollinearity [37]. In addition, these features are redundant. We

use Spearman rank correlation [188] to measure the correlation between the fea-

∥COMB are two context features NCCW and gotoNCCKW. Hence, we study NCCW and

gotoNCCKW instead of COMB.
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tures. Spearman rank correlation is a non-parametric correlation. We apply

Spearman rank correlation to all commits on each studied project. We compute

the average values of the correlation coefficients between the projects.

Second, we conduct the PCA in order to identify features which represent the

highest variance of all the studied features. The PCA result shows which features

can represent the variance of all the studied features. The PCA reduces the number

of input features and makes new features. Then, the PCA shows the coefficient**

for every new feature to convert the input features into the new feature. We use the

coefficient of the most important new feature called the first principal component††

to identify which features represent the highest variance‡‡. We apply the PCA to

all commits on each studied project. We suppose that features which represent

the highest variance are important features in the studied features.

Finally, we compute information gain [140] in order to clarify the basic pre-

dicting power of the studied features. In our case, information gain measures the

basic predicting power of each of the features. For example, if an original feature

perfectly separates defective commits and clean commits, the value of informa-

tion gain would be maximum. However, if an original feature separates all the

commits to 50% defective commits and 50% clean commits, the value of infor-

mation gain would be minimum because this prediction is the same as random

classification. The formula of information gain [140] is as follows:

InfoGain(feature) = H(Defect) +H(feature) −H(Defect, feature),

where feature is a certain studied feature, InfoGain(·) is the information gain of ·
(feature), H(·) is Shannon entropy [142] of · where the base of the logarithm is 2,

H(·, ·′) is Shannon entropy of · after classifying by ·′, Defect is the set of all commits

**Here, the coefficient means the left-singular vector. We conduct the PCA using singular vector

decomposition.
††The first principal component means the input features set that can very retain the original

features variance.
‡‡Features which represent higher variance of the studied features have higher coefficient in the

first principal component.
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with prediction results (defective or clean).

We compute the ratio of the information gain between NCCW, and the inden-

tation features and the churn features. Since NCCW is our proposed feature, we

use NCCW as a base. The formulation is as follows:

Ratio = InfoGain(NCCW)/InfoGain(·),

If the ratio is over 1.0 when using a certain original feature, NCCW has high po-

tential to classify the commits in defect prediction rather than the certain feature.

Results:

The context features NCCW and NCCKW, the indentation features AI and AS,

and the change feature LA are strongly correlated.

Table 4.12 shows the Spearman rank correlation between all the studied fea-

tures (including the context, the indentation and the change features) in all studied

projects; each cell in the table shows the average correlation in the studied projects

(the median is very similar). A gray cell refers to the case of the strong correla-

tion whose coefficient is 0.7 and over. We observe that the correlations between

NCCW, NCCKW, AI, AS, and LA are strong (over 0.7). This is because the context

features and the indentation features include changed lines information.

The context features NCW and NCKW, however, are moderately correlated

to the indentation features and the change feature LA.

NCCW and NCCKW are extended features of NCW and NCKW. NCW and

NCKW are moderately correlated to AI, AS, and LA (less than 0.7). Hence,

although the context information have a similar concept with the indentation

features and changed lines, the context information is not redundant.

The context features NCCW and NCCKW are the features that represent the

highest variance of all the original features.

Table 4.13 shows the coefficient of the first principal component for each project

in the PCA. A gray cell refers to the case with the absolute coefficient 0.3 and over.
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Table 4.12: Spearman rank correlation between the context features, the indenta-

tion features, and the change features in the studied projects. GNCCKW indicates

gotoNCCKW. We average correlations in the studied projects. Each cell shows

the average correlation. “*” refers to that at least one non statistical significant

correlation in the studied projects. Due to the space limitation, we omit the His-

tory and Experience of the change features in this chapter. These features are not

strongly correlated (0.7 and over) with the other features (except for the correlation

between EXP and SEXP).
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LA LD LT

NCW 1.00 0.75 0.80 0.72 0.06* 0.59 0.64 -0.08 0.24 0.50 0.65 0.61 0.64 0.60 -0.01*

NCKW 1.00 0.65 0.88 0.06* 0.58 0.61 -0.06* 0.20 0.39 0.51 0.47 0.54 0.53 0.10

NCCW 1.00 0.81 0.08* 0.84 0.90 -0.14 0.27 0.54 0.70 0.62 0.91 0.60 -0.07*

NCCKW 1.00 0.08* 0.76 0.79 -0.11 0.24 0.46 0.60 0.54 0.75 0.55 0.03*

GNCCKW 1.00 0.06* 0.07* -0.01* 0.04* 0.05* 0.07* 0.06* 0.08* 0.06* -0.03*

AI 1.00 0.92 -0.10 0.22 0.42 0.52 0.44 0.82 0.48 -0.02*

AS 1.00 -0.12 0.22 0.43 0.56 0.47 0.87 0.52 -0.02*

FIX 1.00 -0.05 -0.10* -0.14 -0.12 -0.16 -0.09 0.05*

NS 1.00 0.60 0.46 0.44 0.33 0.24 0.06*

ND 1.00 0.81 0.77 0.58 0.45 -0.04

NF 1.00 0.96 0.71 0.58 -0.09

Entropy 1.00 0.62 0.52 -0.08

LA 1.00 0.58 -0.08

LD 1.00 -0.00*

LT 1.00
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Table 4.13: The coefficient of the first principal component for each project in the

PCA. GNCCKW indicates gotoNCCKW. Please see text for a full explanation.

Hadoop Camel Gerrit Osmand CMake Bitcoin Gimp

NCW -0.300 -0.264 -0.312 -0.237 -0.206 -0.297 -0.189

NCKW -0.295 -0.259 -0.289 -0.228 -0.201 -0.294 -0.180

NCCW -0.341 -0.345 -0.347 -0.411 -0.370 -0.366 -0.379

NCCKW -0.376 -0.346 -0.330 -0.410 -0.374 -0.376 -0.394

GNCCKW -0.040 0.002 -0.009 -0.199 -0.313 -0.039 -0.212

AI -0.282 -0.294 -0.266 -0.369 -0.357 -0.299 -0.263

AS -0.285 -0.294 -0.266 -0.381 -0.359 -0.309 -0.363

FIX 0.055 0.052 0.024 0.028 0.024 0.025 0.014

NS -0.135 -0.170 -0.232 -0.075 -0.100 -0.192 -0.167

ND -0.342 -0.277 -0.318 -0.129 -0.179 -0.249 -0.291

NF -0.299 -0.334 -0.301 -0.175 -0.282 -0.330 -0.268

Entropy -0.289 -0.277 -0.272 -0.117 -0.153 -0.279 -0.194

LA -0.210 -0.292 -0.136 -0.378 -0.317 -0.206 -0.359

LD -0.174 -0.175 -0.215 -0.094 -0.162 -0.078 -0.109

LT 0.114 0.021 0.031 -0.098 0.025 0.053 0.016

NDEV 0.009 -0.005 -0.006 -0.014 -0.025 0.006 0.095

AGE -0.018 -0.003 -0.007 -0.034 -0.037 -0.004 0.005

NUC -0.024 -0.194 -0.250 -0.052 -0.099 -0.161 -0.045

EXP -0.042 0.008 -0.011 -0.033 -0.003 -0.019 0.068

REXP 0.002 0.010 0.016 0.009 0.003 0.014 0.006

SEXP -0.039 0.027 -0.002 -0.022 0.021 -0.019 0.085
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We observe that NCCW and NCCKW have over 0.3 absolute coefficient in all the

studied projects. If the first principal component has a certain feature which has

high coefficient in all the projects, this feature is likely to represent the highest

variance of all studied features in all the projects.

NCCW and NCCKW include the context information and have the strong

correlation to the indentation features and LA due to using changed line informa-

tion. Hence, NCCW and NCCKW can add the context information while having

the information of the indentation features and LA. Hence, NCCW and NCCKW

represent the highest variance.

In summary, the context features NCW and NCKW are not redundant features,

and add the context information to the defect prediction model. While NCCW

and NCCKW have strong correlations to the indentation features and LA, NCCW

and NCCKW also add information from the context of the change.

Except for LT, NCCW has the strongest basic predicting power regarding

the information gain compared to other studied features.

Figure 4.15 shows the ratio of the information gain. We observe that all

the median values are grater than 1.0 except LT. Hence, almost all cases, the

information gain of NCCW is better than the other studied features. LT has better

value of the information gain. However, the prediction performance such as AUC

is not good. In summary, except for LT, NCCW has the strongest basic predicting

power in the studied features.

4.7.4 Does the context size changes the complexity of change?

We argued that more words/keywords in a context, more complex a change is.

Although number of words/keywords are determined by the context size, we

were concerned about that the complexity is changed by the context size. In this

discussion, we explain that changing context size does not affect the complexity

of change.

From our experiments, given a fixed size of context, the number of words/keywords
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Figure 4.15: The ratio of the information gain between NCCW and other features.

The x-axis indicates the features that are used to compute the ratio; the y-axis

indicates the ratio. The dashed line indicates that the ratio is 1.0.

in such context is a good indicator of the complexity of the change (RQ1). This

is because as the context size increases, the number of context words/keywords

also increases; however, the distance of some words/keywords to the hunk will

also increase, making them less effective as an indicator of complexity. Hence, a

balance is required: too small a context might not have enough information to

capture the context of the change, however a context that is too large will dilute

the important context information around a hunk.

4.7.5 How are the actual AUC and MCC values of the context

features?

We study the ranks that were computed by the Scott-Knott ESD test across the

studied features to determine which are the best prediction features to use in
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defect prediction. However, practitioners would concern about the actual AUC

and MCC values since practitioners need accurate prediction model.

We show the actual AUC and MCC values in Appendix (Table 4.18 and 4.19).

From the AUC result (Table 4.18), COMB provides at least 0.737. This value

corresponds to the strong effect size according to prior work [135]. From the MCC

result (Table 4.19), COMB provides at least 0.3 except RF in the Camel project.

This value corresponds to the moderate correlation. Hence, we conclude that

COMB can be used in practice since they have acceptable prediction performance

in the actual values as well.

4.7.6 Practical guides (recommendations) for the parameters of

the context features

The context features have two tunable parameters: the context size, and the

churn type. We made our practical guides (recommendations) of optimizing the

parameters of the context features as applicable as possible to practitioners.

Recommendation 1: If practitioners have both, training data and validation

data, we recommend to optimize the context size and the churn type following

our experiments in RQ1. The most important parameters to determine are

how many context lines to use (we call this the context size) and what type of

context lines to use (we call this the churn type). In our study, we calculated the

context size and the churn type that yield the best results; we recommend that,

if practitioners have training data and validation data, they optimize the context

size and the churn type following our experiments in RQ1. Our experiments in

RQ3 show that COMB which are the combination features of the extended context

features that are number of words and number of “goto” keyword significantly

outperform the other studied features. Hence, if practitioners want to use our

prediction model, we recommend to use COMB. Practitioners do not need to

decide using either number of keywords or words as a parameter of the context

features. COMB includes both of them. The details of how to use COMB can be
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found in Section 4.7.7.

Recommendation 2: If practitioners do not have enough validation data,

we recommend to use the same parameters that we found perform best. Our

experiments in RQ1 show optimal values for the parameters for the projects

we studied. The studied projects cover multiple domains of software, and two

popular programming languages, C++ and Java. We believe this diversity of

studied projects is likely to make these parameters useful in general.

4.7.7 Practical guides (recommendation) for practitioners who

want to use a defect prediction model

We proposed the context features. We present recommendations of using them

for defect prediction according to the experimental results.

Recommendation 1: Use the indentation feature AS instead of the tradi-

tional size features in the change features. Our experiments in RQ2 show that

AS significantly outperforms the other studied features including traditional size

features (LA, LD and LT). In addition, AS is strongly correlated with the tradi-

tional size feature LA which has the highest performance in the change (code

churn) features. Hence, using AS instead of the traditional size features allows

practitioners to improve the performance of their defect prediction models.

Recommendation 2: For the case where practitioners want to improve the

prediction performance using a simple prediction model, use the context fea-

tures COMB on the logistic regression model. Our experiments in RQ3 show

that COMB are the best-performing features in AUC and MCC. In addition, our

discussion shows that: (1) a context feature used in COMB, NCCW, is one of the

feature that represents the highest variance of all the original features, and (2)

the basic defect predicting power of NCCW is strong. For the interpretation of

the prediction model, COMB contains only two features (NCCW and gotoNC-

CKW), and therefore, we can easily interpret the prediction results. Finally, the

effect size of the actual prediction values in AUC is strong. Hence, for the case
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where practitioners want to improve the prediction performance using a simple

prediction model, using COMB might allow practitioners to get good prediction

performance with a simple prediction model.

4.8 Threats to validity

4.8.1 Construct validity

We follow the labeling process in Commit Guru [141] in order to label each commit

either defective or clean. SZZ algorithm is also a popular approach to identify

defective commits [150]; however, it has no open source implementation available.

In contrast, Commit Guru is a publicly available open source project. Hence, we

follow the labeling process in Commit Guru for its repeatability and openness.

We use the online change classification [155] to validate the performance of

defect prediction. This validation technique addresses the challenges of the cross

validation technique. Hence, we believe this validation technique is acceptable.

The online change classification has parameters. In particular, the unit (test

interval) is the most important parameter. Below, we studied the impact of the

unit for the performance in defect prediction. If the unit has strong impact for

the performance in defect prediction, we would need to consider the parameter

in our experiments.

Approach: We build defect prediction models for NCCW, NCCKW, COMB,

AS, LA, and the change features. The prediction procedure is the almost same as

RQ2. The only difference is that we change the unit value between 10 to 100 by

10. Finally, we report the evaluation measures by (1) plotting a line plot for each

project, prediction model, and studied feature, and (2) computing the median and

75 percentile IQR values of different unit values in all projects, prediction models,

and studied features.

Results: Figure 4.16 shows the values of the evaluation measures for different

unit values. We observe that all evaluation measures are stable for different unit
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Figure 4.16: The values of the evaluation measures for each unit (test interval)

using the NCCW feature on LR model in the Camel project. Eva indicates evalu-

ation measures. The x-axis indicates the unit value between 10 to 100; the y-axis

indicates the values of the evaluation measures.

values. In addition, we observe the same tendency for other projects, prediction

models, and features.

Table 4.14 shows the median and 75 percentile (3Q) IQR values for different

unit values in all projects, prediction models, and studied features. We observe

that even if we check 3Q values, they are less than 0.05 IQR value in all cases.

Hence, the unit (test interval) has little impact for the results. The training interval

is decided by the unit. Hence, the training interval also has little impact for the

results.
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Table 4.14: The median and 75 percentile (3Q) IQR values of the performance

for the context features, the indentation feature and the change features. An

IQR value is computed across all unit values for each prediction model for each

project for each feature. The median/3Q IQR values are computed for each feature.

Hence, the median/3Q for all prediction models and projects.

NCCW NCCKW COMB AS LA Changes

Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q

AUC 0.011 0.016 0.012 0.015 0.008 0.014 0.010 0.013 0.009 0.013 0.015 0.017

MCC 0.015 0.026 0.019 0.022 0.024 0.028 0.019 0.021 0.022 0.030 0.032 0.037

Brier 0.004 0.007 0.004 0.009 0.009 0.010 0.004 0.008 0.005 0.007 0.005 0.006

4.8.2 External validity

As the studied projects, we use six large open source software. These software are

written in the popular programming languages C++ and Java; and one of various

types of software, such as server and web application. These systems we study

are open source but not commercial software. In the future, we need to study the

context features, extended context features, and combination context features on

commercial projects for verifying our findings.

4.8.3 Internal validity

We remove comments from the hunks. However, if all lines in a hunk are com-

ments and use “/**/”, we do not identify whether the hunks are comments.

We use three evaluation measures, AUC, MCC and Brier score, which are not

affected by skewed data [15,181] and address the pitfalls in defect prediction [160].

Hence, we believe these measures are acceptable.
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4.9 Chapter summary

In this chapter, we propose context features based on the context lines, the ex-

tended context features based on both the context lines and changed lines as code

churn features, and COMB based on the extended context features. We study

the impact of considering the context lines for defect prediction. We compare the

context features, the extended context features, and COMB with the traditional

code churn features in six open source software. The main findings of this chapter

are as follows:

• The chunk type ‘+’ is the best parameter for context features for defect

prediction. This chunk type achieves the best median rank according to the

three evaluation measures, AUC, MCC and Brier score on the Scott-Knott

ESD test.

• The small context size is suitable when considering the number of words,

while the large context size is suitable when considering the number of

keywords in context lines for defect prediction.

• “goto” statement in the context lines and the changed lines is the best key-

word to detect defective commits in the modified NCCKW.

• Our proposed combination features, COMB, significantly outperform all

the features, and achieve the best-performing features in all of the studied

projects in terms of AUC and MCC.

4.10 Appendix

In this appendix, we show the actual values of the three evaluation measures

corresponding to the results of the rank in RQ1, RQ2, and RQ3. In addition, we

show the correlation across the modified NCCKW.
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Table 4.15: The median values of AUC for each context feature variant and studied

project. Each cell indicates the values of AUC by RF (left) and LR (right) models,

respectively, when the context size is three. The Scott-Knott ESD test is conducted

for each project (column).

Features
Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.619/0.727 0.579/0.610 0.642/0.722 0.692/0.722 0.624/0.738 0.585/0.757

NCW - 0.580/0.663 0.548/0.561 0.594/0.655 0.619/0.672 0.636/0.690 0.567/0.695

all 0.631/0.707 0.577/0.598 0.624/0.707 0.647/0.715 0.638/0.737 0.587/0.749

+ 0.650/0.694 0.580/0.592 0.650/0.679 0.640/0.663 0.660/0.698 0.652/0.729

NCKW - 0.594/0.640 0.549/0.567 0.598/0.620 0.618/0.649 0.639/0.677 0.619/0.682

all 0.646/0.678 0.567/0.595 0.641/0.667 0.637/0.663 0.661/0.705 0.640/0.720

Table 4.16: The median values of MCC for each context feature variant and studied

project. Each cell indicates the values of MCC by RF (left) and LR (right) models,

respectively, when the context size is three. The Scott-Knott ESD test is conducted

for each project (column).

Features
Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.130/0.269 0.090/0.178 0.170/0.316 0.203/0.268 0.156/0.361 0.118/0.415

NCW - 0.079/0.237 0.060/0.135 0.108/0.258 0.163/0.221 0.136/0.315 0.101/0.365

all 0.152/0.271 0.084/0.186 0.160/0.309 0.172/0.251 0.171/0.344 0.129/0.418

+ 0.228/0.238 0.106/0.135 0.216/0.268 0.191/0.211 0.260/0.311 0.238/0.346

NCKW - 0.178/0.232 0.093/0.135 0.168/0.234 0.185/0.199 0.201/0.297 0.227/0.309

all 0.199/0.213 0.118/0.128 0.233/0.270 0.190/0.233 0.261/0.296 0.239/0.343
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Table 4.17: The median values of Brier score for each context feature variant and

studied project. Each cell indicates the values of Brier score by RF (left) and LR

(right) models, respectively, when the context size is three. The Scott-Knott ESD

test is conducted for each project (column).

Features
Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.313/0.214 0.310/0.238 0.289/0.221 0.237/0.230 0.293/0.216 0.340/0.238

NCW - 0.307/0.229 0.316/0.243 0.321/0.239 0.237/0.236 0.295/0.223 0.331/0.241

all 0.311/0.215 0.334/0.239 0.302/0.223 0.242/0.231 0.293/0.217 0.332/0.238

+ 0.265/0.218 0.271/0.241 0.290/0.228 0.262/0.233 0.276/0.231 0.305/0.241

NCKW - 0.270/0.227 0.261/0.244 0.329/0.236 0.247/0.237 0.266/0.233 0.332/0.243

all 0.286/0.218 0.274/0.241 0.289/0.228 0.252/0.234 0.265/0.230 0.319/0.242

Table 4.18: The median values of AUC for each context feature, each extended

context feature, COMB, each indentation feature, the change features and each of

the change features. Each cell indicates the values of AUC by RF (left) and LR

(right) models, respectively.

Feature
Features

Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.653/0.709 0.573/0.597 0.660/0.719 0.662/0.706 0.642/0.736 0.628/0.758

NCKW(c,10,+) 0.648/0.695 0.576/0.599 0.643/0.679 0.675/0.689 0.684/0.716 0.628/0.744

Context NCCW(c,1,+) 0.706/0.798 0.640/0.738 0.699/0.786 0.699/0.762 0.660/0.780 0.625/0.751

NCCKW(c,10,+) 0.689/0.754 0.628/0.682 0.677/0.735 0.699/0.723 0.691/0.769 0.660/0.758

COMB 0.750/0.798 0.741/0.738 0.771/0.786 0.743/0.768 0.765/0.780 0.737/0.751

Indentation AS 0.735/0.780 0.675/0.739 0.742/0.785 0.693/0.737 0.682/0.763 0.636/0.749

AB 0.734/0.739 0.667/0.733 0.720/0.775 0.692/0.689 0.693/0.754 0.614/0.750

Changes 0.706/0.670 0.708/0.668 0.694/0.666 0.677/0.574 0.733/0.732 0.645/0.634

NS 0.525/0.526 0.546/0.548 0.597/0.599 0.539/0.540 0.525/0.529 0.519/0.530

ND 0.608/0.607 0.666/0.679 0.647/0.659 0.582/0.595 0.695/0.711 0.624/0.649

Traditional NF 0.638/0.660 0.661/0.692 0.673/0.699 0.623/0.650 0.711/0.740 0.636/0.689

Entropy 0.633/0.651 0.648/0.678 0.667/0.694 0.641/0.633 0.649/0.703 0.638/0.689

LA 0.730/0.750 0.681/0.744 0.700/0.775 0.717/0.755 0.680/0.777 0.663/0.730

LD 0.560/0.606 0.568/0.587 0.617/0.670 0.651/0.677 0.665/0.686 0.594/0.668

LT 0.487/0.522 0.512/0.506 0.487/0.466 0.523/0.499 0.589/0.696 0.500/0.521
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Table 4.19: The median values of MCC for each context feature, each extended

context feature, COMB, each indentation feature, the change features and each of

the change features. Each cell indicates the values of MCC by RF (left) and LR

(right) models, respectively.

Feature
Features

Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.178/0.279 0.115/0.171 0.212/0.323 0.172/0.235 0.200/0.348 0.228/0.404

NCKW(c,10,+) 0.205/0.333 0.111/0.170 0.181/0.284 0.230/0.244 0.243/0.329 0.193/0.366

Context NCCW(c,1,+) 0.229/0.343 0.167/0.309 0.253/0.408 0.197/0.308 0.189/0.402 0.185/0.373

NCCKW(c,10,+) 0.249/0.346 0.155/0.251 0.279/0.343 0.251/0.286 0.263/0.388 0.274/0.370

COMB 0.385/0.330 0.298/0.326 0.397/0.401 0.305/0.308 0.381/0.402 0.390/0.366

Indentation AS 0.302/0.398 0.183/0.286 0.311/0.385 0.194/0.264 0.235/0.378 0.198/0.336

AB 0.268/0.377 0.173/0.277 0.293/0.354 0.231/0.278 0.213/0.366 0.177/0.349

Changes 0.257/0.186 0.207/0.185 0.288/0.245 0.189/0.094 0.309/0.362 0.223/0.134

NS 0.000/0.112 0.111/0.111 0.181/0.202 0.121/0.117 0.097/0.074 0.062/0.112

ND 0.175/0.175 0.231/0.204 0.255/0.262 0.138/0.118 0.254/0.315 0.203/0.267

Traditional NF 0.156/0.248 0.235/0.234 0.288/0.299 0.211/0.240 0.313/0.336 0.262/0.265

Entropy 0.168/0.209 0.130/0.193 0.228/0.291 0.135/0.169 0.166/0.321 0.215/0.239

LA 0.296/0.277 0.214/0.269 0.281/0.345 0.263/0.279 0.226/0.363 0.245/0.329

LD 0.132/0.220 0.081/0.143 0.168/0.239 0.183/0.170 0.236/0.233 0.142/0.282

LT 0.086/0.074 0.065/0.049 0.049/0.073 0.071/0.000 0.125/0.288 0.073/0.068
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Table 4.20: The median values of Brier score for each context feature, each ex-

tended context feature, COMB, each indentation feature, the change features and

each of the change features. Each cell indicates the values of Brier score by RF

(left) and LR (right) models, respectively.

Feature
Features

Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.278/0.215 0.295/0.239 0.279/0.221 0.239/0.234 0.274/0.217 0.321/0.237

NCKW(c,10,+) 0.270/0.216 0.281/0.241 0.285/0.224 0.234/0.235 0.255/0.225 0.298/0.239

Context NCCW(c,1,+) 0.257/0.200 0.277/0.223 0.250/0.208 0.236/0.220 0.294/0.210 0.295/0.236

NCCKW(c,10,+) 0.245/0.203 0.268/0.230 0.262/0.213 0.227/0.231 0.260/0.219 0.289/0.239

COMB 0.225/0.210 0.285/0.224 0.221/0.209 0.190/0.226 0.245/0.226 0.237/0.239

Indentation AS 0.228/0.198 0.258/0.226 0.233/0.210 0.246/0.229 0.279/0.220 0.295/0.239

AB 0.238/0.214 0.264/0.227 0.250/0.210 0.240/0.250 0.283/0.218 0.294/0.240

Changes 0.201/0.202 0.186/0.192 0.207/0.215 0.169/0.171 0.189/0.194 0.239/0.246

NS 0.276/0.248 0.273/0.242 0.360/0.236 0.211/0.199 0.268/0.248 0.289/0.249

ND 0.275/0.243 0.289/0.232 0.309/0.229 0.236/0.216 0.279/0.221 0.343/0.243

Traditional NF 0.314/0.234 0.295/0.232 0.295/0.236 0.230/0.235 0.257/0.227 0.337/0.243

Entropy 0.273/0.231 0.275/0.223 0.282/0.220 0.221/0.214 0.288/0.217 0.337/0.234

LA 0.226/0.249 0.258/0.228 0.243/0.224 0.211/0.235 0.266/0.239 0.284/0.244

LD 0.311/0.249 0.288/0.247 0.298/0.246 0.235/0.246 0.258/0.246 0.329/0.247

LT 0.363/0.248 0.374/0.247 0.383/0.250 0.359/0.247 0.320/0.206 0.383/0.250
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Chapter 5

Deep Learning Based Just-In-Time

Defect Prediction with Semantic

Properties as Features

5.1 Introduction

5.2 Word-convolutional neural network (W-CNN)

5.3 Experimental design

5.4 Results

5.5 Threats to validity

5.6 Chapter summary

An earlier version of this chapter is published in the IPSJ Journal [84]. In

2019, a related study is published [62].

5.1 Introduction

In recent years, machine learning models are frequently used in defect predic-

tion [7, 66, 76, 171, 176, 187] since there are many high-quality tools to implement

137
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machine learning models [2, 65, 126] and various data [73, 141]. In particular,

deep learning models attract attention from researchers and practitioners in de-

fect prediction since deep learning models are successful in several research fields

including one in software engineering [31, 78, 87, 91, 171, 176, 183].

Indeed, some of the studies used deep learning models as a defect prediction

model [91, 171, 176]. Yang et al. [176] applied a deep learning model called deep

belief network (DBN) to the change features [71]. Wang et al. [171] applied a DBN to

source code that were decomposed into an abstract syntax tree (AST). Li et al. [91]

applied a convolutional neural network (CNN) to the source code.

However, to the best of our knowledge, by 2018, nobody applies any deep

learning models to source code changes, which are changed source code on a commit,

in change-level defect prediction (a.k.a. just-in-time defect prediction). As we described

in Chapter 4, just-in-time defect prediction provides several key advantages [71]

such as faster feedback compared to other defect prediction. In addition, we

suppose that applying a deep learning model to the source code changes may

automatically retrieve additional information that is not investigated so far such

as our context features (Chapter 4) and we do not need to consider keeping the

number of features low (Chapter 3).

In this chapter, we applied a deep learning model to the source code changes

of a commit to identify if such a commit is defective or not in just-in-time defect

prediction. In particular, we used a CNN as our defect prediction model. CNNs

are known as one of the successful deep learning models in image recognition;

however, CNNs are successful in text classification and defect prediction as well.

We consider the source code changes as texts to apply a CNN. We call our defect

prediction model based on a CNN with the source code changes Word-CNN (W-

CNN). When constructing a CNN, we took Kim’s CNN [78] into account. We

conducted our experiments on seven open source projects in Java and C++.

To evaluate W-CNN, we built the following three research questions:

RQ1: Can W-CNN be trained by source code changes?
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Motivation: Nobody applies a deep learning model to the source code

changes directly so far. In this RQ, we studied can our W-CNN be trained

by the source code changes.

Results: Our W-CNN can be trained by the source code changes. In addi-

tion, W-CNN can predict defective commits.

RQ2: Does W-CNN improve defect prediction performance compared to a

previous deep learning defect prediction model?

Motivation: Yang et al. [176] have already identified defective commits

with a deep learning model called Deeper. They used a DBN [60] with

the change features of commits. Hence, we compared our W-CNN and

Deeper.

Results: W-CNN outperformed Deeper in terms of the defect prediction

performance for all studied projects.

RQ3: How long do we need to train and use W-CNN?

Motivation: A deep learning model needs longer training time compared

to other machine learning models such as a logistic regression model. In

this RQ, we studied the time cost of W-CNN.

Results: W-CNN needs longer time to train its model compared to Deeper.

In contrast, W-CNN needs around 0.001 seconds to predict if a commit is

defective. Hence, the time cost to use W-CNN is low.

Some of the key contributions of this chapter are as follows:

(1) We found that W-CNN can be used to predict defective commits in just-in-

time defect prediction.

(2) We observed that W-CNN needs longer time to train its model while the pre-

diction performance is better compared to a previous deep learning defect

prediction model.
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5.2 Word-convolutional neural network (W-CNN)

CNNs are one of the successful algorithms in image classification [87]. In addition,

researchers recently reported that CNNs perform well in text classification as

well [31, 78, 183]. In this chapter, we used a CNN as a text classification model to

identify defective commits in which we consider source code changes as texts.

In general, a deep learning model gains the ability to learn the training data

according to the number of layers. Hence, prior studies have used many layers

for their model. For example, Zhang et al. [183] used a nine-layer CNN as a text

classification model.

However, the model with many layers needs more training data. Indeed,

Zhang et al. trained their CNN with around one million training data. However,

our target data (a software repository) include around ten thousand commits if

such a repository is relatively large.

Hence, we took a relatively small CNN model that was proposed by Kim [78]

into account to construct our just-in-time defect prediction model. This CNN

model has three hidden layers and can be trained by around 4,000-10,000 training

data.

Figure 5.1 depicts an overview of our proposed W-CNN. W-CNN consists of

two phases: “Preprocessing” where we extract the source code changes from the

commits of a repository and “Defect Prediction by CNN” where we retrieve features

from the source code changes and classify the commits into defective or not. We

describe the procedure as follows:

(1) Preprocessing: For each commit, we extract added source code, source code

that surrounds added/deleted source code, and file names as our source code

changes. The source code changes are converted into a set of text elements

with a lightweight source code preprocessor (lscp) [163]. Such text elements are

mapped to numerical values to convert each commit into a numerical feature

vector.



Section 5.2 Word-convolutional neural network (W-CNN) 141

Numerical feature
vector Embedding

size

Convolution

Three suites
of  features by triple

of filters x 100

Max-pooling

1st:
Embedding layer

2nd:
Convolution/max-pooling

layer

3rd:
Fully-connected

layer

Defect Prediction by CNN

5
7
8
1
2

5
7
8
1
2 Defect

Clean

3 x 100
nodes

Source 
code

changes

text
elements

with
lscp

if
else

1
2

foo N

Mapping

Numerical feature
vectors

…

Preprocessing

Figure 5.1: An overview of proposed defect prediction W-CNN.
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(2) Defect Prediction by CNN: We use the numerical feature vectors to train the

CNN and identify defective commits with the CNN.

5.2.1 Preprocessing

Creating source code changes

We extracted the source code changes from source files* only. This is because

changes in non-source files (e.g., document files) may not induce any defects.

As we described above, the source code changes include added source code

and source code that surrounds added/deleted source code (context lines). The

reason why we include the context lines is that we hypothesize that the context

lines can make source code changes more informative to be processed by a text

classification model. The number of context lines is three in this chapter. We

discussed this parameter in Section 5.5.1. Then, we excluded comment lines.

Finally, we grouped all the changes for each file and added its file name at the top

of the group of the changes. We call them source code changes. Figure 5.2 shows an

example of source code changes from two commits in the Camel project. The red

lines indicate file names; the other lines indicate changes.

Split source code changes into text elements with lscp

We have to convert input texts to words for applying the CNN [78]. Hence, we

need to split source code changes into text elements (i.e., tokens). To do this,

we used lscp that was proposed by Thomas [163]. lscp splits source code with

heuristics and does not use any parsers. Hence, we can apply lscp to a part of

source code such as our source code changes. lscp needs some parameters to split

texts. We described our parameter setting as follows:

• The target data is source code

*Here, a source file indicates a file with an extension of java, c, h, cpp, hpp, cxx, and hxx. We

studied C++ and Java only.
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[Commit: d80f93cca26f82126f408179fdc8c3c6c1ccbc7f
Source Code Change]
components/camel-kafka/src/main/java/org/apache/camel/component/kafka/ 
KafkaConfiguration.java } public String getSaslMechanism() { return 
saslMechanism; } public void setSaslMechanism(String saslMechanism)
{ this.saslMechanism = saslMechanism; } public String getSecurityProtocol() 
{ return securityProtocol; }

[Commit: 2645cc184f549da4c2ce398a8ea9704927524b2e
A Part of Source Code Change]
components/camel-kafka/src/main/java/org/apache/camel/component/kafka/ 
KafkaConfiguration.java private Integer reconnectBackoffMs = 50; 
@UriParam(label = "common", defaultValue = 
SaslConfigs.DEFAULT_SASL_MECHANISM) private String saslMechanism 
= SaslConfigs.DEFAULT_SASL_MECHANISM; @UriParam(label = 
"common", defaultValue = SaslConfigs.DEFAULT_KERBEROS_KINIT_CMD) 
private String kerberosInitCmd = 
SaslConfigs.DEFAULT_KERBEROS_KINIT_CMD; @UriParam(label = 
"common", defaultValue = "60000") private Integer 
kerberosBeforeReloginMinTime = 60000; @UriParam(label = "common", 
defaultValue = "0.05") private Double kerberosRenewJitter = 
SaslConfigs.DEFAULT_KERBEROS_TICKET_RENEW_JITTER;

Figure 5.2: An example of source code changes in the Camel project.

• Extract identifiers

• Remove comments

• Remove numerical values

• Make all source code lower case

• Do not apply a stemming analysis

• Split identifiers if such identifiers are compound words such as camel case

• Remove punctuations

• Remove small tokens that consist of only one character
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Table 5.1: Statistical values of the number of tokens in the source code changes of

a commit for each project.

Project 25th percentile 50th percentile 75th percentile 90th percentile Max

Hadoop 149.25 461.00 1,287.75 3,145.10 224,389.00

Camel 112.00 281.00 678.00 1,454.00 42,806.00

Gerrit 84.00 216.00 604.25 1,406.00 53,302.00

Osmand 70.00 183.00 607.00 1,716.20 324,540.00

CMake 34.00 79.00 224.00 586.00 236,896.00

Bitcoin 50.00 128.00 334.00 851.10 102,844.00

Gimp 64.00 200.00 647.25 1,939.00 1,954,189.00

• Do not remove stop words

• Do not remove programming language keywords

CNNs have the restriction that all input data must be equal. Because our input

data are tokens of source code changes for each commit, we need to make the

number of tokens a fixed size for all commits. In our experiment, we fixed the

number of tokens to 4,000. If the number of tokens is below 4,000, we pad it with

zeros. Otherwise, we removed all tokens beyond the first 4,000 tokens.

Padding zeros is a common process while removing tokens is not. In our target

data, the number of tokens is very skewed. If we used the maximum number of

tokens, our input data would include many zeros and make the processing cost

gigantic. Our preliminary analysis showed that the 90 percentile of the number

of tokens in a commit is less than 4,000 for all the projects (Table 5.1). Hence, this

number can cover at least 90% commits for all projects.

Mapping and vectorization

Because CNNs can process numerical input data only, we need to map all tokens

on numerical values. We sorted all tokens in descending order in terms of the

appearances. Then we map tokens on numerical values from one. We call the
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association between numerical values and tokens a mapping table. A mapping

table was built for each training data. Note that a token that does not appear

in the mapping table is assigned to zero. Hence, a commit was converted into a

one-dimensional numerical feature vector.

5.2.2 Defect prediction by CNN

We apply the CNN of W-CNN to the numerical feature vectors that were retrieved

from the preprocessing phase. The CNN conducts (1) extracting features from the

numerical feature vectors, and (2) identifying defective commits. Our three-layer

CNN in W-CNN extracts features and identifies defective commits as follows:

The first layer is an embedding layer that learns an embedded representation

of the tokens based on the numerical feature vectors. An embedded representa-

tion refers to a numerical vector that represents a token/word [104, 127]. Kim’s

CNN used word2vec [104] instead of an embedding layer to gain embedded rep-

resentations. However, word2vec needs numerous data to train its model. Kim

used a text corpus based on Google News that contains 100 billion words. In

contrast, our target data is source code, not natural language; and therefore, using

word2vec with the same corpus does not work well on our data. In addition, it is

difficult to prepare the training data that contains 100 billion tokens from source

code instead of words from natural language. Therefore, we used an embedding

layer to make an embedded representation for each token. Because the embed-

ding layer is a part of CNN, we can train the embedding layer as a part of CNN.

This layer prepared a lookup table that converts a token into a 128-dimensional

numerical vector. This 128 is the embedding size of the embedding layer.

The second layer is a convolution/max-pooling layer. The convolution layer

trains filters to extract more informative features from the embedded represen-

tations called feature maps. W-CNN used filters that can learn some numerical

feature vectors (some tokens) at once to consider n-grams [17]. Hence, we pre-

pared three variants of filters that have a width of 128 and heights of 3, 4, and, 5
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(three n-grams). The number of each of the variants of filters is 100. The number

of outputs of the convolutional layer is 300 (100 filters with 3 variants) feature

maps.

The max-pooling layer selects the important features from the extracted feature

maps. We used max-pooling that selects the maximum values as important

features for each feature map. Hence, the max-pooling provided 300 features as

nodes.

The third-layer is a fully-connected layer between 300 features (nodes) and 2

outputs that correspond to the probabilities of defective and clean commits. We

used the softmax function [121] to calculate the probabilities.

5.2.3 Hyper-parameters of CNN

We chose the same hyper-parameters as Kim’s CNN. However, we modified

some of them to improve defect prediction performance and the cost of training

the CNN. We used adaptive moment estimation (Adam) [79] as a gradient descent

optimization algorithm. This is because Adam makes the convergence faster

than the probabilistic gradient descent. We applied a simple regularization called

l2-norm to reduce the cost of implementation. The mini-batch size is 50.

5.2.4 The difference with the previous defect prediction model

In 2018, this was the first study to apply a deep learning model to the source code

changes in just-in-time defect prediction (W-CNN). However, Yang et al. [176]

have already applied a deep learning model to the change features of commits

in just-in-time defect prediction (Deeper). Hence, we clarify the key differences

between our W-CNN and Deeper.

• Deep Learning Model: W-CNN uses a CNN while Deeper uses a DBN.

• Classification: W-CNN uses a CNN to identify defective commits while

Deeper uses a logistic regression model with features that were generated
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by a DBN.

• Input Data: W-CNN uses the source code changes while Deeper uses the

change features.

5.3 Experimental design

Our experiment compared W-CNN and Deeper [176]. Figure 5.3 shows an

overview of our experimental design. The main steps of our experiment are

as follows:

1. Extract commits from the studied repositories and identify defective com-

mits by Commit Guru [141].

2. Extract the source code changes and the change features from all the commits

for W-CNN and Deeper respectively.

3. Apply a resampling approach to the commits of the training data.

4. Evaluate W-CNN and Deeper in terms of the defect prediction performance

using 10-times 10-fold cross-validation.

We described the details of the experimental design in the following of this section.

5.3.1 Preparing studied data by Commit Guru

Similar to Chapter 4, we used Commit Guru to compute the change features and

identify defective commits. We used the change features as the input data for

Deeper and the identified defective commits as the correct labels for each commit.

5.3.2 Studied software projects

In this chapter, we used seven open source projects that consist of enough commits

to apply the defect prediction model. Table 5.2 summarizes the details of the
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Figure 5.3: An overview of our experimental design.
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Table 5.2: Subject Projects.

Project Language The Total Number Defective Rate

of Commits

Hadoop Java 13,920 24.8%

Camel Java 24,740 23.2%

Gerrit Java 18,794 20.1%

Osmand Java 31,366 14.0%

CMake C++ 28,400 10.1%

Bitcoin C++ 11,093 14.4%

Gimp C++ 37,116 22.5%

studied projects. Note that we did not use the same projects that were used to

evaluate Deeper in the prior study [176]. This is because Commit Guru can be

applied to Git repositories; however, the studied projects in the prior study are

not managed by Git.

5.3.3 Deeper

Deeper [176] uses a DBN to extract more informative features from the original

change features. The features were used to build a logistic regression model that

identifies defective commits. Yang et al. [176] did not provide the implemen-

tation of Deeper, and therefore, we used our implementation of Deeper. The

configuration of Deeper is as follows:

• It has three hidden layers.

• The input layer has 14 nodes; the output layers has 2 nodes; the number of

nodes for the three hidden layers are 20, 12, and 12.

• The mini-batch size is 100. Hence the network was trained by 100 data on

each mini-batch data.
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In addition, we normalized all the change features to a range between 0 and 1 as

follows:

X0−1 =
Xorg − Xmin

Xmax − Xmin
(5.1)

where Xorg is a vector of all values of a feature. Xmin is the least value and Xmax is

the maximum value of the given feature.

Finally, we need to decide the number of learning iterations since Yang et al.

did not provide that. We plotted the values of the test loss and decided on 50 as

the learning iterations.

5.3.4 Resampling

As we described in Chapter 4, the imbalanced data may affect the prediction

performance [155]. In this experiment, Table 5.2 shows that the defective rates are

around 10–20%. Hence we applied a resampling approach. In this chapter, we

used the random under-sampling that we used in Chapter 4 as well.

5.3.5 10-times 10-fold cross validation

In our experiments, we split the commits at random into a training and a test data.

To reduce a bias of this random data selection, we used 10-fold cross-validation 10

times on all data. This follows the existing practice in previous defect prediction

approaches [160, 176]. As we described in the Section 4.4.3, using 10-fold cross

validation may use future commits to predict past commits. However, we use

neither the time sensitive change classification nor the online change classification

(Section 4.4.3 and Section 4.4.4). This is because one of the aims of this chapter

is to investigate if a deep learning model can learn the features of the source

code changes of defective commits. If we used either the time sensitive change

classification or the online change classification, mislabelled commits would exist

in the training data so that it would be biased to investigate the ability to learn

the features of source code changes.
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5.3.6 Evaluation measures

To measure the prediction efficacy, we used the area under the receiver operation

characteristic curve (AUC) similar to the previous chapters.

5.4 Results

5.4.1 RQ1: Can W-CNN be trained by source code changes?

Motivation: By 2018, researchers have not applied a deep learning model to the

source code changes. Hence, we first need to figure out whether W-CNN is able

to identify defective commits or not.

To address this RQ, we tuned the number of training iterations.† Usually, the

larger number of iterations, the tighter W-CNN fits to the training data. However,

a poorly chosen number of iterations causes overfitting or underfitting [107].

Overfitting occurs if the model is too specific for training data, and therefore, the

performance for test data is decreased. Underfitting occurs if the model is not

adapted well enough.

Approach: To do this, we plotted training loss and test loss. Training loss is

a value computed by the loss function on training data. Test loss is a value

computed by the loss function on test data. In the experiment, we used the cross-

entropy as the loss function [121]. We plotted both training loss and test loss by

the epoch, with up to 50 epochs, and investigated the training loss and the test

loss. If the number of epochs increases but the test loss is either equivalent or

increases, we determined that the model is overfitting.

In addition, we computed the average AUC values across the studied projects

by five epochs. The AUC value for each project is the average within the project

on 10 times 10-fold cross-validation.

Results: The training loss and the test loss continuously decreased up to

†In our experiment, the number of training iterations is counted by the epoch.
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Figure 5.4: The training loss and the test loss for each project. The blue lines refer

to the training loss; the red lines refer to the test loss. The x-axis indicates the

number of epochs.
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Table 5.3: Average AUC values across the studied projects by five epochs.

# epochs 5 10 15 20 25 30 35 40 45 50

AUC 0.788 0.796 0.802 0.807 0.810 0.812 0.813 0.814 0.815 0.815

about 50 epochs. Figure 5.4 shows the training loss and the test loss for each

project. We observed that the training loss and the test loss decreased up to about

50 epochs. Hence, W-CNN can be trained by the source code changes. The test

loss decreased rapidly until about epoch 5 (Hadoop, Camel, Osmand, Gimp) to

10 (Gerrit, CMake, Bitcoin). After these epochs, the test loss decreased slightly.

On the other hand, the training loss continuously decreased after these epochs.

Hence, W-CNN can be trained well after 5–10 epochs; after that, overfitting may

occur.

AUC increased while increasing the epoch until about 50. W-CNN resulted

in an average AUC value of 0.815 in the end. Table 5.3 shows the average AUC

values across the studied projects by five epochs. While increasing the epoch, the

AUC value also increased. On the epoch 50, the AUC value resulted in 0.815.

However, the differences between AUC values are small for a large number of

epochs. Indeed, the difference between epoch 45 and 50 is almost zero. Hence,

we determined 50 epochs to be optimal for training W-CNN.

5.4.2 RQ2: Does W-CNN improve defect prediction performance

compared to a previous deep learning defect prediction

model?

Motivation: In this RQ, we compared the prediction performance between W-

CNN and Deeper to clarify whether a deep learning model with the source code

changes improves the prediction performance or not.

Approach: We compared W-CNN and Deeper in terms of AUC. We computed

the average of AUC on 10 times 10-fold cross-validation for each project.
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Table 5.4: Average AUC values for each project by W-CNN and Deeper.

Project W-CNN Deeper

Bitcoin 0.810 0.666

Camel 0.796 0.642

CMake 0.819 0.656

Gerrit 0.830 0.724

Gimp 0.828 0.645

Hadoop 0.800 0.660

Osmand 0.823 0.696

Results: W-CNN achieved better prediction performance compared to Deeper

for all the projects. Table 5.4 shows the average AUC values on 10 times 10-fold

cross-validation for each project. Therefore, we concluded that a deep learning

model with the source code changes can improve the prediction performance

compared to a deep learning model with the change features.

5.4.3 RQ3: How long do we need to train and use W-CNN?

Motivation: Compared to other machine learning models such as logistic regres-

sion, deep learning models need a longer training time. The training time depends

on the size of its architecture. To evaluate the efficiency of W-CNN, we investi-

gated the time cost to train and use W-CNN.

Approach: The training time is the time to train the model. For W-CNN and

Deeper, the training time was measured by the time from the beginning to the

end of the training for one fold on cross-validation. For example, W-CNN was

trained for 50 epochs in one fold training. Hence, the training time is the time to

run 50 epochs. We defined the test time as the time to identify a commit that is

averaged across all commits in the test data. The training time and the test time

were measured on 10 times 10-fold cross-validation and considered the average
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Table 5.5: The training and test times in seconds.

Project W-CNN Deeper

Bitcoin 571.604 (0.001) 12.446 (0.001)

Camel 1880.006 (0.001) 45.199 (0.001)

CMake 1016.564 (0.001) 23.269 (0.001)

Gerrit 1262.085 (0.001) 27.908 (0.001)

Gimp 2728.318 (0.001) 63.976 (0.001)

Hadoop 1114.774 (0.001) 26.499 (0.001)

Osmand 1423.162 (0.001) 34.149 (0.001)

value of the cross-validation. We ran the experiment on an Intel Xeon CPU E5-

1620 v3 @ 3.50 GHz, NVIDIA GeForce GTX TITAN X (3584 cuda cores, 12 GB of

RAM).

Results: W-CNN required longer training times, however, the test times were

as short as with Deeper. Table 5.5 shows the training times and the test times

of W-CNN and Deeper. The left values indicate the training times; the right

values, surrounded by parentheses, are the test times. We observed that W-CNN

required longer training times. However, the longest training time we observed

was approximately 2,728 seconds (45 minutes). In addition, the test times were

as short as Deeper. Hence, the time cost of W-CNN is acceptable for a practical

defect prediction.

5.5 Threats to validity

5.5.1 Construct validity

We decided the number of context lines to define the source code changes in

W-CNN. In our study, we used three lines, which is the default context of the

git show command. Considering a different number of context lines may further
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improve the efficacy depending on projects. As future work, we will investigate

the optimal number of context lines.

In the experiment, we used AUC as our evaluation measure. As we described

in Section 3.6, we will investigate other performance measures.

We used the cross-validation to eliminates bias from a fixed selection of training

and test data. However, the cross-validation may use future commits to predict

past commits. One of the aims of this chapter is to investigate if a deep learning

model can learn the features of the source code changes of defective commits.

Hence, the cross-validation is acceptable in this chapter. However, future studies

are necessary to investigate the performance of W-CNN on the online change

classification (Section 4.4.4) to apply W-CNN to a practical scenario.

5.5.2 External validity

In this experiment, we used seven large open source projects as our data. The

subject projects are in C++ and Java and cover various domains, such as servers,

web applications, etc. However, our selection does not cover every type of soft-

ware, and therefore our results may not be generalizable across domains. We

need additional projects and commercial projects to improve robustness.

5.5.3 Internal validity

Our experiments used Commit Guru for labeling defects in commits. As we

described in Section 4.8, the repeatability and openness of Commit Guru is high.

5.6 Chapter summary

In this chapter, we proposed a new defect prediction approach, W-CNN, which is

based on a convolutional neural network that was proposed by Kim [78]. To the

best of our knowledge, by 2018, this was the first study that applied a deep learning

model to the source code changes in just-in-time defect prediction. The results of
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our experiments that compared W-CNN and the previous deep learning defect

prediction approach, Deeper [176], on seven large open source software projects

showed the following:

• W-CNN can predict defective commits effectively, and provided better pre-

diction performance on AUC compared to Deeper.

• While W-CNN took longer training times than Deeper, its test times were

very short.





Chapter 6

Conclusion and FutureWork

6.1 Summary of this thesis

6.2 Future work

6.1 Summary of this thesis

Feature engineering is pivotal in software defect prediction. In particular, keeping

the number of features small by using feature reduction and selection techniques

and proposing new features based on domain knowledge have been frequently

studied so far. However, three remaining challenges exist: (1) a large-scale com-

parison of feature reduction techniques, (2) using the context lines of source code

as features in just-in-time defect prediction, and (3) using semantic properties as

features by a deep learning model in just-in-time defect prediction.

In this thesis, we investigated these remaining challenges by empirical studies.

We summarized the main findings and implications of this thesis as follows:

159
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6.1.1 A large-scale comparison of feature reduction techniques

(Chapter 3)

Finding 1: Neural network-based feature reduction techniques (i.e., RBM and

AE) significantly improved the performance of unsupervised defect prediction

models compared to the other feature reduction/selection techniques.

Implication: If practitioners need a defect prediction model, but, their projects

do not have enough data to train a supervised defect prediction model (e.g., the

beginning of the project), we recommend using an unsupervised defect prediction

model with a neural network-based feature reduction technique.

Finding 2: The best-performing feature selection techniques in the prior studies

(i.e., CFS and ConFS) outperformed the feature reduction techniques except FA

on supervised defect prediction models. While FA has a similar performance,

CFS and ConFS have a smaller performance variance.

Implication: If practitioners have enough data to train a supervised defect pre-

diction model (e.g., the middle or end of the project), we recommend using a

supervised defect prediction model with a feature selection technique.

6.1.2 Using the context lines of source code as features (Chapter 4)

Finding 3: Our proposed combination features that consist of two extended

context features significantly outperformed all studied features and achieved the

best-performing features in all the studied projects in two of three evaluation

measures.

Implication: Future studies should consider not only the changed lines but also

the context lines in defect prediction.

Finding 4: “goto” statement in the context lines and the changed lines is the best

keyword to detect defective commits.

Implication: Considering the semantic properties may improve the accuracy to
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identify defective commits. Hence, we recommend considering semantic proper-

ties when proposing new features.

6.1.3 Using semantic properties as features by a deep learning

model in just-in-time defect prediction (Chapter 5)

Finding 5: Our proposed W-CNN that is based on an existing lightweight CNN

with the source code changes can predict defective commits in just-in-time defect

prediction. In addition, W-CNN outperformed a deep learning model with the

change features, Deeper.

Implication: Hence, we concluded that a deep learning model with semantic

properties can identify defective commits accurately.

Finding 6: While W-CNN needed longer training time than Deeper, its test time

was very short. In addition, the training time was also not too long.

Implication: Hence, the time cost of W-CNN is acceptable in a practical scenario.

Especially, the prediction time is not different with traditional defect prediction

models.

6.2 Future work

From our findings, we outline future research directions.

6.2.1 Investigating semantic properties and deep learning mod-

els more deeply to improve the interpretability of defect

prediction models

We found that the semantic properties (i.e., the context lines and the source code

changes) and a deep learning model (CNN) contribute to the defect prediction

performance in Chapter 4 and Chapter 5. While we found that “goto” statement
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may improve the prediction performance, it is still difficult to explain how our

prediction models identify defective commits and justify our prediction models.

Lack of interpretability is a severe challenge to apply such models to practical

situations and make decisions in software development. Hence, future studies

are necessary to investigate semantic properties and deep learning models to

improve the interpretability of such prediction models.

6.2.2 Comparing W-CNN with other text classification models in

practical scenarios

In Chapter 5, we proposed W-CNN and compared W-CNN with Deeper. From

the results, we found that a deep learning model with the source code changes

improves the defect prediction performance. However, this comparison is small,

and therefore, we need to extend the comparison to comparing W-CNN with

other text classification models as well. In addition, we used cross-validation to

evaluate W-CNN. To apply W-CNN to practical situations, we need to evaluate

W-CNN in practical scenarios as well. Hence, future studies are necessary to

compare W-CNN with other text classification models in practical scenarios.

6.2.3 Evaluating our approaches in industrial development

In this thesis, we conducted some experiments. However, the studied data of our

experiments are restricted to open source projects. Our ultimate goal is to support

not only open source development but also industrial development. Hence, future

studies are necessary to evaluate our approaches in industrial development.
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