
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999
1

PAPER

A New Approach to Estimate Effort to Update

Object-Oriented Programs in Incremental Development

Satoru UEHARA†,††a), Nonmember, Osamu MIZUNO††b), and Tohru KIKUNO††c), Members

SUMMARY In this paper we discuss the estimation of ef-
fort needed to update program codes according to given design
specification changes. In the Object-Oriented incremental devel-
opment(OOID), the requirement changes occur frequently and
regularly. When a requirement change occurs, a design specifica-
tion is changed accordingly. Then a program code is updated for
given design specification change. In order to construct the devel-
opment plan dynamically, a simple and fast estimation method of
efforts for code updating is strongly required by both developers
and managers. However, existing estimation methods cannot be
applied to the OOID.

We therefore try to propose a straightforward approach to
estimate effort for code updating, which reflects the specific prop-
erties of the OOID. We list up following factors of the effort es-
timation for OOID: (1) updating activities consist of creation,
deletion, and modification, (2) the target to be updated has four
kinds of types(void type, basic type, library type, and custom
type), (3) the degree of information hiding is classified into pri-
vate, protected and public, and (4) the degree of inheritance af-
fects updating efforts.

We then propose a new formula E(P, σ) to calculate the ef-
forts needed to update a program P according to a set of design
specification changes σ. The formula E(P, σ) includes weighting
parameters: Wupd, Wtype, Winf-h and Winht according to the
characteristics (1), (2), (3) and (4), respectively. Finally, we con-
duct experimental evaluations by applying the formula E(P, σ)
to actual project data in a certain company. The evaluation re-
sults statistically showed the validity of the proposed approach
to some extent.
key words: Object-Oriented development, Incremental develop-
ment process, Code updating, Effort estimation

1. Introduction

For the software development, a lot of development
paradigm has been proposed. Among them, the
Object-Oriented (shortly, OO) development has high
capability that transforms the real complex things into
software products using the concept of object. The en-
vironments for the development of software products
in the OO language such as Smalltalk, C++ and JAVA
have been provided, and various techniques for the OO
development have been proposed[3], [14]. As a result,
the OO development has been used widely in industries.

Manuscript received May 16, 2000.
Manuscript revised March 19, 2001.

†The author is with NTT Data Corporation.
††The authors are with the Graduate School of Engineer-

ing Science, Osaka University.
a) E-mail: ueharast@nttdata.co.jp
b) E-mail: o-mizuno@ics.es.osaka-u.ac.jp
c) E-mail: kikuno@ics.es.osaka-u.ac.jp

It is also said that the OO development is reason-
able and natural to be combined with the incremental
development[8]. Because the OO paradigm makes it
easy to understand the system structure and to reuse
the previous components of other systems. We call the
incremental development combined with the OO de-
velopment as the Object-Oriented incremental devel-
opment(shortly, the OOID).

In the OOID, since the requirement changes are
issued frequently from the customers, the developers
have to update or revise so often their design or pro-
gram code to prepare a new version according to the
new requirement. It is thus very important from the
management point of view to estimate the effort for
updating needed by each requirement change.

Based on the accurate estimation of successive up-
dating activity, the managers can make an adequate
re-planning of current development. So, managers have
to know how much effort are needed for their updating
activities. In this paper, we try to estimate the effort
for updating activities using the only data that can be
obtained before coding activities start.

There are many models for the effort estimation
in software development. Among them, analytic mod-
els such as COCOMO model[2] and the function point
analysis [1], and process models such as STATEMATE
system[6] are most well-known models[13]. Analytic
models consist of mathematical relationships between
selected model variables, and they support manage-
ment decision making with respect to the project plan-
ning. On the other hand, process models support pro-
cess improvement by providing operational guidance.
They are also utilized to estimate various features re-
lated to the effort, durations and the quality of final
product using a stochastic simulation.

There are, however, few or no methods which take
the property of the OO development into account. Fur-
thermore, since the existing methods need a lot of
preparation for customization of methods to each in-
dividual environment, they are difficult to be applied
to such a small incremental development that must be
done under the restrictive cost limitations.

Our objective is to develop an intuitive effort es-
timation method for program code updating, which is
easily and cheaply applicable to the real development
environment when design specification changes are de-
rived from the requirement changes. In the method,



2
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999

we propose a formula E(P, σ) for the effort estimation
where P is a certain version of program code to be up-
dated and σ is a set of design specification changes.
The E(P, σ) is calculated as the sum of scores for all
activities included in an updating.

In order to define the code updating efforts
E(P, σ), we have analyzed the activities for updating
a program. First, we clarify the following 4 viewpoints
to be considered in the effort estimation: (1) the kind
of updating activities, (2) the types of targets to be
updated, (3) the degree of information hiding and (4)
the degree of inheritance. Then, we define the formula
E(P, σ) using four weighting parameters: Wupd, Wtype,
Winf-h and Winht introduced to consider (1), (2), (3)
and (4), respectively.

Finally, we perform experimental evaluation of our
proposed method. We apply the formula E(P, σ) to two
actual project data in a certain company. The statisti-
cal analysis on the results of these experiments shows
to a certain extent the validity of our proposed method.

The rest of this paper is organized as follows: Sec-
tion 2 shows an outline of our work. The key idea of
our study is explained in Section 3. The proposed effort
estimating method is shown in Section 4, and sample
values for weighting parameters are given in Section 5.
Section 6 shows two experiments for evaluation. Fi-
nally, Section 7 concludes this paper.

2. Effort Estimation for OOID

2.1 Incremental development

Figure 1 shows an outline of typical incremental de-
velopment process[12]. Generally speaking, the incre-
mental development process consists of rapid interac-
tions between customers and developers. One of spe-
cific characteristics of the incremental development is
that any complete or fixed requirement do not exist
before or even during the development. The developers
design and implement the product based on the cus-
tomers’ requirements, and deliver a new version of pro-
gram to the customers. Then, the customers test the
new version, and return the changes of requirements to
the developers. The development is iterated until the
customers satisfy the product.

Generally speaking, it is very reasonable and nat-
ural to combine the incremental development and the
OO development. Since the OO paradigm makes it
easy to understand the system structure and reuse the
previous components of other systems, the developers
can deliver the product rapidly using the advantages
of OO development. This kind of speed-up provides a
good advantage to incremental development.

2.2 Our objective

Our objective is to estimate the efforts for updating pro-

V1

Initial
Requirements

1st
Development

Design &
Implementation

Test

2nd
Development

Changes in
Requirements

Test

Design &
Implementation

TestTest
V2

n th
Development

Changes in
Requirements

Design &
Implementation

TestTest
Vn

Customer Developer

Final Program Vn

Fig. 1 Incremental development process

gram codes in the OOID. Since the requirement changes
occur frequently and regularly, the effort estimation for
updating activities should also be done very fast and
be easy to apply. The accurate effort estimation helps
to modify development plans effectively. So, the devel-
opers in the company want to use such an estimating
method that is intuitively constructed and is easy to
apply.

In the OOID, design specification changes are de-
rived manually by the developers from given require-
ment changes. Of course, such activities take efforts
and they are not neglectable, but the estimation of such
effort is very difficult. In this paper, we do not discuss
such effort.

However, the activity to update program codes
from given design changes is also difficult. We therefore
try to develop a effort estimation method for updating
program codes from given design specification changes,
which has the following properties: (1) intuitive calcu-
lation: the way of estimation is intuitive for developers
or managers, (2) quick calculation: the developer and
manager can obtain the result of estimation immedi-
ately, and (3) easy calculation: the estimation method
is easy to apply in the actual development environment.
By these properties, our proposed method can help the
planning of development schedule for the next version
of the software.

2.3 Related works

In order to estimate the effort for software develop-
ment, many works have already been proposed. Ana-
lytic models and process models are most widely known
models[13]. Our approach is included in the analytic
model.

Kellner developed a process model based on the



UEHARA et al.: A NEW APPROACH TO ESTIMATE EFFORT FOR OO PROGRAM UPDATING
3

STATEMATE system[6] to support several manage-
ment control and planning activities including develop-
ment schedules, planning and task re-planning by the
deterministic and stochastic simulations. Kusumoto et
al. also developed a simulator to estimate the efforts
and the number of faults of the software project based
on the generalized stochastic Petri-net[9]. These pro-
cess models mainly focused on understanding and con-
trolling the software process, and dealt with changes
in the software process. However, since our objective
is to estimate efforts for updating using a given design
specification, it is not appropriate to apply them to our
purpose.

As for the analytic model, COCOMO[2] is one of
good solutions for cost estimation in general software
development. However, our objective mentioned in sub-
section 2.2 is slightly different from that of the CO-
COMO. The main focus in COCOMO is upon estimat-
ing the influence of 15 cost drivers on the development
effort. However, these 15 drivers do not include OO
features.

Our proposed method(to be defined in Section 4)
is based on the score given to each fundamental compo-
nent according to analysis of some characteristics of the
OO programs. It is thus very similar to the function
point analysis (FPA)[1] in that sense. Within the FPA,
the software is characterized by the five functions with
respect to the number of inputs/outputs or the number
of screens. These functions, however, do not include
OO features. It is thus difficult to apply the FPA to
OO development directly.

We therefore have to establish a new straightfor-
ward (that is, intuitive, quick and easy) method to es-
timate the efforts of program updating for the OOID.

3. Essential Characteristics

In order to estimate the efforts to update the program
in the OOID, we chose the following 4 factors to be
considered in the effort estimation: (1) the kind of up-
dating activities, (2) the types of targets to be updated,
(3) the degree of information hiding and (4) the degree
of inheritance. The reasons why we chose those 4 fac-
tors will be explained in the following subsections.

3.1 Updating activities

The type of updating activity is considered to be influ-
ential element with the effort estimation because, for
example, the efforts for “creating a new class,” and
“modifying an existing class” are clearly different in
general. In the OOID, the target to be updated could
be classes, attributes in classes, or methods in classes.
On the other hand, the activities for updating them are
classified into three fundamental operations:

1) Creation: new creation of the target(that is, a

class, an attribute in a class and a method in a
class).

2) Deletion: deletion of the existing target(that is, the
existing class, the existing attribute or the existing
method).

3) Modification: modification to the existing target.

Any modification can be expressed by one of three oper-
ations or combination of them. For example, consider a
case that an attribute of a class is newly created. Then
the operation is expressed as creation. Next, consider a
case that a parameter of a method is added. Then a se-
quence of the operations can be considered: an existing
method is deleted and a new method with a new pa-
rameter is created. Thus it is expressed as combination
of creation and deletion.

In the formulas for efforts estimation in Section 4,
we distinguish them, and assign distinct score to each
operation.

3.2 Targets to be updated

Generally, the targets(that is, the attribute or the
method in a class in this subsection) to be updated
have types, and the effort to update them are differ-
ent according to their types (For example, modifying a
method with int type will take less efforts than mod-
ifying a method with a user defined type). The types
are categorized as follows:

1) Void type: Void type is a type which has no return
value. In C++ and JAVA, void is an example.

2) Basic type: Basic type is a type which is originally
installed in the OO language. In C++ and JAVA,
int and char are examples.

3) Library type: Library type is a type which is de-
fined in the class library. The classes in Microsoft
Foundation Classes(MFC) are examples.

4) Custom type: Custom type is a type which is de-
fined in the developing program.

In the formulas for efforts estimation, we distinguish
these types and assign distinct score to each type.

3.3 Object-Oriented paradigm

The Object-Oriented paradigm has several useful char-
acteristics for high quality software development. They
are encapsulation, inheritance, polymorphism, multiple
inheritance and so on. Among them, we consider en-
capsulation and inheritance in the formulas for effort
estimation.

However, we don’t take account of the other prop-
erties such as polymorphism and multiple inheritance
in this paper. (When a method has several interfaces by
polymorphism, these interfaces can be translated into
several independent methods. That’s why it is consid-
ered not to be influential with the effort to update pro-
grams. Similarly, since a multiple inheritance can be



4
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999

translated into plural inheritances, we treat the mul-
tiple inheritance as plural inheritances and count the
effort for each inheritance.)

3.3.1 Degree of information hiding

An aspect of the encapsulation is measured by the de-
gree of information hiding. The degree of information
hiding by encapsulation clearly affects the updating ef-
forts, since the scopes of variables are different accord-
ing to the degree of information hiding. The following
summarizes information hiding in C++ and JAVA:

1) private: the attribute/method in a class cannot be
referred by any other classes.

2) protected: the attribute/method in a class cannot
be referred by any other classes except for its child
class.

3) public: the attribute/method in a class can be re-
ferred and used by other classes.

For example, suppose that a class has some “public”
attributes. When modifying this class, it should be
checked whether public attributes are referred from the
other classes. Then more effort is needed to modify this
class.

3.3.2 Degree of inheritance

In the Object-Oriented development, programmers can
create a new class which inherits properties of existing
classes. The aspect of inheritance contributes to a high
productivity and helps reuse of previous components in
the other programs or class libraries.

On the other hand, the degree of inheritance is
influential with the updating efforts, since programmers
must pay attention to the children classes when they
update the parent class. In the formulas for the efforts
estimation, we assign each class distinct score which is
proportional to the number of children classes.

4. Formula for Effort Estimation

4.1 Outline of formula

Based on the classification in Section 3, we introduce
new formula to calculate the effort needed for updat-
ing of the OO programs for given design specification
changes.

Assume that P is a program to be updated ac-
cording to design specification changes σ. In more
precise, σ is a set of n design specification changes
SC1, · · · , SCn. Then P ′ is a resultant program that
is obtained from P by executing necessary operations
specified in SCi(1 ≤ i ≤ n). In this paper, we pro-
pose the following formula to estimate the efforts for
updating program code P :

E(P, σ) =
n∑

i=1

Ereq(SCi)

=
n∑

i=1

mi∑

j=1

Ecl(Ci
j)

=
n∑

i=1

mi∑

j=1

(
pij∑

k=1

Eattr(A
ij
k ) +

qij∑

l=1

Emeth(M
ij
l ))

(1)

Intuitively speaking, according to design specifica-
tion change SCi, a class C i

j is updated. In more detail,
an attribute Aij

k in the class Ci
j and a method M ij

l in
the class Ci

j are updated. We will explain the definition
of E’s in the following sections. At this point, we can-
not validate this formulation theoretically. Currently,
Equation (1) is based on the interviews with the actual
developers in a certain company.

4.2 Four kinds of efforts

1) Efforts to meet a design specification change SC
Assume that m classes C1, · · · , Cm are updated
for the design specification change SC. The for-
mula to estimate the efforts for design specification
change SC is defined as follows:

Ereq(SC) =
m∑

j=1

Ecl(Cj) (2)

We explain the definition of Ecl(Cj) in the follow-
ing.

2) Efforts to update a class C
Assume that updating activity of a class C consists
of updating p attributes A1, · · · , Ap and q methods
M1, · · · , Mq. The formula to estimate the efforts
for updating the class C is defined as follows:

Ecl(C)

=
p∑

k=1

Eattr(Ak) +
q∑

l=1

Emeth(Ml) (3)

We explain the definition of Eattr(Ak) and
Emeth(Ml) in the following.

3) Efforts to update an attribute A
Assume that an attribute A is updated. The for-
mula to estimate the efforts for this updating is
defined as follows:

Eattr(A)
= α × Wupd × Wtype × Winf-h (4)

The semantics of variables are summarized as fol-
lows:

a) α: a basic score for updating an attribute.



UEHARA et al.: A NEW APPROACH TO ESTIMATE EFFORT FOR OO PROGRAM UPDATING
5

b) Wupd: a weight representing the difference in
the difficulty caused by the kind of updating
activities(see subsection 3.1).

c) Wtype: a weight representing the difference
in the difficulty caused by the type of at-
tribute(see subsection 3.2).

d) Winf-h: a weight representing the difference
in the difficulty caused by the degree of infor-
mation hiding(see subsection 3.3).

4) Effort to update a method M
Assume that a methodM is updated. The formula
to estimate the efforts for this updating is defined
as follows:

Emeth(M)
= β × (1 +WCC(M) +WCM(M)
+WPM(M) +Winht × NOC(C))
×Wupd × Wtype × Winf-h (5)

where variables β, Wupd, Wtype, Winf-h, Winht are
constants to represent characteristics in Section 3
and WCC(M), WCM(M), WPM(M), NOC(C)
are fundamental OO metrics to be defined in
the next subsection. In Equation (5), metrics
WCC(M), WCM(M), WPM(M) and NOC(C)
are all added rather than multiplied, since they
represent internal properties in a method M and
they are independent from their definition. Fur-
thermore, from the interviews with developers in
a certain company, the efforts that correspond to
these metrics are considered to be independent,
too.
The semantics of these variables are summarized
as follows:

a) β: a basic score for updating a method.
b) Wupd: a weight representing the difference in

the difficulty caused by the kinds of updating
activities(see subsection 3.1).

c) Wtype: a weight representing the difference
in the difficulty caused by the type of return
value(see subsection 3.2).

d) Winf-h: a weight representing the difference
in the difficulty caused by the degree of infor-
mation hiding(see subsection 3.3).

e) Winht: a basic weight representing the differ-
ence in the difficulty caused by the degree of
inheritance.

When we apply the proposed formula to actual de-
velopment, we have to determine the values of α, Wupd,
Wtype, Winf-h in the formula (4) and β, Wupd, Wtype,
Winf-h, Winht in the formula (5). The sample values
of these variables will be shown in subsection 5.2.

4.3 Fundamental metrics

Until now, although various OO metrics have been sug-

gested[4], [5], [7], [10], [11], most of them are for a class,
but not for a method. So, we suggest simple new met-
rics WCC, WCM , WPM and NOC which indicate
the complexity of a method.

1) WCC(Weighted Coupling Classes)
Assume that a method M includes n classes
C1, C2, · · · , Cn which are referred in M . We in-
troduce the weight wCi for a class Ci, and then
define WCC as follows:

WCC(M) =
n∑

i=1

wCi

In fact, the formula of WCC is a part of the defi-
nition of existing OO metric CBO[5].

2) WCM(Weighted Coupling Members)
Assume that a method M refers n attributes
A1, A2, · · · , An which are defined in the same class
C. We introduce the weight wAi for an attribute
Ai, and then define WCM as follows:

WCM(M) =
n∑

i=1

wAi

3) WPM(Weighted Parameters of Method)
Assume that a method M includes n parameters
P1, P2, · · · , Pn. We introduce the weight wPi for a
parameter Pi, and then define WPM as follows:

WPM(M) =
n∑

i=1

wPi

4) NOC(Number Of Children)
NOC is a part of the definition of existing OOmet-
rics set[5]. It is a measure of how many subclasses
are going to inherit the methods of the parent class:

NOC = the number of immediate
subclasses subordinated to
a class in the class hierarchy

4.4 Limitations

There are several limitations in the proposed effort es-
timation.

1) Programming languages
We assume C++ and JAVA as programming lan-
guages in the proposed effort estimation. Since
most of OO programs in the real field are written
in C++ or JAVA, this limitation is not significant.

2) Development process
We take account of incremental development
model rather than waterfall model. The main
reason is that the incremental development is the
mainstream in the OO development.



6
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999

3) Collection of data
In order to apply our effort estimation to projects,
the values of parameters must be decided before
coding phase. Since the data needed for these pa-
rameters are easy to collect, there is no serious
problem with respect to applicability.

5. Parameter Tuning

5.1 Parameters

When a requirement change occurs, the developers in
the first place decide which parts of the existing pro-
gram are to be updated. The decision is performed
based on the analyzed results of various Object-oriented
design documents. Although they never know how
many lines of codes are to be updated, they can get
the following data (1)–(3) from the analysis. The data
give the basis for the evaluation of E(P, σ).

(1) Classes to be updated (that is, classes C1, · · · , Cm

in Equation (2))
(2) Attributes to be updated in each class Ci(that is,

attributes A1, · · · , Ap in Equation (3))

2-1) The kind of updating activity
2-2) The type of the attribute
2-3) The degree of information hiding
2-4) The degree of inheritance

(3) Methods to be updated in each class Ci(that is,
methods M1, · · · , Mq in Equation (3))

3-1) The kind of updating activity
3-2) The type of the method
3-3) The degree of information hiding
3-4) Concerning the metricsWCC, WCM , WPM

and NOC, the followings are defined with re-
spect to the external reference:

3-4-1) The number of parameters and their
types

3-4-2) The number of references to external
classes and their types

3-4-3) The number of references to attributes in
the class Ci and their types

3-4-4) The number of subclasses

By collecting above information, we can apply the
proposed effort estimation to the project.

5.2 Target project

In order to determine the values of parameters in Equa-
tion (3), we had an experiment using the data of an
actual project. In this experiment, we tuned up the
values of parameters so that the rank correlation coef-
ficient between them becomes large.

The targeted project was a development of an
application software for a banking related system[16].

The program was written in C++ on Microsoft Win-
dows 95/98/NT. The development was also performed
according to the OMT[14], and had three versions
V1, V2, V3 of the program. Table 1 shows the data which
are collected from the project. In Table 1, Vi(i = 1, 2, 3)
denotes the ith version of programs and “# of classes”
denotes the total number of classes included in Vi. The
value of LOC denotes the total lines of code excluding
the comments, and the value of Person-Days indicates
the effort needed to develop each version.

Table 1 Data from C++ project

Version # of classes LOC Person-Days
V1 43 6295 60
V2 53 7765 39
V3 63 8925 30

We firstly selected 20 classes, each of which was in-
cluded in the first version, V1, and was actually updated
in V2 or V3 (We should note that, by this selection, we
delete all classes that were in V1 but were not updated
afterwards from the analysis).

We then had an interview with developers of the
project, and asked them to rank all the classes in V1

according to the difficulty to modify. Table 2 shows
the ranking of difficulty for each modified class.

From Table 2, we can see that C1 is the most dif-
ficult class to update and C2 is second. C5 and C6

are the same level, and C20 is the easiest class. We
assumed that the most difficult class by developers’ in-
tuition needs the most effort to update it.

Table 2 Rank of difficulty

Class Rank Class Rank
C1 1 C11 11
C2 2 C12 12
C3 3 C13 12
C4 4 C14 14
C5 5 C15 15
C6 5 C16 16
C7 7 C17 17
C8 8 C18 18
C9 9 C19 19
C10 10 C20 20

5.3 Process of tuning up

We tuned up the values of parameters so that the rank
of estimated effort becomes almost the same as the dif-
ficulty of classes in Table 2. The steps for tuning up are
as follows:

Step 1 Firstly, we set initial values of parameters as
shown in Table 3.

Step 2 We calculate the effort for each class according
to Equation (3).



UEHARA et al.: A NEW APPROACH TO ESTIMATE EFFORT FOR OO PROGRAM UPDATING
7

Table 3 Initial values of parameters

(a) Parameters for attributes (α = 1)

Wupd Creation Deletion Modifi.
1 1 N/A

Wtype Basic Library Custom
1 1 1

Winf-h Private Protected Public
1 1 1

(b) Parameters for methods (β = 1)

Wupd Creation Deletion Modifi.
1 1 1

Wtype Void Basic Library Custom
1 1 1 1

Winf-h Private Protected Public
1 1 1

Winht 0.1

(c) Parameters for software metrics

Basic Library Custom
wC N/A 0.1 0.1

wA 0.1 0.1 0.1
wP 0.1 0.1 0.1

Step 3 We then compare the difficulties with obtained
efforts by rank correlation analysis.

Step 4 In order to acquire better rank correlation coef-
ficient, we change some values of parameters based
on some conditions, then back to Step 2. Or if the
current correlation coefficient is considered as the
best one, accept the values of parameters.

The conditions used in Step 4 are summarized as
follows:

• The effort needed to create an attribute is larger
than or equal to that of deletion.

• Custom types need more efforts to update than
library types, and library types need more than
basic types.

• Public attributes or methods need more efforts to
update than protected ones, and protected ones
need more than private ones.

• Generally, the effort to update attribute is larger
than or equal to that of to update method.

• Based on the interviews with the developers in
a certain company, Wupd should be larger than
Wtype.

• Based on the interviews with the developers in a
certain company, Wtype should be almost the same
as Winf-h.

• Based on the interviews with the developers in a
certain company, the values of wC , wA and wP are
considered almost the same.

(Note that these conditions are mainly based on the
interviews with the actual developers in a certain com-
pany. In the further research, we have to show the
validity of this work empirically.)

According to these steps, we actually determined
the values of parameters. The obtained values are
shown in Table 4. Table 4(a) shows values of Wupd,
Wtype, Winf-h for attribute Ai. In this case, the pa-

rameter α became 3. Table 4(b) shows values of Wupd,
Wtype, Winf-h, Winht for method Mi. The parameter β
became 1. Table 4(c) shows values of software metrics
wC , wA and wP .

The estimated effort for each class, which was cal-
culated using the values of parameters in Table 4, is
shown in Table 5. The Spearman’s rank correlation co-
efficient between estimated and actual efforts for each
class became 0.81. We thus can say that the values of
parameters are optimized well.

Table 4 Final values of parameters

(a) Parameters for attributes (α = 3)

Wupd Creation Deletion Modifi.
10 2 N/A

Wtype Basic Library Custom
1 2 3

Winf-h Private Protected Public
1 2 3

(b) Parameters for methods (β = 1)

Wupd Creation Deletion Modifi.
5 1 3

Wtype Void Basic Library Custom
1 1 2 3

Winf-h Private Protected Public
1 2 3

Winht 0.1

(c) Parameters for software metrics

Basic Library Custom
wC N/A 0.1 0.12
wA 0.05 0.1 0.12
wP 0.05 0.1 0.12

Table 5 Efforts estimation for class

Class Ecl(C) Class Ecl(C)

C1 1722.5 C11 159.7
C2 593.2 C12 242.2
C3 352.9 C13 129.7
C4 2346.7 C14 87.6
C5 178.9 C15 75.2
C6 169.9 C16 93.7
C7 165.5 C17 119.4
C8 113.3 C18 50.5
C9 169.9 C19 74.8
C10 258.8 C20 155.9

6. Experimental Evaluations

In order to evaluate the validity of the proposed method
and the values of parameters shown in Table 4, we had
another experiments using the other projects’ data.
(Another possibility may be an experiment which ap-
plies the values in Table 4 to the target project data
mentioned in subsection 5.2. But since only three ver-
sions of programs were developed in the project, we
cannot analyze well on this project.) In these experi-
ments, we got the data from two development projects
of OO program. We then evaluated the correlation be-
tween the efforts estimated by proposed method and
actual ones for each updating activity.



8
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999

6.1 Experiment A

6.1.1 Collected Java programs

In the first experiment, the targeted project was a de-
velopment of an application software that shows graph-
ical images stored in Object-oriented database[17]. The
program was written in JAVA, and it was able to run
on a WWW browser. The development was performed
according to the OMT, and 10 versions of programs
were successively developed.

Table 6 shows the data that were collected from
the project. In Table 6, Vi(i = 1, 2, · · · , 10) denotes
the ith version of programs and “# of classes” denotes
the total number of classes included in Vi. The value
of LOC denotes the total lines of code excluding the
comments, and the value of Person-Days indicates the
effort needed to develop each version.

Table 6 Data from a JAVA project used in experiment A

Version # of classes LOC Person-Days
V1 157 9197 445
V2 169 25603 98
V3 170 27845 90
V4 187 28677 40
V5 190 28916 76
V6 188 28324 56
V7 188 28524 54
V8 189 28713 42
V9 188 28722 42
V10 189 28737 60

6.1.2 Effort estimation using E(P, σ)

The values of parameters used in the estimating for-
mula were the same as in Table 4. Since the develop-
ment environment or the skill of the development team
of this project were almost the same as that of in sub-
section 5.2, we were able to apply those values of pa-
rameters to this project.

We calculated the updating effort E(P, σ) for each
version V1, · · · , V10 by Equotion (1). The result was
summarized in Table 7.

Table 7 Efforts estimation for each version

Version E(P, σ)
V1 94271.4
V2 15843.6
V3 10002.0
V4 8384.7
V5 6662.3
V6 9241.3
V7 2120.7
V8 1013.8
V9 242.6
V10 171.3

6.1.3 Statistical analysis

We then evaluated statistically these estimated efforts
E(P, σ) in Table 7 by comparing with actual Person-
Days in Table 6.

Note that we exclude the data of V1 (initial ver-
sion) from the correlation analysis. Since our objective
is to estimate the efforts for updating activity, we ex-
cluded V1 because it is a new development of programs
in the project†.

The correlation coefficient was calculated as 0.71,
and it was statistically significant with 1% level of sig-
nificance. Figure 2 shows the relationship between
them.

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Estimated Effort

A
ct

ua
lE

ffo
rt

(P
er

so
n-

D
ay

s)

Fig. 2 Actual efforts and E(P, σ)

6.2 Experiment B

In the second experiment, the targeted project was a
development of an application software that calculates
software metrics in several programming languages.
The program was written in C++, and the size of de-
velopment was about 20 KLOC. There were 9 versions
available for this experiment.

Table 8 shows the result of experiment B. In Ta-
ble 8, Vi (i = 1, 2, · · · , 9) denotes the ith version of pro-
grams, the Person-hours indicates the effort needed to
develop each version, and E(P, σ) shows the program
updating effort.

We also evaluated statistically these estimated ef-
forts, E(P, σ), and actual Person-hours in Table 8. The
correlation coefficient was calculated as 0.83††, and it
was statistically significant with 1% level of significance.

†Note that our estimation approach seems to be appli-
cable logically to any versions, including an initial version,
of a software development. The initial version, however, has
special activities such as designing the algorithms and im-
plementing highly reusable components, which may not be
represented in the proposed formula. That’s why we exclude
the initial version of the development from experiments.

††We also exclude the initial version from calculation of
the correlation coefficient.



UEHARA et al.: A NEW APPROACH TO ESTIMATE EFFORT FOR OO PROGRAM UPDATING
9

Table 8 Result of experiment B

Version Person-hours E(P, σ)
V1 335.8 19951.3
V2 33.2 1212.5
V3 71.8 2604.7
V4 15.3 1213.4
V5 105.2 2425.8
V6 13.3 575.9
V7 33.7 699.6
V8 41.3 546.5
V9 20.5 301.0

From these result of experiments A and B, we can
say that there is high correlation between efforts calcu-
lated by the proposed formula and actual ones. That
is, we can confirm that the effort estimation using the
values of parameters in Table 4 is useful for the other
development project.

7. Conclusion

We have proposed a new effort estimation method
which tries to implement intuitive, quick and easy cal-
culation. The proposed method is designed based on
the characteristics of the OOID. The two experimental
evaluations show that the proposed formulas and the
sample weights have a certain extent of validity.

Our future works include the following:

(1) More considerations on the weight assignment
are needed. Especially, theoretical basement for
weight must be established or at least some empir-
ical data are needed to validate it.

(2) We have to apply the proposed method to much
more software development projects. If possible,
we should collect practical project data and apply
the proposed method to the collected data.

References

[1] A. J. Albrecht and J.E. Gaffney, “Software function, source
lines of code, and development effort prediction: a software
science validation,” IEEE Trans. Software Eng., vol.9, no.6,
pp.639–648, 1983.

[2] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.

[3] G. Booch: Object Oriented Analysis and Design With Ap-
plications, The Benjamin/Cummings, 1994.

[4] L.C. Briand, J.W. Daly and J.K. Wüst, “A unified frame-
work for coupling measurement in object-oriented systems,”
IEEE Trans. Software Eng., vol.25, no.1, pp.91–121, 1999.

[5] S.R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Software Eng., vol.20,
no.6, pp.476–493, 1994.

[6] M. I. Kellner, “Software process modeling support for man-
agement planning and control,” Proc. 1st International
Conference on the Software Process, pp.8–28, 1991.

[7] E.M. Kim, “Program complexity metric and safety verifi-
cation method for object-oriented software development,”
PhD. dissertation, Osaka University, January, 1997.

[8] P. Kruchten, The rational unified process: An introduction,
Addison-Wesley, 1999.

[9] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno, Y. Tak-
agi and K. Sakamoto, “A new project simulator based on
generalized stochastic Petri-net,” Proc. 19th International
Conference on Software Engineering, pp.293–303, 1997.

[10] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol.23,
pp.111–122, 1993.

[11] M. Lorenz and J. Kidd, Object Oriented Software Metrics,
Prentice Hall, 1994.

[12] J. Martin, Rapid Application Development, Macmillan
Publishing Company, 1991.

[13] D.M. Raffo, “Evaluating the impact of process improve-
ments quantitatively using process modeling,” Proc. CAS-
CON93, vol.1, pp.290–313, 1993.

[14] J. Rumbaugh, Object-Oriented Modeling and Design, Pren-
tice Hall, 1991.

[15] I. Sommerville, Software Engineering, Addison-Wesley,
1992.

[16] S. Uehara, O. Mizuno, Y. Itou and T. Kikuno, “An MVC-
based analysis of object-oriented system prototyping for
banking related GUI applications – Correlationship be-
tween OO metrics and efforts for requirement change –,”
Proc. 4th International Workshop on Object-Oriented Real-
time Dependable Systems, pp.91–104, 1999.

[17] S. Uehara, O. Mizuno and T. Kikuno, “A straightforward
approach to effort estimation for updating programs in
object-oriented prototyping development,” Proc. 6th Asia-
Pacific Software Engineering Conference, pp.144–151, 1999.

Satoru Uehara was born in 1971. He
received B.E. degree in information and
computer sciences from Osaka University
in 1993. He has been working for NTT
DATA Corporation, and has been en-
gaged in the development of client-server
systems. He is currently a Ph.D course
student in the Department of Informat-
ics and Mathematical Science, Graduate
School of Engineering Science, Osaka Uni-
versity. His research interests include soft-

ware metrics, object-oriented development methodologies.

Osamu Mizuno was born in 1973. He
received B.E. and M.E. degrees in infor-
mation and computer sciences from Osaka
University in 1996 and 1998, respectively.
He has been working for Osaka University
since 1999. He is currently a Research as-
sociate in the Department of Informatics
and Mathematical Science at Osaka Uni-
versity. His research interests include the
software process and the software quality
assurance technique. He is a member of

the IEEE.

Tohru Kikuno was born in 1947.
He received M.S. and Ph.D. degrees from



10
IEICE TRANS. INF. & SYST., VOL.E82–??, NO.1 JANUARY 1999

Osaka University in 1972 and 1975, re-
spectively. He joined Hiroshima Univer-
sity from 1975 to 1987. Since 1990, he
has been a Professor in the Department
of Informatics and Mathematical Science
at Osaka University. His research inter-
ests include the quantitative evaluation of
software development processes and the
analysis and design of fault-tolerant sys-

tems. He served as a program co-chair of the 1st International
Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC’98) and of the 5th International Conference on Real-
Time Computing Systems and Applications (RTCSA’98). He
also served as a general co-chair of the 2nd International Sym-
posium on Object-Oriented Real-Time Distributed Computing
(ISORC ’99).


