
ある企業におけるソフトウェアプロセス改善の
効果に対する統計的分析

水野 修y，二木 俊樹z，新原 直樹z，高木 徳生z，菊野 亨y

y大阪大学 大学院基礎工学研究科 情報数理系専攻
〒 560-8531 大阪府豊中市待兼山町1-3

Phone: 06-850-6567 Fax: 06-850-6569

e-mail: o-mizuno@ics.es.osaka-u.ac.jp

zオムロン株式会社

あらまし: 本研究ではある企業におけるレビュープロセス改善活動の効果について統計的分析を行う．この企業
では 1995年よりソフトウェアプロセスグループ (SEPG)を中心にこの改善活動が進められてきており，分析に当
たっては 23件のプロジェクトから収集されたデータを用いる．まず，各プロジェクトにおいてレビュー作業工数
の全体工数に対する比率に注目して，開発組織が SEPGからのプロセス改善の指示をどの程度忠実に実施できた
かを分析する．次に，レビュープロセス改善の品質への影響について調べる．その結果，プロセス改善を忠実に
実施できた組織とそうでない組織の間ではレビュー作業で検出するフォールト数に有意水準5%の検定で差がある
ことが示された．更に，出荷後のいわゆるフィールド品質についても相当の改善が見られることが確認できた．
キーワード : ソフトウェアプロセス，レビュープロセス改善，ソフトウェア品質，統計的分析

E�ectiveness Analysis of Review Process Improvement for Embedded
Software System Development at Certain Company

Osamu Mizunoy, Toshiki Nikiz, Naoki Niiharaz, Yasunari Takagizand Tohru Kikunoy

yDepartment of Informatics and Mathematical Sciences,

Graduate School of Engineering Science, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-850-6567 Fax: +81-6-850-6569

e-mail : o-mizuno@ics.es.osaka-u.ac.jp

zOMRON Corporation

Abstract: In this paper, we analyze the e�ectiveness of actual review process improvement activities conduct-

ed by the software engineering process group(SEPG) in a certain company that develops embedded software

systems.

The analysis consists of two steps: investigating the ratio of the e�orts for review on the total e�orts for

design and coding(Step 1), and clarifying the e�ects caused by the review process improvement(Step 2). The

Step 1 classi�es projects into two categories: faithful and unfaithful projects, where � 15% holds for faithful

projects. Then Step 2 proves statistically that the number of faults detected during the review process in faithful

projects is signi�cantly greater than that of unfaithful projects. Additionally, it also shows that the number of

serious failures in faithful projects is slightly smaller compared with unfaithful projects.

Keywords: software process, review process improvement, quality of product, statistical analysis

1 Introduction

In order to achieve high quality and productivity of
the software development, a lot of general knowledge
or experiences such as “no silver bullet[3]” and “death
march project[18]” have been presented. The process
improvement[7] is well known as one of the most at-
tractive and practical methodologies. Concerning the pro-
cess improvement, theoretical investigations on the formal
framework[4, 15] as well as applications to actual organi-
zations [8, 17] have been performed. Especially, the pro-
cess improvement of software review has been considered
as a cost-effective way to improve quality of software[5].
Actually, several quantitative evaluations of software re-
view process have proved its validity using simulation
results[2, 9].

In this paper, we analyze the effectiveness of review pro-
cess improvement activities during six years in a certain
company that develops embedded software systems. In
the company, software engineering process group(SEPG)
was established in 1992, then the activities for construct-
ing well-formed project plans were introduced in 1993,
and finally the activities for improving review process
have been conducted since 1995. Concerning the case
studies of software process improvement using general-
ized stochastic Petri-net model and the statistical analysis
of the relationship between the well-formed project plan
and the final product quality, we have already summarized
some reports[11, 16, 17]. But the discussions on review
process improvement are not yet done, and so we try to
analyze empirically the effectiveness of review process
improvement using actual twenty three project data from
1992 to 1996. In this study, we assume review includes
both the document review in the design activity and the
code review in the coding activity.

The objective of this study is to investigate carefully the
long-term changes in the software development process
which are introduced by the review process improvement
in the company. In this paper, we try to investigate the
following two changes on the projects: changes in review
effort and changes in software quality. At first, we trace
direct effects on the development process caused by the
review process improvement, such as the change of review
efforts actually spent for each project, and checks if the
process improvement is truly incorporate into the actual
development. Next, we trace indirect effects caused by
the review process improvement, such as the changes in
the number of faults detected in the review and test phases,
and verify if the quality of software products is essentially
improved.

The rest of the paper is organized as follows: In Sec-
tion 2, we present target projects and process model. In
Section 3 we explain the process improvement performed
from 1992 to 1998 at a certain company. In Section 4, we
show the outline of collected data and clarify the objective
of our study by presenting three assertions. In Section 5,
we show the result of evaluations with respect to review
effort and software quality. Finally, we conclude this pa-

per with a brief summary and some future research works
in Section 6.

2 Development at Certain Company

2.1 Target projects

In order to derive as general results as possible, we select
23 projects such that development effort of each project
is larger than 15 person-months. These selected projects
are classified into three kinds of categories based on their
products: Vending System, Checking System, and Retail
System as follows:

Vending System: The developments of user-friendly
vending machines, that accept cash or prepaid card-
s, for the railroad system. All of the selected five
projects began in the period from 1992 to 1994. Typ-
ically, it takes from 15.3 to 37.2 person-months for
developing the vending machine with 9.4 to 38.8 K-
step.

Checking System: The developments of checking ma-
chines for the fare in the train stations and airports.
All of the selected twelve projects began in the period
from 1992 to 1996. Typically, it takes 16.3 to 62.3
person-months for developing the checking machine
with 7.2 to 123.1 Kstep.

Retail System: The developments of retail systems al-
lowing consumers to use credit and prepaid cards.
All of the projects began in the period from 1995 to
1996. Typically, it takes 15.0 to 29.2 person-months
for developing retail system with 3.5 to 20.5 Kstep.

The one important point for later analysis is that the
Vending System and Checking System are developed by
the same organization in the company. On the other hand,
the Retail System is developed by another organization.

Figure 1 summarizes the categories of 23 projects and
period of their developments. Please note that activities
of the SEPG for improving review process have been con-
ducted since 1995, to be described in Section 3.

'97'92 '93 '96'95'94 '98

Retail System
(6 projects)

Checking System
(12 projects)

Vending System
(5 projects)

Figure 1: Target projects

2.2 Process model

Figure 2 shows the software development process model
adopted in the company. The process model shown in

Unit Test

& Debug

(UT & UDB)

Integration Test

& Debug

(IT & IDB)

Function Test

& Debug

(FT & FDB)

Verification Test

& Debug

(VT & VDB)

Concept Design

& its Review

(CD & CDR)

Function Design

& its Review

(FD & FDR)

Module Design

& its Review

(MD & MDR)

Structure Design

& its Review

(SD & SDR)

Design PhaseDesign Phase Debug & Test PhaseDebug & Test Phase

Coding

& its Review

(PG& PGR)

Acceptance Test

(AT)

Figure 2: Process model

Figure 2 is a standard waterfall model. Strictly speaking,
some irregular control flows (such as backwards flow to
previous activity or concurrent executions between previ-
ous and current activities) do rarely happen. But these are
not explicitly described in Figure 2.

In our discussion, we classify the development process
into two successive phases: design phase and debug &
test phase, as shown in Figure 2. One important charac-
teristic of the design phase is that the review activity is
introduced after each design activity and coding activity.
The design phase is divided into five stages: Concept De-
sign, Function Design, Structure Design, Module Design,
Coding and their corresponding Reviews. On the other
hand, the debug & test phase consists of the repetition of
a pair of test and debug activities and is divided into four
stages: Unit Test, Integration Test, Function Test, Verifi-
cation Test and their corresponding Debugs. At the end of
the debug & test phase, there is Acceptance Test, where
final test before code release is performed.

3 Process Improvement

3.1 Overview

In the certain company to be investigated in this paper,
the software engineering process group(SEPG) was es-
tablished in 1992. Since then the SEPG conducted two
main process improvement activities as follows: establish-
ment and introduction of the standards for managing the
software process, and improvement of the review process
using the software metrics toward high quality. Figure 3
shows a brief summary of the process improvement activ-
ities at the company.

At first, the SEPG tried to establish several standards for
managing software project, and to put it into practice from
1993. The main purposes of the standards include guid-
ing developers in each project to create the well-formed
plan and managers to conduct the project successfully ac-
cording to the well-formed plan. It is believed (without

'97'92 '93 '96'95'94 '98

SEPG was esablished in 1992.

Activities for constructing project plan
started in 1993.

Activities for improving
review process have been
conducted since 1995.

Figure 3: Process improvement activities

any proof) in the company that the well-formed plan will
derive the accurate estimation for the project cost. Further-
more, it is also believed that the accurate cost estimation
will lead the project to the high quality of the product and
high productivity of development team. We have already
applied the statistical analysis to this improvement activ-
ity and shown the correctness of these facts by the test of
statistical hypothesis with level of significance 5% in [11].

Next, the SEPG has extensively engaged in the im-
provement of review process. Generally, the cost of re-
moving faults in the later development phases, such as
debug or test phase becomes higher than that in the earlier
phase such as design review or coding review phase. So
it is strongly recommended to remove faults in the earlier
phase. Concerning this fact, it is believed that the number
of faults detected in the review activity become greater by
increasing the amount of review activity. Based on the
similar experience and knowledge as mentioned above,
the SEPG started the improvement of review process in
1995. The key point of the improvement is implement-
ing effective review process by increasing the amount of
efforts for review(especially, code review) and by intro-
ducing good guidelines. We will discuss only the second
review process improvement in this paper.

3.2 Review process improvement

As mentioned before, reviews include the document re-
view in the design activity and the code review in the
coding activity. Generally, it is difficult to derive con-
crete guideline or numerical target value for the document
review[5, 7]. On the other hands, it is relatively easy to
derive them for the code review. The situation is also true
for the SEPG’s activities, as shown in the past analysis
result of the review’s effect[16].

Based on the analysis result of the past project data, the
SEPG has derived the following guidelinesG1–G6 for
the review activities:

G1 At least the 15% of the total efforts for design and
coding activities should be assigned to reviews(the
document review and the coding review).

G2 Reviewers must report the progress using the stan-
dard review form at regular intervals.

G3 In the design review, the documents should be dis-
tributed to all the experts in the company, and
then review results should be returned to develop-
ers via manager(This design review is called peer
review[13]).

G4 The coding review should be performed by two or
three persons, including one person who develops
the code.

G5 The review coverage rate for the code review should
be about 200 lines of code per hour.

G6 All of new codes and changed codes should be re-
viewed. (Concerning reuse of old codes, reviews are
not necessary required.)

Among them,G1 andG2 are general requirements for
reviews(including both the document review and the code
review),G3 is specific for the design review, andG4,G5
andG6 are only for the code review.

Before the review improvement began, the same activi-
ties as the guidelineG2,G3 andG4 were required to be
performed in the review. However, since the guidelines
were not yet established, the review was not work effec-
tively in the practical developments. Actually the average
review effort was less than 10% of the total design efforts.
This value 10% is not sufficient from the experience in the
company.

Then, the SEPG started the improvement of review pro-
cess in 1995 according to these guidelines. Intuitively
speaking, recently these guidelines are truly followed in
the company and no serious failure reports reach to the
SEPG. However any formal or statistical discussions on
the efforts by the review process improvement are not yet
done. So, we try to analyze empirically its effectiveness
using actual 23 project data.

4 Objective of Our Study

4.1 Software metrics

Here, we explain software metrics:, � and � to be
measured in each project. Figure 4 shows a simplified
process model and a part of fundamental data set collected
at each phase of development.

From the design phase, the SEPG collects data of
six fundamental metrics:Edesign, Ereview, Ecoding,
Ec:review for the efforts spent andFreview, Fc:review for
the number of detected faults. The metricsEdesign and
Ereview represent the total efforts spent for all activities
in design phase and all review activities in design phase,
respectively. Similarly, the metricsEcoding andEc:review

represent the effort spent for coding and coding review,
respectively. Next the metricFreview represents the total
number of faults detected by all review activities in design
phase, and the metricFc:review represents the number of
faults detected by coding review activity.

From the debug & test phase, the SEPG collects data
of two fundamental metrics:Etest andFtest. The metric
Etest represents the total efforts spent for all activities in
the debug & test phase. Next, the metricFtest represents
the total number of faults detected in the debug & test
phase.

During six months after the code shipping, the SEPG
provides the monitoring phase and collects all data con-
cerning the failure detected by customers, as shown in
Figure 4. We call these failures post-released failures,
and use the metricFmonitor to represent the number of
post-released failures.

Using these data collected from the projects, we define
three kinds of software metrics, � and� to analyze and
evaluate the software development process.

(1) Ratio of review effort (’s: %)

In order to evaluate the amount of efforts, we define
two metrics as follows:

review=design =
Ereview

Edesign + Ereview
� 100

c:review=coding =
Ec:review

Ecoding +Ec:review
� 100

The metricreview=design evaluates the ratio of al-
l review effort to design and coding efforts, and
c:review=coding evaluates the ratio of code review
effort to coding effort.

(2) Ratio of detected faults (�’s: %)

In order to evaluate the ratio of detected faults in a
specific phase to all the faults detected, we define
three metrics as follows:

�review=total =
Freview

Freview + Ftest + Fmonitor
� 100

Debug & Test Phase Monitoring Phase

- Efforts needed for
 debug & test phase

- No. of faults detected
 by debug & test

- No. of faults detected
 after shipping

- Seriousness
 of failures detected

Design Phase

- Efforts needed
 for design phase

- No. of faults detected
 by review

Figure 4: Fundamental data set

�c:review=total =
Fc:review

Freview + Ftest + Fmonitor
�100

�test=total =
Ftest

Freview + Ftest + Fmonitor
� 100

The metric�review=total evaluates the ratio of fault-
s detected in the review to all faults detected, and
�c:review=total evaluates the ratio of faults detected
in the code review to all faults detected. Finally,
�test=total evaluate the ratio of faults detected in the
debug & test phase to all faults detected.

(3) Seriousness of the failure (� : level)

For each post-release failure, the maintenance op-
erator and the SEPG jointly decide the seriousness
�. The values of seriousness� is classified as fol-
lows: destructive, confusingand mild. The level
� =destructivedenotes that the failure can lead to
the system down. Thus the failure must be removed
immediately. Then the level� =confusingdenotes
that only a part of system may be down by the failure
and other part may keep working. Thus it should be
removed immediately if possible. Finally the level
� =mild denotes that the failure never affects the es-
sential part of system, and thus it may be negligible
for a while.

4.2 Assertions

The objective of our study is to investigate the effective-
ness of review process improvement conducted by the
SEPG. We try to apply statistical analysis to the data col-
lected in the actual projects to clarify the changes in the
review effort and the changes in the software quality. The
analysis consists of two step: investigating the review ef-
fort ratio (Step 1) and investigating the software quality
(Step 2).

(1) Review efforts (Step 1 of analysis)

Here we try to confirm that the review improvement
activities are accepted in the development team. In

other words, we investigate the direct changes in the
software development process. In more detail, we
analyze the changes in the amounts of the effort for
review activity. As mentioned in subsection 3.2, the
guidelineG1 requires at least 15% of the total efforts
on design and coding activities should be spent on
review. Thus, we can expect that the effort of review
activity is increased in the projects guided by the
SEPG as the direct affect by the guidelineG1. Based
on these considerations, we try to prove the following
assertionA1 by statistical analysis:

A1 The ratio of effort for review on the total efforts
for design and coding activities increases in the
projects guided by the SEPG.

Intuitively speaking, the assertionA1means that the
effort for review activity increases as the result of the
SEPG’s guidance. We call a project that satisfies the
guidelineG1 (that is, the 15% of the total efforts on
design and coding activities is assigned to the review
activity) a faithful project group. In the evaluation
of process improvement we should discuss the prop-
erties of organization rather than that of individual
projects. Then intuitively speaking, we define a set
of faithful project as a faithful project group.

(2) Software quality (Step 2 of analysis)

Here we try to evaluate the effectiveness of review
process improvement quantitatively. Thus, we inves-
tigate the changes in the number of detected faults and
the changes in the quality of the final product. They
are the indirect affect, but are the most essentially
expected affect of the review process improvement.

In Step 2 of analysis, we try to prove the following
assertionsA2 andA3 by statistical analysis:

A2 The number of faults detected by the review
increases in each project of the faithful project
group. Similarly, the number of faults detected
in the debug and test phase decreases.

A3 As the result of the review process improvemen-
t, the quality of the final code is also improved.

Table 1: Comparison of ratio of faithful projects

0 62 2
No. of faithful
projects

Vending System

(1992-1994)

5

Checking System

(1992-1994) (1995-1996)

Retail System

(1995-1996)

67 5No. of projects

Table 2: Comparison of ratio of review effort

greview/design

gc.review/coding

Vending System

(1992-1994)

Checking System

(1992-1996)

Retail System

(1995-1996)

8.9%

6.6%

11.8%

10.5%

20.6%

21.6%

Intuitively speaking, the assertionA2 means that by
increasing the ratio of review effort to the total efforts
on design and coding activities, we can change the
software process essentially. That is, we can increase
the number of faults detected in the review, and at
the same time we can reduce the number of faults
detected in the debug and test activities.

The assertionA3means that even the improving the
quality of the final product will be partly attained by
the review process improvement. In the analysis in
Section 5, we apply data on the post-release failure
that are collected during six months after shipping,
to evaluate the quality of the final product.

5 Effectiveness Analysis

5.1 Ratio of review effort

At first, concerning the assertionA1, we try to investigate
how the review improvement activities by the SEPG are
accepted by the organizations. Here in order to evaluate
the process improvement activities, we consider project
group rather than an individual project. As explained
already in subsection 2.1, there exist three project groups:
Vending System, Checking System and Retail System.

As mentioned already in subsection 3.2, the guideline
G1 recommends thatreview=design(the ratio of review
effort to effort in design phase) should be greater than
15%. According to this guideline, we define a project with
review=design � 15% to be afaithful project. Then Ta-
ble 1 shows the number of faithful projects in each project
group. In Table 1, in order to investigate Checking System
(1992-1996) in detail, we divide it into Checking System
(1992–1994) and Checking System (1995–1996) based
on the year 1995 when the SEPG started the review pro-

cess improvement. (Please note that the review process
improvement activities started in 1995, and thus Vend-
ing System is out of scope.) Next, Tables 2 and 3 show
the mean values of software metricsreview=design and
c:review=coding (the ratio of code review effort to coding
effort) for three project groups.

From Tables 1 and 2, the project group Retail System
seems to succeed to follow the guidelineG1 faithfully.
However, the project group Checking System seems to
fail to follow the guidelineG1. Thus, we execute the test
of statistical hypothesis with 5% level of significance to
review=design’s of Retail System and Checking System.
As the result, we can prove that there exists a significant
difference between them. Similarly, forc:review=coding,
we can also prove that there exists a significant difference
between that of Retail System and Checking System.

We discuss the characteristics of organizations to show
the reason why there exists a big difference between Retail
System and Checking System. The project group Check-
ing System started in 1992 and the members of the organi-
zation for Checking System had already established their
own ways for software development when the SEPG start-
ed the review process improvement. Thus it is generally
hard for them to change the process instantly according
to the guidelines specified by the SEPG group. On the
contrary, the project group Retail System started after the
SEPG had determined the guidelines. Thus the members
of the organization for Retail System tend to accept the
guideline beyond all question.

Next, from Table 3 we can see the mean values of
review=design andc:review=coding in 1995–1996 become
greater than that in 1992–1994. Thus, the review improve-
ment seems to be accepted by the organization little by
little. However, from the test of statistical hypothesis with
5% level of significance, we cannot see a significant d-
ifference forreview=design andc:review=coding between

Table 3: Comparison of review effort in Checking System

greview/design

gc.review/coding

Checking System

(1992-1994)

Checking System

(1995-1996)

11.0%

9.6%

12.9%

11.8%

1992–1994 and 1995–1996.
As already mentioned, we should discuss the properties

of organizations rather than that of individual projects.
Thus for convenience we define a set of faithful projects
as a faithful project group. According to this definition,
we refer

Retail System (1995–1996): faithful project group

Checking System (1992–1996): unfaithful project group

in the following. Clearly by this definition, Checking
System includes four faithful projects. But, it is also clear
the organization that developed Checking System failed
to follow the guidelineG1. Thus we interpret that the
organization happened to have the result � 15% for
four projects in Checking System, and take a view point
that Checking System is an unfaithful project group. For
convenience, we also refer

Vending System (1992–1994): unfaithful project group

since this project group contains only unfaithful projects.

5.2 Ratio of detected faults�

Now we investigate the effect of review process improve-
ment concerning the assertionA2. Table 4 shows the
mean values of software metrics�review=total(the ratio
of faults detected in review phase to all the faults de-
tected),�c:review=total(the ratio of faults detected in code
review to all the faults detected) and�test=total (the ratio
of faults detected in debug & test phase to all the faults
detected). In Table 4, we classify the projects into faith-
ful project group (that is, Retail System) and unfaithful
project (Vending System and Checking System).

By the test of statistical hypothesis with 5% level of sig-
nificance, all of the values�review=total, �c:review=total
and �test=total confirmed the significant difference be-
tween faithful project group and unfaithful project group.
Thus, we can say the correctness of the assertionA2 is
proved by statistical analysis.

5.3 Post-release failure

As mentioned before, for each post-release failure the
SEPG or the maintenance operator decide the seriousness
� and assign its value to the failure. Table 5 summarizes
the total number of post-release failures and the distribu-
tions of�’s assigned to post-release failures. However,

Table 4: Comparison of ratio of detected faults�

rreview/total

rc.review/total 21.7% 12.7%

Faithful

project group

Unfaithful

project group

38.8%78.4%

rtest/total 21.1% 60.7%

the values of these metrics are confidential, we cannot
publish the values themselves in this paper. Thus Table 5
shows only the relative values by assuming all the values
for unfaithful project group to be one, and the symbol�

denotes its representation.

Since the original value of these metrics are so small,
we cannot apply the statistical analysis. But from Table
5 we can observe some interesting properties. The total
number of post-release failure (Fmonitor/# of projects) of
faithful project group is smaller than that of unfaithful
project group. Especially, the number of the failures with
� =destructiveis smaller drastically. Thus we can guess
the correctness of the assertionA3.

Table 5: Comparison of post-release failures

c

Faithful

project group

Unfaithful

project group

1*0.55*Fmonitor / # of projects

destructive

mild

confusing
1*0.44*

1*0.50*

1*0*

6 Conclusion

We have analyzed the effectiveness of the review process
improvement activities by the SEPG during these six years
in a certain company. According to the guidelines deter-
mined by the SEPG, we have investigated the ratio of the
review effort to the total effort for design and coding ac-
tivities. As a result we found that a newly started project
group followed the guidelines faithfully. Similarly, we
have investigated the ratio� of faults detected in review
to the total number of detected faults. The result showed
that the ratio� is improved drastically in a faithful project
group. Finally, we have confirmed the number of post-
release failure during six months after code release is also
decreased by the SEPG’s process improvement activities.

References

[1] L.C. Briand, K.E. Emam, B. Freimut and O.
Laitenberger: “Quantitative evaluation of capture-
recapture models to control software inspections,”
Proc. 8th International Symposium on Software
Reliability Engineering, pp.234–244, 1997.

[2] L.C. Briand, K.E. Emam, O. Laitenberger and T.
Fussbroich: “Using simulation to build inspection
efficiency benchmarks for development projects,”
Proc. 20th International Conference on Software
Engineering(ICSE’98), pp.340–349, 1998.

[3] F.P. Brooks Jr.: “The Mythical Man-Month,” Ad-
dison Wesley, 1975.

[4] A. Cimitile and G. Visaggio : “A formalism for
structured planning of a software project,” Interna-
tional Journal of Software Engineering and Knowl-
edge Engineering, Vol.4, No.2, pp.277–300, 1994.

[5] R.G. Ebenau and S.H. Strauss: “Software inspec-
tion process,” McGraw-Hill, 1993.

[6] N.E. Fenton and S.L. Pfleeger: “Software Metrics
: A Rigorous & Practical Approach,” PWS Pub-
lishing, 1997.

[7] W.S. Humphrey: “Managing the Software Pro-
cess,” Addison Wesley, Reading, MA, 1989.

[8] W.S. Humphrey, T. Snyder and R. Willis: “Soft-
ware process improvement at Hughes Aircraft,”
IEEE Software, Vol.8, No.4, pp.11–23, 1991.

[9] S. Kusumoto: “Quantitative evaluation of software
reviews and testing process,” PhD. Dissertation,
Osaka University, 1993.

[10] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,
Y. Takagi and K. Sakamoto: “A new project sim-
ulator based on generalized stochastic Petri-Net,”
Proc. 19th International Conference on Software
Engineering(ICSE’97), pp.293–303, 1997.

[11] O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi and
K. Sakamoto: “Analyzing effects of cost estima-
tion accuracy on quality and productivity,” Proc.
20th International Conference on Software Engi-
neering(ICSE’98), pp.410–419, 1998.

[12] K.H. Möller and D.J. Paulish: “Software Metrics
: A Practitioner’s Guide to Improved Product De-
velopment,” IEEE Press (Chapman & Hall Com-
puting), 1993.

[13] M.C. Paulk, C.V. Weber, S.M. Garcia, M.B. Chris-
sis and M. Bush: “Key practice of the capabili-
ty maturity model, version 1.1,” Technical Report
CMU/SEI-93-TR-25, Software Engineering Insti-
tute, 1993.

[14] A.A. Porter, H.P. Siy, C.A. Toman and L.G. Votta:
“An experiment to assess the cost-benefits of code
inspections in large scale software development,”
IEEE Transactions on Software Engineering, Vol.
23, No. 6, pp.329–346, 1997

[15] R.M. Podorozhny and L.J. Osterweil: “The crit-
icality of modeling formalisms in software de-
sign method comparison,” Proc. 19th Internation-
al Conference on Software Engineering(ICSE’97),
pp.303–313, 1997.

[16] Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto, S.
Kusumoto and T. Kikuno: “Analysis of review’s
effectiveness based on software metrics,” Proc. 6th
International Symposium on Software Reliability
Engineering(ISSRE’95), pp.34–39, 1995.

[17] T. Tanaka, K. Sakamoto, S. Kusumoto and T.
Kikuno: “Improvementof softwareprocess by pro-
cess visualization and benefit estimation,” Proc.
17th International Conference on Software Engi-
neering(ICSE’95), pp.123–132, 1995.

[18] E. Yourdon: “Death March : The Complete Soft-
ware Developer’s Guide to Surviving ‘Mission Im-
possible’ Projects,” Prentice Hall Computer Books,
1997.

