
The Impact of Feature Reduction Techniques on
Defect Prediction Models

Thesis for the degree of Master of Engineering

Author:
Masanari Kondo

Student ID No.:
17622015

Chief Supervisor:
Professor Osamu Mizuno

Co-Supervisors:
Professor Teruhisa Hochin
Professor Yu Shibuya

Master’s Program of Information Science,
Graduate School of Science and Technology,

Kyoto Institute of Technology

February 8, 2019

様式 2号
学位論文内容の要旨（和文）

平成 31年 2月 8日

京都工芸繊維大学大学院

工芸科学研究科長　殿

工芸科学研究科 情報工学専攻

平成 29年入学

学生番号 17622015

氏　　名 近藤将成 ○印

（主任指導教員 水野修 ○印 ）

本学学位規則第 4条に基づき、下記のとおり学位論文内容の要旨を提出いたします。

1.　論文題目

ソフトウェアメトリクスを用いた不具合予測モデルにおける

特徴抽出手法の実践的評価

2.　論文内容の要旨（400字程度）

不具合が含まれたソフトウェアをリリースすると，それに起因した事故を引き起こ

す可能性がある．そのため，ソフトウェアのリリース前に不具合を全て取り除くこと

を課題として，様々な手法が研究されている．

この課題を解決する 1つの手法として，ソースコードを数値化してソースコードの

複雑度を計測する基準（メトリクス）を用いて不具合の予測モデルを構築することが

行われている．一方で，今日までに多種多様で膨大な量のメトリクスが提案されてお

り，重複するメトリクス（例えば，高い相関がある 2つのメトリクスのうちの 1つ）を

除去して予測モデルを構築することが必要不可欠となっている．既存研究では，その

手段として特徴選択手法が頻繁に用いられ，どの特徴選択手法が良いかを調べる比較

評価の研究も行われている．それに対して，我々の研究では，特徴抽出手法を比較評

価した．また特徴選択手法とも比較を行い，どちらが優れているのかを調査した．

Form2 Graduate School of Science and Technology, Kyoto Institute of Technology
Abstract of Master Thesis

The Impact of Feature Reduction Techniques on Defect

Prediction Models

2019 17622015 KONDO Masanari　

Abstract

Defect prediction is an important task for preserving software quality. Most

prior work on defect prediction uses software features, such as the number of lines

of code, to predict whether a file or commit will be defective in the future. So far,

many features have been proposed for improving the accuracy of defect prediction.

There are several reasons to keep the number of features that are used in a defect

prediction model small. For example, using a small number of features avoids the

problem of multicollinearity and the so-called‘ curse of dimensionality’. Feature

selection and reduction techniques can help to reduce the number of features in

a model. Several recent studies have investigated the impact of feature selection

techniques on defect prediction. However, there do not exist large-scale studies in

which the impact of multiple feature reduction techniques on defect prediction is

investigated.

In this paper, we study the impact of eight feature reduction techniques

on the performance and the variance in performance of five supervised and five

unsupervised defect prediction models. In addition, we compare the impact of the

studied feature reduction techniques with the impact of the two best-performing

feature selection techniques (according to prior work).

Index

1. Introduction 1

2. Related work 4

2.1 Defect prediction . 4

2.2 Feature selection and reduction . 5

3. Methodology 9

3.1 Studied datasets . 9

3.2 Studied defect prediction models . 9

3.3 Studied feature reduction techniques . 15

3.3.1 Traditional feature reduction techniques 15

3.3.2 Neural network-based feature reduction techniques 18

3.4 Studied feature selection techniques . 18

3.5 Area under the receiver operating characteristic curve (AUC) 19

3.6 Preprocessing . 19

3.6.1 Preprocessing for traditional feature reduction techniques 20

3.6.2 Preprocessing for neural network-based feature reduction techniques . . 20

3.7 Out-of-sample bootstrap sampling . 20

4. Experimental setup 22

5. Results 24

5.1 RQ1: What is the impact of feature reduction techniques on the perfor-

mance of defect prediction models? . 24

5.2 RQ2: What is the impact of feature reduction techniques on the variance

of the performance across defect prediction models? 30

5.3 RQ3: How do feature selection techniques compare to feature reduction

techniques when applied to defect prediction? 37

5.3.1 Why do feature reduction techniques work well in the AEEEM dataset? 42

i

5.3.2 Comparing feature selection and reduction techniques along the dimen-

sions of understandability and execution time 45

6. Discussion: Which features are generated by the feature reduction techniques? 46

7. Threats to validity 52

7.1 External validity . 52

7.2 Internal validity . 52

8. Conclusion 53

Acknowledgment 55

References 56

ii

1. Introduction

Software developers have limited time to test their software. Hence, developers need to be

selective when deciding where to focus their testing effort. Defect prediction models help de-

velopers focus their limited testing effort on components that are the most likely to be defective.

Because detecting defects at an early stage can considerably reduce the development cost [1],

defect prediction models have received widespread attention in software engineering research.

Many software features (e.g., software complexity features) can be used in defect prediction

models [2–6]. However, it is important to carefully select the set of features that is used in such

models, as using a set of features that is too large does not automatically result in better defect

prediction. For example, prior studies showed that reducing the number of features avoids

the problem of multicollinearity [7] and the curse of dimensionality [8]. Hence, many of the

existing defect prediction models used feature selection or reduction techniques [6, 9–28].

Feature selection techniques reduce the number of features in a model by selecting the most

important ones, while feature reduction techniques reduce the number of features by creating

new, combined features from the original features. Recent studies [9,18] investigated the impact

of feature selection techniques on the performance of defect prediction models. However, this

paper describes the first large-scale study on multiple feature reduction techniques and their

impact on a large number of prediction models.

In this paper, we compared the impact of the original features, features that are generated

using traditional feature reduction techniques (i.e., PCA [6], FastMap [29], feature agglomera-

tion [30], random projections [31], TCA [32] and TCA+ [28]), and features that are generated

using neural network-based feature reduction techniques (i.e., restricted Boltzmann machine

(RBM) [33] and autoencoder (AE) [34]) on defect prediction models. In addition, we com-

pared the impact of features that are generated using feature reduction techniques with features

that are selected using the best-performing feature selection techniques in prior work (corre-

lation and consistency-based feature selection) [9, 18]. We compared the features along two

dimensions: their performance (area under the receiver operating characteristic curve (AUC)),

and their performance variance (interquartile range (IQR)). The receiver operating characteris-

tic curve is created by plotting the true positive rate against the false positive rate, hence, the

1

AUC represents the balance between the true positive rate and the false positive rate. The IQR

represents the variance of a data distribution.

We conducted experiments on three publicly available datasets that contain software defects

(the PROMISE [14], cleaned NASA [35], and AEEEM [6] datasets). Our ultimate goal is to

identify which feature reduction techniques yield new, powerful features that preserve the pre-

dictive power of the original features, and improve the prediction performance compared to

feature selection techniques. We studied the impact of feature reduction techniques on five

supervised learning and five unsupervised learning models for defect prediction in our experi-

ments. In particular, we focus on the following research questions:

RQ1: What is the impact of feature reduction techniques on the performance of defect

prediction models?

Motivation: Reducing the number of features in a model can address the multicollinear-

ity problem [7] and the curse of dimensionality [8]. In this RQ, we studied how feature

reduction techniques impact the performance of supervised and unsupervised defect

prediction models.

Results: Feature agglomeration and TCA can reduce the number of features, while pre-

serving an AUC that is as good as that of the original features for supervised models. In

addition, the AUC of unsupervised defect prediction models is significantly better when

preprocessing the features with neural network-based feature reduction techniques than

other feature reduction techniques.

RQ2: What is the impact of feature reduction techniques on the variance of the perfor-

mance across defect prediction models?

Motivation: The AUC for a dataset can vary across defect prediction models. Hence, it

can be challenging for practitioners to choose the defect prediction model that performs

best on their data. If all defect prediction models have a small performance variance for

a dataset, practitioners can avoid having to make this challenging choice.

Results: Neural network-based feature reduction techniques (RBM and AE) generate

features that improve the variance of the performance across different defect predic-

tion models in many cases when used in a supervised or unsupervised defect prediction

2

model. In addition, almost all feature reduction techniques (except PCA) generate fea-

tures that improve the variance of the performance across different defect prediction

models in many cases when used in an unsupervised defect prediction model.

RQ3: How do feature selection techniques compare to feature reduction techniques when

applied to defect prediction?

Motivation: Prior work [9, 18] showed that several feature selection techniques out-

perform the original models. In this RQ, we studied how feature selection techniques

compare to feature reduction techniques.

Results: For the supervised defect prediction models, the studied feature selection tech-

niques (correlation and consistency-based feature selection) outperform all the studied

feature reduction techniques. However, for the unsupervised defect prediction models,

the neural network-based feature reduction techniques (RBM and AE) outperform the

other studied feature selection/reduction techniques.

Our results provide practitioners with advice on which feature selection/reduction technique

to use in combination with a defect prediction model. In particular, we recommend to use

a feature selection technique when using a supervised defect prediction model, and a neu-

ral network-based feature reduction technique when using an unsupervised defect prediction

model, as these feature selection/reduction techniques improve the variance across defect pre-

diction models, while outperforming the other feature reduction techniques.

The organization of our paper is as follows. Section 2 introduces related work. Section 3

presents our methodology. Section 4 presents experimental setup. Section 5 presents the results

of our experiment. Section 6 discusses these results. Section 7 describes the threats to the

validity of our findings. Section 8 presents the conclusion.

This work was accepted on Empirical Software Engineering [36].

3

2. Related work

In this section, we discuss related work on defect prediction, and feature selection and reduc-

tion.

2.1 Defect prediction

Defect prediction approaches can be divided in two categories: approaches that use super-

vised learning and unsupervised learning. Supervised defect prediction models need training

data and test data. Usually, the training data and test data are collected from the same, or very

similar projects from the same organization (within-project defect prediction). However, some-

times it is difficult to collect sufficient training data from the same project or organization (e.g.,

when the project is new).

In such cases, cross-project defect prediction can be a viable alternative solution. Cross-

project defect prediction uses training datasets that contain data that comes from multiple

projects, or even from multiple organizations. Cross-project defect prediction offers a solu-

tion for the problem of within-project defect prediction since small datasets can be extended

with data from other projects. Hence, cross-project defect prediction is one of the important

research themes in defect prediction research. However, cross-project defect prediction has

several challenges [13, 17, 37–39]. For instance, cross-project defect prediction has the prob-

lem of heterogeneous original features across datasets [17]. There exists one solution for this

challenge [40], however; converging datasets collected from multiple companies to one dataset

when they contain different features still remains an open challenge and further investigation is

needed.

One way to overcome the challenge of heterogeneity is to use unsupervised defect prediction

models [16, 41–45]. Unsupervised models have the advantage that they do not need a training

dataset, and therefore, are not affected by the problem of heterogeneous features [16, 41–45].

Recently, Zhang et al. [41] summarized the accuracy of several supervised and unsupervised

models for defect prediction. They concluded that connectivity-based unsupervised models

have an accuracy that is as good as that of supervised models. Therefore, unsupervised models

4

are a viable alternative to supervised models for defect prediction. Note that unsupervised

models do not need training data, and are therefore always within-project defect prediction

models.

2.2 Feature selection and reduction

Using feature selection or reduction technique has the advantage of addressing the curse of

dimensionality [8]. This problem is originally considered a dynamic optimization problem.

However, machine learning models also need to consider this problem. The problem occurs

when having a large number of features yet a small sample size in machine learning models.

In this case, the sample size is not large enough to search the representations of all the com-

binations of features, and to generalize their parameters (resulting in overfitting) [49]. Hence,

the prediction performance of these models for unseen data would be worse, and could lead

to a classification error. Feature selection or reduction techniques can address this problem by

removing or combining redundant and irrelevant features. In addition, prior work [46, 50] re-

ported that the prediction performance of a model is often determined by only a few features.

Therefore, feature selection or reduction techniques can often be applied without negatively

affecting the prediction performance.

In this paper, we define feature selection and reduction as follows:

• Feature selection techniques reduce the number of features by selecting a subset of the

original features.

• Feature reduction techniques reduce the number of features by combining original fea-

tures into new features.

Several researchers studied the impact of feature selection techniques on defect prediction

models [9–22,24–26,46] . Table 2.1 gives an overview of prior work that uses feature selection

or reduction techniques. For instance, Ghotra et al. [9] summarized the impact of feature se-

lection techniques for defect prediction. They reported that correlation-based feature selection

outperforms the other feature selection techniques. In addition, they showed that the impact of

feature selection techniques varies across the studied datasets. Xu et al. [18] also summarized

the impact of feature selection techniques on defect prediction models. They also reported that

5

Table 2.1 Overview of prior work that uses feature selection or reduc-

tion techniques in combination with defect prediction.

Technique Family Example of References

Techniques

Feature Selection Filter-based Feature Chi-Square [9, 11, 12, 14, 18, 20, 21, 24, 26, 46]

Ranking Correlation

Filter-based Subset Correlation-based Feature [9, 10, 18, 20, 21, 24]

Selection Subset Selection

Wrapper-based Subset Logistic [9, 18, 21, 22, 25, 26]

Selection Regression

Greedy-based Feature Greedy Forward [24]

Selection Selection Algorithm

Distance-based Feature EM Algorithm [13]

Selection

State-of-the-Art MVS [16]

Others Significance [15, 17, 19, 26]

Feature Reduction PCA PCA [6, 9, 10, 18, 21, 27, 38, 47, 48]

State-of-the-Art TCA [27, 28]

6

the effectiveness of feature selection techniques exhibits significant differences across studied

datasets. Menzies et al. [46] used the information gain measure to rank features based on their

importance in a defect prediction model. They found that defect prediction can often be done

using only a small set of features. For example, they reduced the number of features in the CM1

project from 38 to 3 without affecting the prediction performance.

The impact of feature reduction techniques on defect prediction models has not been studied

as extensively. Most researchers use principal component analysis (PCA) [6,9,10,18,21,27,38,

47,48], and only a few researchers use other feature reduction techniques [27,28]. For instance,

D’Ambros et al. [6] compared class-level defect prediction models to present a benchmark for

defect prediction. They used PCA to avoid the problem of multicollinearity [7] among the in-

dependent variables. Nagappan et al. [47] predicted post-release defects using complexity fea-

tures. They built prediction models using PCA to avoid the problem of multicollinearity. Neu-

mann [48] proposed PCA-ANN which is a combination of PCA and artificial neural networks.

Neumann also used PCA to avoid the problem of multicollinearity. Challagulla et al. [10]

compared several prediction models for identifying defects. In addition, they compared PCA

with feature selection techniques such as feature subset selection. They concluded that feature

selection techniques are better than PCA, and that PCA did not add any advantages for defect

prediction. Rathore et al. [21] compared the performance of feature selection techniques. In this

comparison, they also used PCA. They found that PCA is one of the best-performing techniques

in this comparison. Ren et al. [27] extended PCA to address class imbalance problem for defect

prediction. Nam et al. [28] applied transfer component analyses (TCA and TCA+) to training

and test data to convert the data to be closer than the original data. This process addressed

the challenge of heterogeneity of training data and test data in cross-project defect prediction.

Nam’s approach significantly improved cross-project defect prediction performance.

Despite the amount of prior work on feature reduction techniques (mostly on PCA), no prior

work has conducted a systematic study of the impact of feature reduction techniques on defect

prediction models. In this paper, we provide such a systematic study of the impact of eight

feature reduction and two best-performing feature selection techniques on five supervised and

five unsupervised defect prediction models.

Finally, Peters et al. [51] showed that often not only the features can be reduced without

7

negatively affecting the performance, but also the amount of the rows in the data.

8

3. Methodology

In this section, we describe our methodology. In particular, we discuss our studied datasets,

defect prediction models, feature selection techniques, feature reduction techniques, evaluation

measure, our preprocessing steps, and our validation scheme.

3.1 Studied datasets

In our work, we used three publicly available datasets (the PROMISE [14], cleaned

NASA [35] and AEEEM [6] datasets) that were used by prior work [41] on supervised and

unsupervised defect prediction models. Table 3.1 describes the studied datasets. All datasets

contain popular software features for measuring source code complexity (see Table 3.2 for a

summary of the used features). Each entity in a dataset is labelled as defective or clean.

The PROMISE dataset contains several types of projects. We chose the 10 projects that

were used by prior work [41], to ease the comparison of our results with prior work. All

studied PROMISE projects have the same number of features. The PROMISE dataset contains

the Chidamber and Kemerer (CK) features [52] and an additional set of object-oriented (OO)

features [2].

The NASA dataset [35] contains 11 projects. Each project in the NASA dataset has a differ-

ent number of features. The NASA dataset contains McCabe features [53] and Halstead fea-

tures [54]. We used the cleaned version [35] of the NASA dataset, because prior studies [35,55]

showed that the original version of the NASA dataset contains inconsistent and mislabeled data.

The AEEEM dataset [6] contains five projects. All projects have the same number of features.

Like the PROMISE dataset, the AEEEM dataset contains the CK and OO features. However, the

AEEEM data also contains the number of previous defects [3], change features [4], complexity

code change features [5], and the churn and entropy of the CK and OO [6] features.

3.2 Studied defect prediction models

We focused on defect prediction models that were used by prior work [41], to make our

results easier to compare. We studied five supervised models and five unsupervised models.

9

Table 3.1 Description of studied projects

Studied Dataset Project # of # of % Defective # of # of

Entities Defective Features∗ Studied Features∗

PROMISE Ant v1.7 745 166 22.3 24 20

Camel v1.6 965 188 19.5 24 20

Ivy v1.4 241 16 6.6 24 20

Jedit v4.0 306 75 24.5 24 20

Log4j v1.0 135 34 25.2 24 20

Lucene v2.4 340 203 59.7 24 20

POI v3.0 442 281 63.6 24 20

Tomcat v6.0 858 77 9.0 24 20

Xalan v2.6 885 411 46.4 24 20

Xerces v1.3 453 69 15.2 24 20

NASA CM1 327 42 12.8 38 37

JM1 7,782 1,672 21.5 22 21

KC3 194 36 18.6 40 39

MC1 1,988 46 2.3 39 38

MC2 125 44 35.2 40 39

MW1 253 27 10.7 38 37

PC1 705 61 8.7 38 37

PC2 745 16 2.1 37 36

PC3 1,077 134 12.4 38 37

PC4 1,287 177 13.8 38 37

PC5 1,711 471 27.5 39 38

AEEEM Eclipse JDT Core 997 206 20.7 291 212

Equinox 324 129 39.8 291 212

Apache Lucene 691 64 9.3 291 212

Mylyn 1,862 245 13.2 291 212

Eclipse PDE UI 1,497 209 14.0 291 212

∗ We removed features that are not related to source code. For instance, the name of the file, name of the

class and the version. Hence, the number of studied features are different from the total number of features.

10

Table 3.2 Studied features

Studied Dataset Features Reference

PROMISE CK Chidamber et al. [52]

OO Basili et al. [2]

NASA McCabe McCabe [53]

Halstead Halstead [54]

AEEEM CK Chidamber et al. [52]

OO Basili et al. [2]

number of previous defects Kim et al. [3]

change features Moser et al. [4]

complexity code change features Hassan [5]

churn of CK and OO D’Ambros et al. [6]

entropy of CK and OO D’Ambros et al. [6]

11

Below we give a brief overview of the ideas behinds these models. For a detailed overview, we

refer the reader to the original papers in which these models were introduced. We studied the

following supervised defect prediction models:

• Logistic Regression (LR) [56]: LR is one of the most commonly used models for defect

prediction. LR expresses the relationship between one or more independent variables

(i.e., the original features) and one dependent variable (i.e., defective or clean) using a

polynomial expression and a sigmoid function [57].

• Decision Tree (J48) [58]: J48 is a decision tree implementation in WEKA [59]. The

decision tree uses a tree structure to decide on the dependent variable. In this tree, each

node corresponds to one of the independent variables with a condition. J48 traverses the

tree from the root to a leaf, while taking into account the input entity and the conditions

in the tree. Each leaf corresponds to a value of the dependent variable.

• Random Forest (RF) [60]: RF is a popular ensemble learning model. RF builds multiple

decision trees based on subsets of training data that are randomly selected. RF decides on

a value of the dependent variable by taking the result of a majority of the decision trees.

• Naive Bayes (NB) [61]: NB is a probability-based classifier that follows Bayes’ theorem.

Bayes’ theorem describes the probability of an event, given knowledge of conditions that

could be related to the event.

• Logistic Model Tree (LMT) [62]: LMT is a classifier which combines a decision tree

and a logistic regression model. Like the decision tree, LMT follows a tree structure.

However, LMT uses logistic regressions instead of values in the leaves.

We used the caret library in R [63] to optimize the parameters of the supervised models as

suggested by Tantithamthavorn et al. [64].

We studied the following unsupervised defect prediction models:

• Spectral Clustering (SC) [65]: SC labels entities using a graph that is based on similarities

across entities. In this graph, each node is an entity and each edge represents the similarity

of the entities it connects. SC cuts sparse edges in this graph by classifying eigenvectors

of the Laplacian matrix [65] of the graph. Following this process, SC divides the entities

into two groups.

12

• k-means (KM) [66]: KM is a popular clustering approach. KM classifies entities based

on the distances between entities and the center of a class (i.e., the mean of all entities in

that class). In this paper, we used the Euclidean distance as the distance metric.

• Partition Around Medoids (PAM) [67]: PAM is an approach that is similar to KM. While

KM uses the center of a class, PAM uses medoids. A medoid is an entity of which the

sum of all the distances to the other entities in a class is at its minimum. Because PAM

uses the medoid instead of the center, PAM is less likely to be affected by outliers than

KM.

• Fuzzy C-Means (FCM) [68]: FCM is also an approach that is similar to KM. While KM

classifies each entity to only one class in its process, FCM allows entities to be a member

of more than one class. The membership is expressed as a probability.

• Neural Gas (NG) [69]: NG is an approach that is similar to a self-organizing map [70].

NG generates weighted points which have random features. Hence, the weighted points

are distributed across the feature space. For each learning iteration, the features of the

weighted points are updated by distances to closer entities. Finally, the weighted points

become the class centers.

We used the default parameters of the implementations for the unsupervised models. We set

the number of clusters to two, as defect prediction is a binary problem. Table 3.3 shows the

libraries that we used for the implementation of the defect prediction models.

Labeling technique in the unsupervised models: The unsupervised models classify the

data in two unlabeled clusters. We adopted the following heuristic to identify the defective

cluster: “For most features, software entities containing defects generally have larger values

than software entities without defects” [41]. In particular, we used the sum of row average of

the normalized features in each cluster, to decide which cluster contains the defects [41]. To

calculate the sum of row average, we first summed the entity values in each cluster, respectively.

Then, we calculated the average values for each cluster. The cluster with the larger average value

was identified as the cluster with the defective entities.

13

Table 3.3 Libraries used for experiments

Defect Prediction Models Libraries

LR The caret library in R

RF The caret library in R

NB The caret library in R

J48 The caret library in R

LMT The caret library in R

SC Zhang et al.’s implementation [41] (see app. A)

KM The cclust library in R

PAM The cluster library in R

FCM The e1071 library in R

NG The cclust library in R

14

3.3 Studied feature reduction techniques

In this subsection, we discuss the studied feature reduction techniques. We studied two types

of feature reduction techniques: traditional and neural network-based feature reduction tech-

niques. We give a brief overview of the core concepts of each feature reduction technique. For

more precise details, we refer to the references that are mentioned for each technique. Fig-

ure 3.1 shows a visualization of the traditional feature reduction techniques (PCA, FM, FA,

TCA/TCA+, RP). Figure 3.2 gives an overview of neural network-based feature reduction tech-

niques (RBM and AE).

3.3.1 Traditional feature reduction techniques

We studied the following traditional feature reduction techniques.

• Principal Component Analysis (PCA): PCA is one of the most commonly used feature

reduction techniques in defect prediction [6, 9, 10, 18, 21, 23, 27, 38]. PCA reduces the

number of features by projecting the original set of features on a smaller number of prin-

cipal components.

• FastMap (FM): For N original features, FM [29] first generates a (N-1)-dimensional or-

thogonal hyper-plane of the line between two entities that are far from each other. Second,

FM projects the other entities on this hyper-plane. Because FM projects the entities on

the N − 1 orthogonal hyper-plane, we can reduce one feature from the original features.

FM repeats this procedure until we get the required number of new features. For instance,

if we want three features to visualize our data from the N original features, we repeat the

procedure N-3 times.

• Feature Agglomeration (FA): FA is a simple hierarchical clustering algorithm [30]. FA

starts by creating a new feature from each original feature. Then, FA merges the two

nearest (based on their Euclidean distance) features into one feature, and repeats this

process until the desired number of features is reached.

• Transfer Component Analysis (TCA and TCA+): TCA [32] creates new features from the

original features by projecting them on so-called transfer components (similar to PCA).

However, the goal of TCA is not to reduce the number of features, but to reduce the gap

15

TCA/TCA+

Original
Feature

New
Feature

Training
data

Test
data

Training
data

Test
data

RP

PCA

Original feature 1

Original feature N

New feature 1

FM

Entities

FA

Entities

0

BBB@

a11 a12 . . . a1M
a21 a22 . . . a2M
...

...
. . .

...
aN1 aN2 . . . aNM

1

CCCA
An original

entity , which
has featuresN

⇥

= (O1 · a11 +O2 · a21 + ...+ON · aN1, ..., O1 · a1M +O2 · a2M + ...+ON · aNM) = X

random-weight vectors matrix .N ⇥M
Each column is a random-weight vector.

(O1, O2, ..., ON)

RN⇥M

O

Figure 3.1 A visual overview of the core concepts of the traditional

feature reduction techniques. The black symbols represent the orig-

inal features (or entities in FM and FA) and the gray symbols repre-

sent the newly-generated features (or entities in FM and FA). RP (Ran-

dom projection) transforms an original entity to a new entity using M

random-weight vectors.

16

0-1 Scale Original Features

Feature1 Feature M...

...

...

V1 V2 VN

H1 H2 HM

Figure 3.2 An overview of neural network-based feature reduction

techniques (RBM and AE). RBM and AE convert the original features

(Vi), which values must range between 0 and 1, into M new features

(Hi). Note that the original input data may need to be preprocessed to

satisfy the 0-1 range requirement.

17

between the distribution of the training and testing data. During this process, the number

of features is often reduced. Hence, TCA can be used as a feature reduction technique.

TCA+ [28] is an extension of TCA, which optimizes the data using a preprocessing step

according to the gap between the distribution of the training and testing data, such as

scaling the original features between 0 and 1 instead of using the z-score.

• Random Projection (RP): RP projects the original N-dimensional features onto M gener-

ated features (M ≪ N) using a N × M random-weight vectors matrix [31]. The equation

of RP is as follows:

X = O × RN×M

where X is a generated M-dimensional vector entity, O = (O1,O2, ...,ON) is an original

entity, and RN×M is a random-weight vectors matrix. For example, if we want three fea-

tures from N original features, we prepare three random-weight vectors with N random

values in each of them. The random values are selected such that X represents the original

features.

3.3.2 Neural network-based feature reduction techniques

We studied the following neural network-based feature reduction techniques.

• Restricted Boltzmann Machine (RBM): An RBM [33] automatically extracts important

information from the original features as weights and biases on a two-layered neural

network. Each node in the first-layer corresponds to an original feature, and each node in

the second-layer corresponds to a new feature. We use the output of the second-layer as

the new features.

• Autoencoder (AE): AE [34] and RBM are similar, but trained differently. In RBM, the

network is trained based on a probability distribution. In AE, the network is trained using

the difference between the original and the generated features.

3.4 Studied feature selection techniques

We studied the correlation-based (CFS) and consistency-based feature selection techniques

(ConFS). These techniques were reported as the best-performing feature selection techniques

18

in prior studies [9, 18]. Below, we give a brief overview of these techniques.

• Correlation-based feature selection (CFS) [71]: CFS selects a subset of features based

on their correlation. The selected features have strong correlations with the class label

(clean or defective), while having a low correlation with each other.

• Consistency-based feature selection (ConFS) [72]: ConFS uses the consistency of the

class label across the entities instead of the correlation. For example, if file A has a feature

set (10, 20, 40, defective) and file B has a feature set (10, 20, 30, clean), we can identify

the defective and clean entities using the third feature. However, if a feature reduction

technique removes the third feature, file A and file B have the same feature set except for

the class label. In that case, these entities are inconsistent. Using this information, ConFS

selects the best feature subset from the original features.

3.5 Area under the receiver operating characteristic curve (AUC)

We used the Area Under the receiver operating characteristic Curve (AUC) as the perfor-

mance measure since AUC is not affected by the skewness of defect data [41, 73]. The receiver

operating characteristic (ROC) curve is created by plotting the false positive rate (on the x-axis)

and the true positive rate (on the y-axis) at various thresholds. In our experiment, the false

positive rate is defined as the portion of clean entities that are identified as defective; the true

positive is defined as the portion of defective entities that are identified as defective. The thresh-

old is used to label an entity as clean or defective by checking whether its predicted probability

is over the threshold. The AUC is the area under the ROC curve. The values of the AUC range

between 0 and 1; a perfect classifier has an AUC of 1, while a random classifier has an AUC of

0.5.

3.6 Preprocessing

Most feature reduction techniques require the data to be preprocessed. We detail the prepro-

cessing step below.

19

3.6.1 Preprocessing for traditional feature reduction techniques

The traditional feature reduction techniques require features that are normalized to a mean of

0 and a variance of 1 using the z-score [41]. The z-score is calculated as follows:

Xz =
Xorg − µ
σ

(3.1)

where µ is a mean of the value of the feature for all entities and σ is the standard deviation of

the value of the feature for all entities.

3.6.2 Preprocessing for neural network-based feature reduction techniques

The neural network-based feature reduction techniques require either binary features or fea-

tures that are between 0 and 1. Hence, we scale the original features as follows:

Xscaled =
Xorg − Xmin

Xmax − Xmin
(3.2)

where Xorg is a vector of the value of a particular feature for all entities. Xmin is the smallest

value of the feature and Xmax is the largest value of the feature for all entities [74].

3.7 Out-of-sample bootstrap sampling

Bootstrap sampling is a validation technique that is used to estimate the performance of a

model for unseen data. The technique is based on random sampling with replacement. Out-

of-sample bootstrap sampling is a bootstrap sampling technique that estimates the future per-

formance of a defect prediction model more accurately than a cross-validation scheme [73,75].

Hence, we used the out-of-sample bootstrap sampling technique instead of a conventional val-

idation technique such as 10-fold cross-validation. The process of the out-of-sample bootstrap

sampling is as follows:

1. Sample N data points following the distribution of the original dataset, with N data points,

while allowing for replacement.

2. Train a model using the sampled N data points, and test it using the data points that were

not sampled.

3. Repeat steps 1 and 2 M times.

20

4. Report the average/median performance as the performance estimate.

We used the out-of-sample bootstrap sampling under the condition where M = 100 and we

report the median performance.

21

4. Experimental setup

In this section, we give an overview of the setup of our experiments. The results are presented

in Section 5. Figure 4.1 shows the steps of our experiments. We first conducted the out-of-

sample bootstrap sampling on our studied datasets to generate and select features using each

of the studied feature reduction and selection techniques. We then preprocessed the original

features of each bootstrap sample as described in Section 3.6. We generated eight new feature

sets (one for each feature reduction technique) for each bootstrap sample. Hence, we generated

800 new feature sets using feature reduction in total. Furthermore, the two studied feature

selection techniques selected two feature subsets (one for each feature selection technique) for

each bootstrap sample. Hence, we selected 200 feature subsets using feature selection in total.

The smallest number of features in the studied datasets is 20 (i.e., in the PROMISE dataset).

Hence, to be able to observe the impact of a feature reduction technique, we configured each

feature reduction technique to generate 10 features (H1–H10). However, PCA uses variance to

decide on the number of generated features [6, 9]. Therefore, each bootstrap sample results in

a different number of generated features using PCA. We configured PCA to retain 95% of the

variance in the data [6,9]. The median number of generated features by PCA in our experiments

was 12 in the PROMISE dataset, 10 in the NASA dataset and 34 in the AEEEM dataset.

The experimental setup for each RQ is discussed in the next section.

22

Third Step

Clustering results
using t-SNE for
weights from
each feature

reduction tech.

Calculate correlation
between the

generated features
from each feature

reduction tech.

H1
H2

H10

H1
Cor 1,1
Cor 2,1

Cor 10,1

H2
Cor 1,2
Cor 2,2

Cor 10,2

H10
Cor 1,10
Cor 2,10

Cor 10,10

Cluster 1
Cluster 2

Cluster 10

...

Discussion: Which features are generated by the feature reduction tech.?

1 3

First Step

H1

H2

H10

H1
H2

H10

Ori 1
W 1,1
W 2,1

W 10,1

Ori 2
W 1,2
W 2,2

W 10,2

Ori M
W 1,M
W 2,M

W 10,M

Generated
Features
(reduction tech.)

1 All weights of the feature
reduction tech.3

O1

O2

On

Selected
Features
(selection tech.)

2

The out-of-sample bootstrap sampling.
We repeat the above procedure for each feature reduction/selection tech.

Second Step

Tech1 Tech2 Tech3 Tech4Conduct the
Scott-Knott
ESD test

AUC (RQ1)

Project 1
Model 1 Model 2 Model 5

Project 2

Project N

AUC 1,1
AUC 2,1

AUC N,1

AUC 1,2
AUC 2,2

AUC N,2

AUC 1,5
AUC 2,5

AUC N,5 Calculate IQR

RQ2: What is the impact of feature reduction tech. on the variance of the performance
across defect prediction models?
RQ3: How do feature selection techniques compare to feature reduction techniques
when applied to defect prediction?

Project 1

Project 2

Project N

Value 1
Value 2

Value N

IQR

4

6

RQ1: What is the impact of feature reduction tech. on the performance of defect prediction models?
RQ3: How do feature selection techniques compare to feature reduction techniques
when applied to defect prediction?

Conduct the
Scott-Knott
ESD test

Prediction
Models Calculate AUC for

each model for
each project for

features from each
feature

reduction/selection tech.

Tech1 Tech2 Tech3 Tech4

Model 1 Model 2 Model 5
Project 1
Project 2

Project N

AUC 1,2
AUC 2,2

AUC N,2

AUC 1,1
AUC 2,1

AUC N,1

AUC 1,5
AUC 2,5

AUC N,5

4

Model 1 Model 2 Model 5
Project 1
Project 2

Project N

Rat. 1,2
Rat. 2,2

Rat. N,2

Rat. 1,1
Rat. 2,1

Rat. N,1

Rat. 1,5
Rat. 2,5

Rat. N,5

4
Calculate the ratio

from the AUCs Pro.1 Pro.2 Pro.9 Pro.10

PROMISE, NASA, AEEEM

Summarize as
boxplots for

each project.

Median
Project 1
Project 2

Project N

Med. 1,1
Med. 2,1

Med. N,1

Compute median
ratio values across

the models for
each project.

Summarize as
tables for

each project

Pro. 1 Pro. 2 Pro. N
Tech 1
Tech 2

Tech M

Med. 1,2
Med. 2,2

Med. M,2

Med. 1,1
Med. 2,1

Med. M,1

Med. 1,N
Med. 2,N

Med. M,N

PROMISE, NASA, AEEEM

5

5

6 Summarize as
tables for

each feature
reduction/selection

tech.

Supervised/Unsupervised
Tech. 1

Project 1
Project 2

Project N

IQR. 1,1
IQR. 2,1

IQR. N,1

Tech. 2
IQR. 1,2
IQR. 2,2

IQR. N,2

Tech. M
IQR. 1,M
IQR. 2,M

IQR. N,M

1
RQ1

1 2
RQ3

For all files in a
bootstrap sample

Feature
Reduction/Selection

Tech.

Original
Features

Figure 4.1 Overview of our experimental design.

23

5. Results

In this section, we present the results of our experiments. For each RQ, we discuss the

motivation, approach and results.

5.1 RQ1: What is the impact of feature reduction techniques on the

performance of defect prediction models?

Motivation: Reducing the number of features that are used in a defect prediction model can be

beneficial for addressing the curse of dimensionality and multicollinearity of the model. There

exist two ways to reduce the number of features in a model: (1) by selecting the most important

features, and (2) by reducing the number of features by creating new, combined features from

the original features. Prior work has systematically studied the impact of feature selection

techniques on defect prediction [9, 18], but no work has conducted a large-scale study of the

impact of feature reduction techniques on defect prediction. Hence, in this RQ, we studied the

impact of feature reduction techniques on the performance (AUC) of defect prediction models.

Approach: We used each feature set that was generated by a feature reduction technique as in-

put to the studied 5 supervised and 5 unsupervised defect prediction models. We used the AUC

as the performance measure. Because we calculated the AUC of a defect prediction model us-

ing the out-of-sample bootstrap sampling 100 times for each feature reduction technique, each

model has 100 AUC values. Hence, we used the median value to represent the median per-

formance of a defect prediction model using a certain feature reduction technique. Because

we studied 26 projects, our experiments yielded 260 median AUC values for each feature re-

duction technique (5 supervised models*26 projects+5 unsupervised models*26 projects). For

comparison, we also calculated the performance of the studied defect prediction models with-

out applying a feature reduction technique (indicated as ORG). Note that we did within-project

defect prediction in our experiments.

We used the Scott-Knott ESD test [75] (using a 95% significance level) to compare the me-

dian AUC values across feature reduction techniques. The Scott-Knott test is a hierarchical

clustering algorithm that ranks the distributions of values. In particular, distributions that are

24

not statistically significantly different are placed in the same rank. The Scott-Knott ESD test

is an extension of the Scott-Knott test, which not only ranks based on significance, but also on

Cohen’s d effect size [76]. The Scott-Knott ESD test places distributions which are not signifi-

cantly different, or have a negligible effect size, in the same rank. We used the ScottKnottESD

R package(*1) that was provided by Tantithamthavorn [64].

Project-level analysis: the aforementioned procedure combines the results of all projects.

However, this procedure prevents us from understanding differences for each project. Hence,

we also studied the performance at the project-level.

We compared the ratios of the AUCs (the median AUCs across all bootstrap samples) of each

feature reduction technique to the original models. We calculated this ratio as follows:

ratio =
AUCFR

AUCORG

Where AUCORG is the AUC of a prediction model using the original features, and AUCFR is

the AUC of a prediction model using the features that were generated by a particular feature

reduction technique. Hence, a ratio larger than 1 indicates that the feature reduction technique

improved the AUC compared to the original models, while a ratio smaller than 1 indicates that

the feature reduction technique reduced the AUC. We computed the median ratio across the five

studied supervised and unsupervised prediction models.

We used the aforementioned ratio to analyze performance at the project-level. The project-

level analysis shows the impact of the different feature reduction techniques in every single

project and dataset. Figure 5.3 shows the distributions of the ratios for each studied project

for the supervised and unsupervised prediction models, respectively. Each boxplot contains 40

ratio values (5 prediction models * 8 feature reduction techniques). In addition, we show the

median ratios for the best-performing feature reduction techniques as tables for deeper analysis

(Table 5.1 and Table 5.2). These median ratios were computed from five AUC values (one for

each studied prediction model).

Results: FA and TCA can preserve the performance of the original defect prediction

models, while at the same time reducing the number of features. Figure 5.1(a) and Fig-

ure 5.1(b) show that the performance of the supervised and unsupervised defect prediction

(*1)：https://github.com/klainfo/ScottKnottESD

25

●●●●●●0.5

0.6

0.7

0.8

0.9

FA
ORG

TCA
TCA+ AE RP

RBM
PCA FM

A
U

C

(a) The supervised models

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

AE
RBM

PCA
ORG FA TCA RP FM

TCA+
A

U
C

(b) The unsupervised models

Figure 5.1 The Scott-Knott ESD test results for the supervised (logis-

tic regression, random forest, naive Bayes, decision tree, and logistic

model tree) and the unsupervised (spectral clustering, k-means, parti-

tion around medoids, fuzzy C-means, neural-gas) models. We use two

colors (dark gray and light gray) and two lines (solid and dashed lines)

to represent the ranks according to the Scott-Knott ESD test. The adja-

cent boxplots with the same color and line indicate the same rank. Oth-

erwise, the rank is changed at that point. The different rank indicates

a statistical significant difference with small effect size or over. Each

boxplot has 130 median AUC values (5 defect prediction models times

26 projects). The x-axis refers to the feature reduction techniques; the

y-axis refers to the AUC values.

26

models does not decrease when applying FA or TCA. Hence, these feature reduction tech-

niques can safely be applied to reap the benefits of a reduced number of features. In particular,

FA and TCA work well for supervised models. Interestingly, the performance of the supervised

and unsupervised defect prediction models is significantly lower when using TCA+ (which is

an extension of TCA), compared to the original TCA.

The neural network-based feature reduction techniques (RBM and AE), significantly

outperform traditional feature reduction techniques for the unsupervised defect predic-

tion models. Figure 5.1(b) shows the AUC values and the results of the Scott-Knott ESD test

for the unsupervised models after applying the studied feature reduction techniques.

The highest rank contains only the two studied neural network-based techniques: RBM and

AE. Hence, the neural network-based feature reduction techniques can significantly improve

the AUC compared to the original models and other feature reduction techniques. However,

these neural network-based feature reduction techniques do not outperform ORG for the super-

vised models. In Section 6 we further investigate why neural network-based feature reduction

techniques work well for the unsupervised, but not for the supervised defect prediction models.

The supervised models with feature reduction techniques significantly outperform the

unsupervised models with feature reduction techniques. Figure 5.2 shows the AUC after

applying the feature reduction techniques to the supervised and unsupervised models. The su-

pervised models significantly outperform the unsupervised models. Prior research [41] reported

that spectral clustering (SC) is the only studied unsupervised defect prediction model that out-

performs the supervised models.

The reason that the unsupervised models perform worse than the supervised models in Fig-

ure 5.2 is that we consider all the unsupervised models together, to be able to provide a more

generic conclusion. However, as Figure 5.2 shows, some unsupervised defect prediction models

perform better than others.

In the AEEEM dataset, the feature reduction techniques improve the prediction per-

formance of the supervised models for most projects. We observe that the feature reduction

techniques did not improve the prediction performance in many projects, as the median values

of several boxplots in Figure 5.3 are lower than 1.0. However, the studied feature reduction

techniques improved the prediction performance of the supervised models for many projects in

27

●●●●●●

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

SVL_
FA

SVL_
ORG

SVL_
TCA

SVL_
TCA+

SVL_
AE

SVL_
RP

SVL_
RBM

SVL_
PCA

USVL_
AE

USVL_
RBM

USVL_
PCA

USVL_
ORG

USVL_
FA

SVL_
FM

USVL_
TCA

USVL_
RP

USVL_
FM

USVL_
TCA+

A
U

C

Figure 5.2 The Scott-Knott ESD test results for both the supervised

and unsupervised models. We use two colors (dark gray and light gray)

and two lines (solid and dashed lines) to represent the ranks according

to the Scott-Knott ESD test. The adjacent boxplots with the same color

and line indicate the same rank. Otherwise, the rank is changed at that

point. The different rank indicates a statistical significant difference

with small effect size or over. Each boxplot has 130 median AUC val-

ues (5 defect prediction models times 26 projects). The x-axis refers to

the feature reduction techniques; the y-axis refers to the AUC values.

In the x-axis, the “SVL ”-prefix refers to the 5 supervised defect pre-

diction models; the “USVL ”-prefix refers to the 5 unsupervised defect

prediction models.

28

Ant
v1

.7

Cam
el

v1
.6

Ivy
 v1

.4

Jed
it v

4.0

Log
4j

v1
.0

Luc
en

e v
2.4

PO
I v

3.0

To
mcat

 v6
.0

Xala
n v

2.6

Xerc
es

v1
.3

0.6

0.8

1.0

1.2

1.4

PROMISE

CM1 JM1
KC

3
MC1

MC2
MW1

PC
1

PC
2

PC
3

PC
4

PC
5

NASA

Ecl
ips

e J
DT C

ore

Eq
uin

ox

Apa
che

 Lu
cen

e
Myly

n

Ecl
ips

e P
DE U

I

AEEEM

(a) The supervised models

Ant
v1

.7

Cam
el

v1
.6

Ivy
 v1

.4

Jed
it v

4.0

Log
4j

v1
.0

Luc
en

e v
2.4

PO
I v

3.0

To
mcat

 v6
.0

Xala
n v

2.6

Xerc
es

v1
.3

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
PROMISE

CM1 JM1
KC

3
MC1

MC2
MW1

PC
1

PC
2

PC
3

PC
4

PC
5

NASA

Ecl
ips

e J
DT C

ore

Eq
uin

ox

Apa
che

 Lu
cen

e
Myly

n

Ecl
ips

e P
DE U

I

AEEEM

(b) The unsupervised models

Figure 5.3 The ratios of the AUCs of the supervised and unsupervised

prediction models. Each boxplot contains 40 ratio values (5 predic-

tion models * 8 feature reduction techniques). The x-axis indicates the

studied projects. The y-axis indicates the ratio. The dashed line indi-

cates a ratio of 1.0. A ratio larger than 1.0 indicates that the feature

reduction technique improved the AUC compared to the original mod-

els, while a ratio smaller than 1.0 indicates that the feature reduction

technique reduced the AUC.

29

the AEEEM dataset (Figure 5.3(a)). We further investigate this phenomenon in Section 5.3.1.

The neural network-based techniques improve the prediction performance of the su-

pervised/unsupervised prediction models for most projects. Table 5.1 and Table 5.2 show

the median ratios for the feature reduction techniques. We observe that the neural network-

based feature reduction techniques RBM and AE have the most gray cells for the super-

vised/unsupervised prediction models in combination with the feature reduction techniques.

However, almost all feature reduction techniques did not improve the prediction performance

in the NASA dataset except for FA with the unsupervised prediction models. FA combined with

the unsupervised prediction models improved over half of the projects in the NASA dataset. We

further investigate why the feature reduction techniques work well for the AEEEM dataset but

not for the other datasets in Section 5.3.1.

5.2 RQ2: What is the impact of feature reduction techniques on the

variance of the performance across defect prediction models?

Motivation: A challenge in applying defect prediction for practitioners is to select the best-

performing model for their data from many possible defect prediction models [11, 77]. In this

RQ, we studied the variance in performance across defect prediction models of the studied

feature reduction techniques for a particular dataset. If this variance is small, the practitioner

does not need to worry about the choice at all, as the models perform similarly across datasets.

Approach: We used the interquartile range (IQR) which captures the performance variance

across the studied defect prediction models for a given project and feature reduction technique.

We used the AUC values of all the studied supervised and unsupervised models for all bootstrap

samples to conduct a new bootstrap sampling to calculate the IQR for each reduction technique

and each project. We calculated an IQR value as follows:

1. Sample 100 AUC values at random from the 100 AUC values for each studied super-

vised/unsupervised model allowing for replacement.

2. Compute the median AUC value across the sampled 100 AUC values.

3. Repeat steps 1 and 2 100 times.

30

Table 5.1 The median AUC ratios of the feature reduction and selec-

tion techniques in the studied supervised models. A ratio larger than 1

indicates that the feature reduction/selection technique improved the

AUC compared to the original models. The gray cells refer to the ratios

that are greater than 1.0. The “Improved” row indicates the number

of projects for which a feature reduction/selection technique improved

the performance.

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.015 1.004 0.983 0.896 0.995 0.956 0.962 0.962 1.012 1.006

Camel v1.6 0.973 0.979 0.921 0.880 0.996 0.962 0.948 0.948 0.962 0.956

Ivy v1.4 1.065 1.081 1.005 1.005 1.026 0.999 1.036 1.020 1.062 1.037

Jedit v4.0 1.012 0.996 0.971 0.775 1.011 0.921 0.952 0.947 0.984 0.996

Log4j v1.0 1.047 1.034 1.000 0.960 1.012 0.895 0.961 0.954 0.993 1.002

Lucene v2.4 1.016 0.956 0.940 0.804 0.978 0.886 0.962 0.955 0.990 0.978

POI v3.0 0.932 0.899 0.955 0.739 0.993 0.946 0.965 0.971 1.016 1.003

Tomcat v6.0 1.014 1.016 0.947 0.875 0.997 0.925 0.985 0.990 1.045 1.026

Xalan v2.6 0.861 0.912 0.987 0.698 0.992 0.970 0.993 0.985 1.012 0.998

Xerces v1.3 1.032 1.022 0.969 0.817 1.019 1.017 1.034 1.033 1.005 1.012

N
A

SA

CM1 1.004 0.979 0.939 0.984 0.974 0.995 0.949 0.940 1.028 0.981

JM1 1.004 1.001 0.997 0.923 0.999 1.003 1.008 0.956 1.000 1.001

KC3 0.910 0.944 0.901 0.923 1.010 0.924 0.905 0.874 1.025 0.985

MC1 0.956 1.021 0.932 0.901 0.999 0.915 0.980 0.932 1.001 0.973

MC2 1.019 1.014 0.955 0.947 1.037 1.014 0.976 0.972 0.973 0.968

MW1 1.005 1.016 0.949 0.984 1.019 0.991 0.952 0.963 1.016 1.015

PC1 0.906 0.830 0.936 0.972 1.013 0.976 0.971 0.925 1.004 1.021

PC2 1.039 1.019 0.931 0.994 1.020 0.999 0.935 0.933 1.169 1.028

PC3 0.944 0.971 0.985 0.921 0.997 0.988 1.001 0.968 1.026 0.995

PC4 0.793 0.806 0.931 0.651 0.906 0.862 0.866 0.870 1.003 0.986

PC5 0.999 0.982 0.994 0.798 0.990 0.977 0.989 0.986 0.986 0.997

A
E

E
E

M

Eclipse JDT Core 1.028 1.010 1.019 0.874 1.007 0.959 1.015 0.986 0.993 1.012

Equinox 1.074 1.043 1.006 0.973 1.028 0.996 1.000 1.010 1.060 1.024

Apache Lucene 1.112 1.079 1.090 1.045 1.009 1.063 1.030 1.039 1.021 1.035

Mylyn 1.089 1.057 0.980 0.921 1.052 0.951 1.066 1.065 1.037 1.023

Eclipse PDE UI 1.071 1.058 1.075 0.861 1.035 0.944 1.020 0.905 0.995 1.006

Improved 17 15 5 2 14 4 8 5 17 15

31

Table 5.2 The median AUC ratios of the feature reduction and selec-

tion techniques in the studied unsupervised models.

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.005 1.000 1.001 0.739 0.896 0.695 0.918 0.748 1.002 1.006

Camel v1.6 0.989 0.980 1.002 0.894 0.979 0.848 0.984 0.933 0.977 0.988

Ivy v1.4 1.040 1.011 1.006 0.938 0.850 0.750 0.991 0.874 0.937 0.928

Jedit v4.0 1.055 1.038 1.000 0.895 1.033 0.888 0.966 0.802 0.939 0.962

Log4j v1.0 0.993 0.989 1.001 0.950 0.973 0.694 0.924 0.790 0.954 0.986

Lucene v2.4 1.110 1.131 1.001 0.870 0.989 0.894 0.966 0.858 0.984 1.004

POI v3.0 0.919 0.924 1.002 0.755 1.036 0.875 0.610 0.755 0.962 0.982

Tomcat v6.0 1.041 1.007 0.997 0.762 0.956 0.652 1.007 0.763 1.010 0.968

Xalan v2.6 1.070 1.065 0.997 0.885 0.936 0.965 1.084 0.848 0.964 0.974

Xerces v1.3 1.244 1.210 1.008 0.885 1.259 0.893 1.201 0.939 1.106 1.017

N
A

SA

CM1 1.008 0.996 0.997 0.967 0.979 1.049 0.983 0.844 1.030 0.949

JM1 0.992 1.023 1.002 0.953 1.036 0.997 1.011 0.849 1.008 1.001

KC3 0.970 0.987 1.000 0.974 1.014 0.997 0.998 0.850 0.968 0.955

MC1 1.005 1.023 1.000 0.891 1.021 1.000 0.994 0.816 1.081 1.023

MC2 1.073 1.043 1.000 0.981 1.018 0.985 0.995 0.862 0.993 0.991

MW1 0.939 0.971 1.000 0.973 0.966 0.990 0.957 0.746 1.017 1.019

PC1 0.990 0.996 0.996 0.927 1.027 0.935 0.993 0.855 1.102 1.041

PC2 0.985 0.976 0.994 0.975 0.985 0.993 0.966 0.774 1.035 0.940

PC3 1.074 1.090 1.000 0.940 0.954 0.758 1.041 0.831 1.213 1.123

PC4 0.986 0.982 0.998 0.902 1.062 0.829 0.961 0.818 1.123 0.991

PC5 0.971 0.975 0.999 0.866 0.971 0.987 0.932 0.857 1.030 0.997

A
E

E
E

M

Eclipse JDT Core 1.121 1.089 0.997 0.888 0.957 0.995 1.107 0.805 1.017 1.007

Equinox 1.029 1.105 1.000 0.913 1.069 1.033 1.073 0.900 1.025 1.033

Apache Lucene 1.031 1.053 1.000 0.863 0.989 1.006 1.024 0.740 0.956 0.981

Mylyn 1.006 1.015 1.001 0.829 0.996 0.892 0.994 0.827 1.009 0.996

Eclipse PDE UI 1.015 1.024 1.000 0.827 0.980 0.977 0.993 0.793 1.003 1.024

Improved 16 15 9 0 10 3 8 0 16 11

32

4. Compute the IQR value for the 500 sampled median AUC values (5 super-

vised/unsupervised prediction models * 100 median AUC values) for each feature re-

duction/selection technique for each studied project.

Where the IQR values are computed as follows:

IQR = Q3 − Q1

where Q1 is the first quartile of the 500 sampled median AUC values, and Q3 is the third quartile

of the 500 sampled median AUC values. The first quartile is the median between the smallest

and the median of the 500 AUC values, and the third quartile is the median between the median

and the largest of the 500 AUC values. As we studied 26 projects, we have 26 IQR values for

each feature reduction technique. We used the Scott-Knott ESD test to compare the distributions

of IQRs for each feature reduction technique. Figure 5.4 shows the results of the Scott-Knott

ESD test.

In addition, we compared the IQR values of the prediction models across the feature reduction

techniques for each project. Table 5.3 and Table 5.4 show the results of the IQR analysis at the

project level. Each cell contains an IQR value that was computed from 500 bootstrapped median

AUC values of the supervised and unsupervised prediction models.

Results: The neural network-based feature reduction techniques, RBM and AE, gen-

erate features that result in less variance across the supervised models than the original

features. Figure 5.4(a) shows that the original features (ORG) are in the second rank, and RBM

and AE belong to the first rank. Hence, RBM and AE significantly improve the variance of the

performance across the supervised defect prediction models.

Almost all feature reduction techniques (except PCA) generate features that have a sig-

nificantly smaller performance variance across the unsupervised models than the original

features. Figure 5.4(b) shows that the unsupervised models that use features that were gener-

ated by PCA, or the original features are in the lowest rank. Hence, using the feature reduction

techniques (except PCA) in combination with an unsupervised defect prediction model results

in a small performance variance, which is helpful for practitioners.

The neural network-based feature reduction techniques improve the performance vari-

ance of the supervised models for the largest number of projects. Table 5.3 shows that the

33

●
●

●

●

0.0

0.1

0.2

0.3

AE
RBM FA TCA

ORG RP
TCA+

PCA FM

IQ
R

(a) The supervised models

●

●

●

●●

●

●

●●

●

●●●

0.0

0.1

0.2

0.3

TCA+
TCA AE

RBM FA RP FM
PCA

ORG
IQ

R

(b) The unsupervised models

Figure 5.4 The Scott-Knott ESD test results for the IQR of the super-

vised and unsupervised models. We use two colors (dark gray and

light gray) and two lines (solid and dashed lines) to represent the ranks

according to the Scott-Knott ESD test. The adjacent boxplots with the

same color and line indicate the same rank. Otherwise, the rank is

changed at that point. The different rank indicates a statistical signif-

icant difference with small effect size or over in variance (IQR). Each

boxplot has 26 IQR values (one for each project). The x-axis refers to

the feature reduction techniques; the y-axis refers to the IQR values.

34

Table 5.3 The IQR ratio for the feature reduction techniques in the

studied supervised prediction models. The gray cells refer to the ratios

that are greater than 1.0. The “Improved” row indicates the number of

gray cells in the column.

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.769 1.330 0.849 0.439 1.024 0.943 0.975 1.006 1.294 1.031

Camel v1.6 3.885 3.027 0.842 0.809 0.774 0.777 1.312 1.357 1.637 1.466

Ivy v1.4 1.841 2.964 1.978 2.197 2.001 1.151 3.641 1.233 1.340 2.072

Jedit v4.0 1.018 1.180 0.562 0.501 0.771 0.595 0.688 0.718 0.767 0.683

Log4j v1.0 1.335 2.643 1.030 5.212 1.388 1.898 1.252 1.189 1.361 1.377

Lucene v2.4 1.737 0.661 0.554 0.473 0.635 1.141 0.666 0.647 0.800 0.658

POI v3.0 0.973 0.586 0.628 0.241 0.959 1.642 0.894 0.977 1.268 1.157

Tomcat v6.0 1.351 1.429 0.671 0.657 1.096 0.739 0.854 0.921 1.369 1.204

Xalan v2.6 0.762 0.615 0.863 0.495 0.725 0.750 0.531 0.556 0.972 0.841

Xerces v1.3 1.918 1.749 0.806 1.022 0.847 0.943 1.064 1.078 1.171 1.417

N
A

SA

CM1 0.196 0.227 0.241 0.311 0.329 0.683 0.389 0.430 0.589 0.453

JM1 2.502 2.579 1.886 0.604 0.804 0.972 1.036 0.758 0.892 0.986

KC3 0.582 0.955 1.509 1.130 0.661 1.093 0.906 0.751 1.871 1.710

MC1 0.639 0.670 0.605 0.734 0.980 0.810 1.227 0.967 0.831 2.011

MC2 1.087 1.080 0.545 1.074 0.808 0.835 0.734 0.679 1.121 1.169

MW1 1.199 1.451 0.722 4.598 2.933 1.166 2.113 1.697 1.792 1.274

PC1 0.826 0.984 0.649 1.078 1.326 1.936 2.501 0.875 1.179 1.578

PC2 0.541 0.565 0.454 0.788 1.067 1.317 0.937 0.898 0.796 0.389

PC3 1.060 1.522 0.684 0.985 1.274 0.718 0.862 0.695 1.331 1.145

PC4 0.885 1.504 0.548 0.397 0.852 1.055 0.681 0.750 5.539 1.138

PC5 0.796 1.892 0.752 0.344 0.908 0.705 0.723 0.757 0.798 1.009

A
E

E
E

M

Eclipse JDT Core 1.332 1.433 1.246 0.434 1.556 0.998 1.373 0.970 1.072 1.393

Equinox 1.989 2.927 1.543 0.821 1.076 0.822 1.075 1.129 1.438 1.337

Apache Lucene 1.373 1.844 0.936 0.608 0.989 1.678 1.014 0.993 0.881 1.022

Mylyn 5.981 4.024 0.940 0.946 5.923 1.155 1.289 1.282 1.992 2.406

Eclipse PDE UI 1.574 1.208 1.096 0.224 0.392 0.374 0.434 0.384 0.475 0.452

Improved 17 18 7 7 11 11 12 8 16 19

35

Table 5.4 The IQR ratio for the feature reduction techniques in the

studied unsupervised prediction models. The gray cells refer to the ra-

tios that are greater than 1.0. The “Improved” row indicates the number

of gray cells in the column.

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 2.693 1.772 1.035 2.539 3.228 3.217 1.447 4.320 0.335 0.245

Camel v1.6 1.224 1.715 1.331 0.961 1.659 0.778 0.503 0.680 0.209 0.301

Ivy v1.4 2.881 4.073 0.924 2.096 3.690 3.628 3.317 3.076 2.809 2.153

Jedit v4.0 3.221 3.229 1.012 1.704 4.387 2.213 3.346 4.496 0.671 0.790

Log4j v1.0 3.400 3.445 1.221 1.346 0.542 0.977 1.562 0.783 0.762 0.793

Lucene v2.4 0.460 0.982 0.653 0.796 0.577 1.865 0.945 0.560 0.176 0.163

POI v3.0 0.764 0.582 1.152 7.759 1.425 7.589 4.332 2.842 0.415 0.927

Tomcat v6.0 2.993 1.985 1.116 2.326 3.566 4.079 1.512 5.814 0.630 0.904

Xalan v2.6 2.028 3.317 0.763 2.339 1.363 3.747 0.829 0.907 0.362 2.860

Xerces v1.3 8.508 6.308 1.132 11.297 6.729 10.673 2.089 10.157 4.720 0.980

N
A

SA

CM1 2.032 2.820 1.074 0.694 1.274 1.535 1.573 3.922 1.238 0.688

JM1 1.206 5.044 0.988 0.983 1.360 1.304 39.761 154.852 1.210 1.009

KC3 0.920 0.753 0.936 1.280 0.639 0.780 0.946 3.250 0.591 0.750

MC1 5.284 3.674 1.035 0.576 3.833 1.261 5.611 3.635 1.132 0.971

MC2 1.377 2.056 1.839 0.778 1.670 1.919 2.709 4.491 1.457 1.441

MW1 2.059 1.207 0.952 1.043 0.897 1.008 1.325 1.520 0.814 0.816

PC1 2.413 2.298 0.996 1.047 1.405 0.866 3.256 3.491 0.964 0.748

PC2 2.058 1.900 1.014 2.441 5.610 1.035 5.055 7.867 2.231 1.436

PC3 2.293 2.230 1.069 2.318 4.411 7.025 13.146 13.203 2.622 1.182

PC4 4.032 3.431 0.917 4.188 1.266 3.476 9.617 10.161 1.653 1.177

PC5 5.900 11.856 1.025 18.438 4.839 2.096 30.503 5.129 1.355 1.267

A
E

E
E

M

Eclipse JDT Core 15.497 15.262 0.973 1.727 1.290 3.088 20.680 8.202 1.104 1.505

Equinox 3.504 7.741 0.684 3.573 1.155 1.420 6.460 9.422 0.676 0.601

Apache Lucene 8.221 6.507 0.989 0.521 4.423 1.610 5.717 8.040 0.659 0.920

Mylyn 10.940 9.597 1.038 8.177 1.099 1.036 17.600 11.010 0.980 0.889

Eclipse PDE UI 3.237 2.806 1.068 0.690 1.235 0.465 5.627 6.956 0.389 0.366

Improved 23 23 15 18 22 21 22 22 11 9

36

features that were generated by the neural network-based feature reduction techniques (RBM

and AE) improved the performance variance (IQR) across the studied supervised prediction

models for the largest number of projects compared to the other feature reduction techniques,

and the original models. RBM and AE also belong to the first rank of the overall performance

variance result (Figure 5.4(a)).

The neural network-based feature reduction techniques improve the performance vari-

ance of the unsupervised models for the largest number of projects. Table 5.4 shows that the

features that were generated by the neural network-based feature reduction techniques (RBM

and AE) improved the performance variance across the studied unsupervised prediction models

for the largest number of projects. Interestingly, in terms of overall performance variance, TCA

and TCA+ belong to the first and the second rank (Figure 5.4(b)). However, the difference with

the neural network-based feature reduction techniques is only small (TCA+) and negligible

(TCA), according to the Cliff’s delta effect size.

5.3 RQ3: How do feature selection techniques compare to feature re-

duction techniques when applied to defect prediction?

In this RQ, we compare feature reduction and selection techniques along two dimensions:

the performance and the performance variance of the defect prediction models. We study the

correlation-based (CFS) and consistency-based (ConFS) feature selection techniques, as they

performed best according to prior studies [9, 18].

Motivation: In RQ1 and RQ2, we found that several feature reduction techniques (FA, RBM

and AE) outperform the original features (ORG) in terms of performance or performance vari-

ance of the defect prediction models. Prior work [9, 18] showed that several feature selection

techniques outperform the original models as well. In this RQ, we compare the performance

(AUC) and the performance variance (IQR) of the feature reduction and selection techniques

when applied to defect prediction models.

Approach: The experimental procedure is the same as the procedures of RQ1 and RQ2 (only

we use the two feature selection techniques CFS and ConFS instead of the feature reduction

techniques).

37

Results: The feature selection techniques (correlation-based feature selection (CFS) and

consistency-based feature selection technique (ConFS)) significantly outperform the orig-

inal features (ORG) in the supervised models, and perform as well as the feature agglom-

eration (FA) reduction technique. Figure 5.5(a) shows the AUC values and the results of the

Scott-Knott ESD test for the supervised models after applying the studied feature reduction and

selection techniques. (*2) Each boxplot shows the median AUC values for the projects using a

certain feature reduction/selection technique. CFS, ConFS and FA are in the highest rank by

themselves, which indicates that the subsets of features that were selected by CFS or ConFS

perform as well as the feature sets that were generated by FA for the supervised models.

The neural network-based feature reduction techniques (RBM and AE) significantly

outperform the feature selection techniques (CFS and ConFS) for the unsupervised defect

prediction models. The highest rank contains only the two studied neural network-based fea-

ture reduction techniques (Figure 5.5(b)). The studied feature selection techniques (CFS and

ConFS) belong to the second rank, together with the original models (ORG). Hence, the studied

feature selection techniques have a worse performance than the neural network-based feature

reduction techniques for the unsupervised defect prediction models.

In the supervised models, applying the neural network-based feature reduction tech-

niques, RBM and AE, or the feature selection techniques, CFS and ConFS, significantly

outperforms the original models in terms of performance variance. The original models

(ORG) belong to the third rank (Figure 5.6(a)). The neural network-based feature reduction

techniques and the feature selection techniques belong to the first or second rank, hence they

have a smaller performance variance than the original models.

In the unsupervised models, all feature reduction techniques (except PCA) significantly

outperform the feature selection techniques in terms of performance variance. The feature

selection techniques belong to the worst rank together with the original models (ORG) and

PCA (Figure 5.6(b)). Hence, the studied feature selection had a larger performance variance

than almost all the studied feature reduction techniques for the unsupervised defect prediction

(*2)：Note that the ranks are slightly different from Figure 5.1 due to the fact that Scott-Knott ESD is a clustering

algorithm, and hence affected by the total set of input distributions. For more information see https://github.

com/klainfo/ScottKnottESD.

38

●●●●●●0.5

0.6

0.7

0.8

0.9

CFS FA

Con
FS

ORG
TCA

TCA+ AE RP
RBM

PCA FM

A
U

C

(a) The supervised models

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

AE
RBM

CFS
PCA

ORG FA

Con
FS

TCA RP FM
TCA+

A
U

C

(b) The unsupervised models

Figure 5.5 The Scott-Knott ESD test results for the supervised (logis-

tic regression, random forest, naive Bayes, decision tree, and logistic

model tree) and unsupervised (spectral clustering, k-means, partition

around medoids, fuzzy C-means, neural-gas) models. We use two col-

ors (dark gray and light gray) and two lines (solid and dashed lines)

to represent the ranks according to the Scott-Knott ESD test. The ad-

jacent boxplots with the same color and line indicate the same rank.

Otherwise, the rank is changed at that point. The different rank indi-

cates a statistical significant difference with small effect size or over

in performance. Each boxplot has 130 median AUC values (5 defect

prediction models times 26 projects). The x-axis refers to the feature

reduction/selection techniques; the y-axis refers to the AUC values.

39

●

●

●

●

●

0.0

0.1

0.2

0.3

AE
CFS

RBM

Con
FS FA TCA

ORG RP
TCA+

PCA FM

IQ
R

(a) The supervised models

●

●

●
●

●

●

●●

●

●●
●

●

0.0

0.1

0.2

0.3

TCA+
TCA AE

RBM FA RP FM
PCA

ORG
CFS

Con
FS

IQ
R

(b) The unsupervised models

Figure 5.6 The Scott-Knott ESD test results for IQR in the supervised

and unsupervised models. We use two colors (dark gray and light gray)

and two lines (solid and dashed lines) to represent the ranks accord-

ing to the Scott-Knott ESD test. The adjacent boxplots with the same

color and line indicate the same rank. Otherwise, the rank is changed

at that point. The different rank indicates a statistical significant differ-

ence with small effect size or over in variance (IQR). Each boxplot has

26 IQR values (one for each project). The x-axis refers to the feature

reduction/selection techniques; the y-axis refers to the IQR values.

40

models.

Our above findings for RQ3 are confirmed by our project-level analysis. Table 5.1 and

Table 5.2 show the median ratios of the performance of each feature reduction/selection tech-

nique compared to the original models. We calculated this ratio as follows:

ratio =
AUCFRS

AUCORG

Where AUCORG is the AUC (the median AUC across all bootstrap samples) of a prediction

model using the original features, and AUCFRS is the AUC of a prediction model using the

features that were generated/selected by a particular feature reduction or selection technique.

We computed the median ratio across the five studied supervised and unsupervised prediction

models. Table 5.1 and Table 5.2 confirm our above findings about the performance of the studied

feature selection techniques compared to that of the feature reduction techniques.

Table 5.3 and Table 5.4 show the IQR ratio values of each feature reduction/selection tech-

nique. We define this ratio as follows:

ratio =
IQRFRS

IQRORG

Where IQRORG is the IQR (the median IQR across all bootstrap samples) of a prediction model

using the original features, and IQRFRS is the IQR of a prediction model using the features that

were generated/selected by a particular feature reduction or selection technique. We calculated

the median IQR value for the supervised models using bootstrap samples as follows:

1. Sample 100 values following the distribution of the 100 AUC values for each studied

supervised model while allowing for replacement.

2. Compute the median AUC value across the sampled 100 values.

3. Repeat steps 1 and 2 100 times.

4. Compute the IQR value for the 500 sampled median AUC values (5 supervised prediction

models * 100 median AUC values) for each feature reduction/selection technique for each

studied project.

We repeated the above procedure for the unsupervised models. Table 5.3 shows that the

project-level results confirm our findings above, as the RBM and AE feature reduction tech-

niques and the CFS and ConFS feature selection techniques improve the performance variance

41

of most projects compared to the other techniques. In addition, Table 5.4 shows that all fea-

ture reduction techniques improve the performance variance of more projects than the CFS and

ConFS feature selection techniques.

5.3.1 Why do feature reduction techniques work well in the AEEEM dataset?

Motivation: We observed that the feature reduction techniques work better for the projects in

the AEEEM dataset than for the projects in the other datasets. Ghotra et al. [9] applied PCA to

the data of each project to capture its richness. We use the same analysis to investigate whether

the dataset richness is an explanation of why feature reduction techniques work better for the

AEEEM dataset.

Approach: The idea behind Ghotra et al.’s analysis [9] is to generate features from a dataset

using PCA that (together) retain at least 95% of the variance of the original dataset. Ghotra et

al. reason that a larger number of generated features indicates a richer dataset. Likewise, they

interpret that a small number of generated features indicates redundancy in the original dataset.

We applied PCA to each project and counted the number of generated features.

Results: The PROMISE, NASA, and AEEEM datasets have different data richness char-

acteristics, however; the characteristics of the projects within each dataset are consistent.

Table 5.5 shows the number of generated features. While the number of generated features is

approximately the same for the PROMISE and NASA projects, the proportion of generated fea-

tures compared to the number of original features is different. In addition, this proportion is even

lower for the AEEEM projects. Hence, we conclude that the datasets have different character-

istics in terms of data richness. However, within each dataset, the projects have approximately

the same richness characteristics.

The original features of the projects in the AEEEM dataset are more diverse than the

projects of the other datasets. We observe that 36 principal components are needed to cover

95% of the variance of the Eclipse JDT Core project in Figure 5.7, compared to 12 components

for the Ant project and 11 for the CM1 project. Hence, the original features of the AEEEM

dataset are much more diverse than those of the PROMISE and the NASA datasets. The di-

versity of the AEEEM dataset could be a reason why feature reduction techniques improve the

performance of this dataset.

42

Table 5.5 The number of generated features (principal components)

that are needed to account for 95% of the data variance.

Studied Studied # of Studied # of Generated % of Generated

Dataset Project Features Features Features

PROMISE Ant v1.7 20 12 60.0

Camel v1.6 20 12 60.0

Ivy v1.4 20 10 50.0

Jedit v4.0 20 12 60.0

Log4j v1.0 20 12 60.0

Lucene v2.4 20 12 60.0

POI v3.0 20 12 60.0

Tomcat v6.0 20 12 60.0

Xalan v2.6 20 12 60.0

Xerces v1.3 20 12 60.0

NASA CM1 37 11 29.7

JM1 21 8 38.1

KC3 39 10 25.6

MC1 38 15 39.5

MC2 39 11 28.2

MW1 37 11 29.7

PC1 37 12 32.4

PC2 36 10 27.8

PC3 37 13 35.1

PC4 37 14 37.8

PC5 38 15 39.5

AEEEM Eclipse JDT Core 212 36 17.0

Equinox 212 31 14.6

Apache Lucene 212 33 15.6

Mylyn 212 46 21.7

Eclipse PDE UI 212 38 17.9

43

●

●

●

●
●

●
●

●
● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Number of features/principal components

T
he

 c
um

ul
at

iv
e

pr
op

or
tio

n
of

 th
e

va
ria

nc
e

● Ant v1.7 (PROMISE) CM1 (NASA) Eclipse JDT Core (AEEEM)

Figure 5.7 The number of principal components (features that were

generated by PCA) that are needed to account for the original data

variance for the Ant, CM1 and Eclipse projects in the PROMISE, NASA

and AEEEM datasets. The x-axis indicates the number of principal

components. The y-axis indicates the cumulative proportion of the

variance. The other projects of the datasets showed a similar pattern.

44

5.3.2 Comparing feature selection and reduction techniques along the dimensions

of understandability and execution time

The understandability of the metrics in a defect prediction model is important, as under-

standable metrics make the model, and its predictions, easier to explain [78]. Feature reduction

techniques combine the original features into one or more newly-generated features. Hence,

these newly-generated features are by definition harder to understand than the features that are

a subset (i.e., they were selected) of the original features. We inspected the feature sets that

were generated during our experiments, and we observed that almost all generated feature sets

consist of features that are a complex combination of all available original features. Hence,

defect prediction models that are generated using feature reduction techniques are harder to

understand than those that use feature selection.

In addition, the execution time of a feature reduction/selection technique and a defect predic-

tion model is important – models that take too long to build or execute are not very useful in

practice. To conduct our experiments in a timely manner, we ran them on a cluster of servers in

parallel. Hence, it is difficult to compare the execution time of the experiments. In general, the

execution time of our feature reduction/selection techniques and defect prediction models was

short (i.e., in the range of minutes). Therefore, execution time is not a very problematic met-

ric for practitioners who wish to apply feature reduction or selection to their defect prediction

models.

45

6. Discussion: Which features are generated by the fea-

ture reduction techniques?

In RQ1, RQ2, and RQ3, we observed that some feature reduction/selection techniques gen-

erate/select features that perform defect prediction better and less variance than the features

that were generated/selected by other feature reduction/selection techniques. In particular, we

found that RBM and AE outperform the other studied feature reduction/selection techniques

for the unsupervised models. However, RBM and AE are less-performing feature reduction

techniques than the original models (ORG) for the supervised models. In this discussion, we

take a closer look at the generated features to investigate why neural network-based feature re-

duction techniques perform well for the unsupervised defect prediction models, but not for the

supervised models. In this section, we discuss possible explanations for the differences in AUC

and variance of the performance.

Approach: We focused our discussion on the RBM and AE feature reduction techniques, as

these techniques generate new features by assigning (combinations of) weights to the original

features. For example, a newly generated feature may be generated by 0.5 times original metric

1 and 0.5 times original metric 2. These weight sets allow us to study how the new features

are related to the original features, and to the features that were generated by other feature

reduction techniques, and extract possible explanations for the improved and small variance of

the performance. RP and PCA also generate new features by assigning weights to the original

features, however, the weights of RP are randomly generated, and PCA generates a different

number of features for each project, which makes them difficult to compare. Hence, we focused

our discussion on RBM and AE. As we generated 100 new feature sets of 10 features using

RBM and AE, we generated 1,000 weight sets using these two feature reduction techniques for

each project. For each feature reduction technique, we randomly selected 10 (out of the 100)

generated feature sets for our investigation.

We conducted correlation analysis and clustering analysis on the studied feature sets to study

their similarity within and across projects. The correlation analysis shows how independent the

features that are generated for a project are. Highly correlated features can negatively impact

46

the performance of regression models [7] and this effect can affect our supervised models as

well. We first calculated the Spearman rank correlation [79] between the generated features in a

feature set within a project. Each generated feature was normalized using the z-score. We chose

Spearman rank correlation because it is non-parametric, and therefore requires no assumption

about the distribution of the studied data.

To study the similarity of the generated feature sets across projects within a dataset, we

compared the weight sets of the generated features. First, we normalized all weights using

z-score normalization. Second, we used k-means to cluster the weight sets of the features, and

then we used t-distributed stochastic neighbour embedding (t-SNE) [80] to visualize the clus-

tering results. t-SNE is commonly used for visualizing high dimensional features in scatter

plots [81]. In particular, t-SNE models high-dimensional objects (i.e., feature sets) by two- or

three-dimensional points such that similar objects are close, and dissimilar objects are further

away from each other.

The goal of our clustering analysis is to find out how similar the generated features are across

projects within a dataset. Hence, we configured k-means to search for 10 clusters (as we are

generating 10 new features). We visualized the clustering results using the default settings of

t-SNE.

Results: RBM generates feature sets in which all features are strongly correlated with

each other. Figure 6.1(a) shows the Spearman rank correlation of one set of RBM-generated

features for the Ant project in the PROMISE dataset using a heatmap. We observe that all cor-

relations are close to 1 (dark gray), which means that all RBM-generated features in the feature

set are strongly correlated (and hence similar) to each other. We observe similar correlations

for the other studied feature sets for the PROMISE and NASA datasets. RBM generates weakly

correlated features for several projects in the AEEEM dataset (e.g., for the Eclipse project: Fig-

ure 6.1(b)). However, if we use a smaller set of original features from that dataset, such as only

the change features, RBM generates strongly correlated features for these projects as well (e.g.,

for the Eclipse project: Figure 6.1(c)).

We observe similar correlations in feature sets that were generated by AE. However, the

correlation within the AE-generated feature sets appeared to be linked to the specific project.

For example, AE generates sets of features that are strongly correlated to each other for the

47

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 1.000

1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

1.000 0.999 1.000 0.999 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

(a) RBM-generated features in

the Ant project in the PROMISE

dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.498

1.000 0.238 0.856

1.000 0.692 0.763 0.794

1.000 0.696 0.888 0.299 0.925

1.000 0.976 0.706 0.949 0.282 0.918

1.000 0.436 0.447 0.889 0.404 0.963 0.634

1.000 0.939 0.227 0.246 0.707 0.181 0.993 0.455

1.000 0.521 0.728 0.851 0.849 0.893 0.846 0.577 0.911

1.000 0.692 0.953 0.984 0.427 0.444 0.840 0.377 0.968 0.646

(b) RBM-generated features

in the Eclipse project in the

AEEEM dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 1.000

1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(c) RBM-generated features in

the Eclipse project using change

features in the AEEEM dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.911

1.000 0.927 0.918

1.000 0.899 0.925 0.901

1.000 0.896 0.918 0.933 0.899

1.000 0.910 0.918 0.922 0.933 0.934

1.000 0.808 0.880 0.803 0.828 0.876 0.847

1.000 0.824 0.883 0.890 0.895 0.889 0.899 0.875

1.000 0.855 0.827 0.884 0.909 0.865 0.879 0.883 0.864

1.000 0.861 0.896 0.852 0.863 0.906 0.870 0.884 0.899 0.863

(d) AE-generated features in the

Log4j project in the PROMISE

dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.104

1.000 0.442 0.312

1.000 0.333 0.618 0.067

1.000 0.402 0.487 0.526 0.341

1.000 0.146 0.155 0.177 0.452 0.481

1.000 0.368 0.286 0.332 0.485 0.374 0.220

1.000 0.428 0.220 0.260 0.420 0.023 0.446 0.101

1.000 0.443 0.363 0.119 0.495 0.610 0.413 0.674 0.162

1.000 0.095 0.101 0.507 0.351 0.125 0.120 0.273 0.259 0.287

(e) AE-generated features in the

Camel project in the PROMISE

dataset.

Figure 6.1 The Spearman rank correlation of generated features in

the studied datasets. The darker colours indicate a strong absolute

correlation (close or equal to one). The lighter colours indicate a weak

absolute correlation (close or equal to zero).

48

Log4j project (see Figure 6.1(d)), but features that are not as strongly correlated for the Camel

project (see Figure 6.1(e)). Hence, a possible explanation of the reason for the small variance of

the performance of features that were generated by the neural network-based feature reduction

techniques (i.e., RBM and AE) could be the strong correlation within the generated feature sets.

RBM mostly generates the same feature sets across projects. Figure 6.2(a) shows the

k-means clustering result for one bootstrap sample of the RBM-generated weight sets in the

PROMISE dataset using t-SNE [81]. Each shape refers to a project, and each color refers to

a cluster that was identified by k-means clustering. The x-axis and y-axis refer to the t-SNE

features that were generated from the 260 RBM-generated weight sets (10 weight sets on each

project) by t-SNE. Hence, if there are 10 clearly identifiable groups of different shapes with the

same colour in the t-SNE plot, we can conclude that the generated weight sets (and hence the

features) are the same across projects. We observe that each colored cluster contains all shapes,

which indicates that each cluster contains all projects. Hence, in this bootstrap sample, RBM

generated the same feature sets across projects in the PROMISE dataset. We noticed a similar

pattern for the other projects in the PROMISE dataset for the other bootstrap samples.

Figure 6.2(b) shows the result for the RBM-generated weight sets in the NASA dataset. The

figure shows that RBM generated different feature sets across projects in the NASA dataset. A

possible reason is that the original features in the NASA dataset are different in each project

(Table 3.1).

Figure 6.2(c) shows the result for the RBM-generated weight sets in the AEEEM dataset. The

figure shows that RBM generated different feature sets across projects in the AEEEM dataset.

The explanation is similar to our observation during the correlation analysis. If we use one type

of features, such as only the change features, Figure 6.2(d) shows that RBM generates the same

feature sets across projects. However, if we use complexity code change features, we observe

that RBM generates different feature sets across projects (Figure 6.2(e)). AE generated different

features across projects (Figure 6.2(f), 6.2(g) and 6.2(h)).

From the discussion results, we can extract several possible explanations for the fact that

RBM and AE significantly improve the variance of the performance across the unsupervised

models, but not across the supervised models, and for why these feature reduction techniques

perform well for the unsupervised models. As the studied neural network-based feature reduc-

49

20 10 0 10 20 30
t-SNE feature1

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(a) RBM-generated weight sets in

the PROMISE dataset.

30 20 10 0 10 20 30 40
t-SNE feature1

30

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(b) RBM-generated weight sets in

the NASA dataset.

80 60 40 20 0 20 40 60
t-SNE feature1

60

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(c) RBM-generated weight sets in

the AEEEM dataset.

40 30 20 10 0 10 20 30 40
t-SNE feature1

60

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(d) RBM-generated weight sets us-

ing Change features in the AEEEM

dataset.

150 100 50 0 50 100 150
t-SNE feature1

100

75

50

25

0

25

50

75

100

t-S
NE

 fe
at

ur
e2

(e) RBM-generated weight sets us-

ing complexity code change features

in the AEEEM dataset.

60 40 20 0 20 40 60
t-SNE feature1

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(f) AE-generated weight sets in the

PROMISE dataset.

30 20 10 0 10 20
t-SNE feature1

30

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(g) AE-generated weight sets in the

NASA dataset.

40 20 0 20 40
t-SNE feature1

60

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(h) AE-generated weight sets us-

ing Change features in the AEEEM

dataset.

Figure 6.2 k-means clustering results with t-SNE for generated weight

sets in the studied datasets. Each shape represents a project, and

each color represents a cluster. Using color is necessary in this figure.

50

tion techniques appear to generate strongly correlated features for a project, these feature sets

suffer from multicollinearity [7], which is known to negatively affect the performance of the

supervised models. However, as the unsupervised defect prediction models do not need to be

trained, these models are not be affected by the multicollinearity problem. In addition, because

RBM generates strongly correlated features for a project, the unsupervised models become

much simpler, which seems to improve the variance of the performance across the unsuper-

vised defect prediction models.

51

7. Threats to validity

7.1 External validity

With regards to the generalizability of our results, we applied our experiments to three pub-

licly available datasets. These studied datasets (PROMISE, NASA and AEEEM) were all used

in many prior defect prediction studies. The projects in these studied datasets span different

domains, include both open source and industrial projects and contain different features. Future

studies are necessary to investigate whether our results generalize to other projects.

In addition, we studied only a subset of the many existing feature reduction and selection

techniques and defect prediction models. We carefully selected techniques and models that

have been used before for defect prediction, and that have an implementation readily available.

Without such an implementation, it is difficult and time-consuming to ensure that the implemen-

tation matches the one used in prior studies. Future studies are necessary to investigate whether

our results apply to other feature reduction/selection techniques and defect prediction models.

7.2 Internal validity

In our experiments, we used AUC as a performance measure. AUC is a popular performance

measure for defect prediction, as it does not require a threshold. However, different software

project teams may have different objectives. Hence, future studies should investigate the impact

of feature reduction techniques on other performance measures, while keeping in mind the

possible pitfalls of studying threshold-dependent performance measures [73].

When using the out-of-sample bootstrap sampling, we encountered computational errors in

two bootstrap samples. The errors occurred because two bootstrap samples violated require-

ments of the NB and SC models (e.g., a generated feature had a variance of zero which violates

a requirement of the NB model). To mitigate this threat, we discarded these bootstrap samples

and generated a new sample instead.

We provide all experimental scripts that we used in our study. (*3) This replication package

allows researchers and practitioners to replicate our experiments and confirm our results.

(*3)：https://sailhome.cs.queensu.ca/replication/featred-vs-featsel-defectpred/

52

8. Conclusion

In defect prediction, reducing the number of features is an important step when building de-

fect prediction models [7,8,26,82]. Prior studies indicated that reducing the number of features

avoids the problem of multicollinearity [7] and the curse of dimensionality [8]. Feature selection

and reduction techniques help to reduce the number of features in a model. Feature selection

techniques reduce the number of features in a model by selecting the most important ones, while

feature reduction techniques reduce the number of features by creating new, combined features

from the original features.

Prior work [9, 18] studied the impact of feature selection techniques on defect prediction

models. Our work is the first large-scale study on the impact of feature reduction techniques

on defect prediction models. In particular, we studied the impact of eight feature reduction

techniques on five supervised and five unsupervised defect prediction models. In addition, we

compared the impact of feature reduction techniques on defect prediction with the impact of the

two best-performing feature selection techniques (according to prior work).

We studied the impact of feature reduction/selection techniques on defect prediction models

along two dimensions:

1. The defect prediction performance (AUC) of the features that are generated by the feature

reduction/selection techniques, to study whether feature reduction/selection techniques

can improve the performance of defect prediction models.

2. The variance of the AUC across defect prediction models that use the features that are

generated by feature reduction or selected by feature selection techniques. It is difficult

to select the best performing model for each project, since the best model may change

per project [11, 77]. Hence, we studied whether feature reduction or selection techniques

can relieve the burden for practitioners of having to choose the best performing defect

prediction model for their data.

Below, we summarize the main recommendations that follow from our work.

Recommendation 1: For the supervised defect prediction models, use the correlation-

based (CFS) or consistency-based (ConFS) feature selection techniques. Our experiments

53

in RQ3 show that, for the supervised models, CFS and ConFS outperform the feature reduc-

tion techniques (except feature agglomeration (FA)) and the original models. While FA has

a similar performance, CFS and ConFS have a smaller performance variance. Hence, using

CFS or ConFS in combination with a supervised defect prediction model allows practitioners

to improve the performance of their defect prediction models, while making the choice for a

particular defect prediction model easier as well.

Recommendation 2: For the unsupervised defect prediction models, use a neural

network-based technique (Restricted Boltzmann Machine (RBM) or autoencoder (AE)).

Our experiments in RQs 1 and 3 show that the RBM and AE feature reduction technique can

significantly improve the performance of the unsupervised defect prediction models compared

to the other feature reduction/selection techniques and the original models. In addition, we

observed in RQs 2 and 3 that RBM and AE significantly improve the performance variance

across the unsupervised models (except compared to the transfer component analyses (TCA

and TCA+)). While the transfer component analyses (TCA and TCA+) have the smallest per-

formance variance, they have a worse performance than RBM and AE. The effect size (Cliff’s

Delta) between the transfer component analyses and the neural network-based feature reduction

techniques is negligible or small for the performance variance in favour of the transfer compo-

nent analyses, but small (TCA) or large (TCA+) for the performance in favour of the neural

network-based techniques. Hence, using a neural network-based feature reduction technique

to preprocess the data of the unsupervised defect prediction models can improve both their

performance and relieve the burden for practitioners of having to select the best-performing

unsupervised defect prediction model for their project.

Recommendation 3: If a project has diverse data, the neural network-based techniques

(Restricted Boltzmann Machine (RBM) or autoencoder (AE)) are likely to improve its

defect prediction performance and performance variance. Our experiments showed that

RBM and AE consistently improve the AUC and IQR of projects in the AEEEM dataset, for

both supervised and unsupervised models. Practitioners should run PCA on their data to identify

the diversity of their project’s data (similar to what we did in Section 5.3.1). If the data turns

out to be rich, RBM and AE are good options to improve the defect prediction performance and

variance.

54

Acknowledgment

This thesis would not have been possible without the support of many exceptional people to

whom I am grateful.

First of all, I would like to thank my supervisor Dr. Osamu Mizuno for his supervision and

continuous support throughout this journey. His technical and editorial advice is fundamental of

this thesis. He also gave me amazing opportunities to discuss with the professional researchers

all over the world. I learned so much from the discussion. He prepared the research environment

that made the research faster and faster. I cannot thank you enough for all you have done.

I was a very lucky man to work and collaborate with some of the brightest researchers. I

would like to thank all of my collaborators, Dr. Cor-Paul Bezemer, Dr. Yasutaka Kamei, Dr.

Ahmed E. Hassan, and Dr. Eun-Hye Choi. They shared their experiences, offered a lot of

advices, and taught writing techniques. The collaboration was invaluable to proceed and polish

my work.

I have had the privilege of working with amazing groups at the Software Engineering Labo-

ratory (SEL), the Software Analysis and Intelligence Lab (SAIL), and the Software Analytics

Research Group. Each member has had an impact on me and my work. I am grateful to all

members.

The work in this thesis was published on Empirical Software Engineering. I would like to

thank all reviewers and editor. They gave me many insightful comments.

Without the support of my family, this thesis would not have been possible. I am particularly

grateful to my parents.

55

References

[1] G. Tassey, The economic impacts of inadequate infrastructure for software testing, Na-

tional Institute of Standards and Technology, 2002.

[2] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-oriented design metrics

as quality indicators,” IEEE Transactions on Software Engineering (TSE), vol.22, no.10,

pp.751–761, 1996.

[3] S. Kim, T. Zimmermann, E.J. Whitehead Jr, and A. Zeller, “Predicting faults from

cached history,” Proceedings of the 29th International Conference on Software Engineer-

ing (ICSE), pp.489–498, IEEE Computer Society, 2007.

[4] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change

metrics and static code attributes for defect prediction,” Proceedings of the 30th Interna-

tional Conference on Software Engineering (ICSE), pp.181–190, IEEE, 2008.

[5] A.E. Hassan, “Predicting faults using the complexity of code changes,” Proceedings of the

31st International Conference on Software Engineering (ICSE), pp.78–88, IEEE Com-

puter Society, 2009.

[6] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction

approaches,” Proceedings of the 7th International Conference on Mining Software Repos-

itories (MSR), pp.31–41, IEEE, 2010.

[7] D.E. Farrar and R.R. Glauber, “Multicollinearity in regression analysis: the problem re-

visited,” The Review of Economic and Statistics, vol.49, no.1, pp.92–107, 1967.

[8] R. Bellman, Dynamic programming, Princeton University Press, 1957.

[9] B. Ghotra, S. Mcintosh, and A.E. Hassan, “A large-scale study of the impact of feature

selection techniques on defect classification models,” Proceedings of the 14th International

Conference on Mining Software Repositories (MSR), pp.146–157, IEEE Press, 2017.

[10] V.U.B. Challagulla, F.B. Bastani, I.-L. Yen, and R.A. Paul, “Empirical assessment of ma-

chine learning based software defect prediction techniques,” International Journal on Ar-

tificial Intelligence Tools, vol.17, no.02, pp.389–400, 2008.

56

[11] A.R. Gray and S.G. Macdonell, “Software metrics data analysis–exploring the relative

performance of some commonly used modeling techniques,” Empirical Software Engi-

neering, vol.4, no.4, pp.297–316, 1999.

[12] L. Guo, B. Cukic, and H. Singh, “Predicting fault prone modules by the dempster-shafer

belief networks,” Proceedings of the 18th International Conference on Automated Soft-

ware Engineering (ASE), pp.249–252, IEEE, 2003.

[13] S. Herbold, “Training data selection for cross-project defect prediction,” Proceedings

of the 9th International Conference on Predictive Models in Software Engineering, p.6,

ACM, 2013.

[14] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard

to defect prediction,” Proceedings of the 6th International Conference on Predictive Mod-

els in Software Engineering, p.9, ACM, 2010.

[15] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A.E. Hassan,

“Studying just-in-time defect prediction using cross-project models,” Empirical Software

Engineering, vol.21, no.5, pp.2072–2106, 2016.

[16] J. Nam and S. Kim, “CLAMI: Defect prediction on unlabeled datasets,” Proceedings of the

30th International Conference on Automated Software Engineering (ASE), pp.452–463,

IEEE, 2015.

[17] J. Nam and S. Kim, “Heterogeneous defect prediction,” Proceedings of the 10th Joint

Meeting on Foundations of Software Engineering (FSE), pp.508–519, ACM, 2015.

[18] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature selection on defect

prediction performance: An empirical comparison,” Proceedings of the 27th International

Symposium on Software Reliability Engineering (ISSRE), pp.309–320, IEEE, 2016.

[19] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process,” Proceedings of the

the 7th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE), pp.91–

100, ACM, 2009.

57

[20] K. Gao, T.M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software metrics for

defect prediction: an investigation on feature selection techniques,” Software: Practice

and Experience, vol.41, no.5, pp.579–606, 2011.

[21] S.S. Rathore and A. Gupta, “A comparative study of feature-ranking and feature-subset

selection techniques for improved fault prediction,” Proceedings of the 7th India Software

Engineering Conference, p.7, ACM, 2014.

[22] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, J. Aguilar-Ruiz, and M. Garre, “Attribute

selection in software engineering datasets for detecting fault modules,” Proceedings of the

2007 EUROMICRO Conference on Software Engineering and Advanced Applications,

pp.418–423, IEEE, 2007.

[23] M.A. Hall and G. Holmes, “Benchmarking attribute selection techniques for discrete

class data mining,” IEEE Transactions on Knowledge and Data Engineering, vol.15, no.6,

pp.1437–1447, 2003.

[24] K. Muthukumaran, A. Rallapalli, and N. Murthy, “Impact of feature selection techniques

on bug prediction models,” Proceedings of the 8th India Software Engineering Conference,

pp.120–129, ACM, 2015.

[25] D. Rodrı́guez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz, “Detecting fault mod-

ules applying feature selection to classifiers,” Proceedings of the 2007 International Con-

ference on Information Reuse and Integration, pp.667–672, IEEE, 2007.

[26] S. Shivaji, E.J. Whitehead, R. Akella, and S. Kim, “Reducing features to improve code

change-based bug prediction,” IEEE Transactions on Software Engineering (TSE), vol.39,

no.4, pp.552–569, 2013.

[27] J. Ren, K. Qin, Y. Ma, and G. Luo, “On software defect prediction using machine learn-

ing,” Journal of Applied Mathematics, vol.2014, pp.1–13, 2014.

[28] J. Nam, S.J. Pan, and S. Kim, “Transfer defect learning,” Proceedings of the 2013 Interna-

tional Conference on Software Engineering (ICSE), pp.382–391, IEEE Press, 2013.

[29] C. Faloutsos and K.-I. Lin, “FastMap: A fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets,” Proceedings of the ACM SIGMOD

58

International Conference on Management of Data, pp.163–174, ACM, 1995.

[30] L. Rokach and O. Maimon, “Clustering methods,” Data mining and knowledge discovery

handbook, pp.321–352, Springer, 2005.

[31] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applica-

tions to image and text data,” Proceedings of the 7th International Conference on Knowl-

edge Discovery and Data Mining, pp.245–250, ACM, 2001.

[32] S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang, “Domain adaptation via transfer component

analysis,” IEEE Transactions on Neural Networks, vol.22, no.2, pp.199–210, 2011.

[33] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony

theory,” Technical report, DTIC Document, 1986.

[34] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” Science, vol.313, no.5786, pp.504–507, 2006.

[35] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA

software defect datasets,” IEEE Transactions on Software Engineering (TSE), vol.39, no.9,

pp.1208–1215, 2013.

[36] M. Kondo, C.-P. Bezemer, Y. Kamei, A.E. Hassan, and O. Mizuno, “The impact of feature

reduction techniques on defect prediction models,” Empirical Software Engineering, p.To

Appear, 2019.

[37] I. Arora, V. Tetarwal, and A. Saha, “Open issues in software defect prediction,” Procedia

Computer Science, vol.46, pp.906–912, 2015.

[38] J. Nam, “Survey on software defect prediction,” HKUST PhD Qualifying Examination,

Department of Compter Science and Engineerning, The Hong Kong University of Science

and Technology, Tech. Rep, pp.1–34, 2014.

[39] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility of cross-

project defect prediction,” Automated Software Engineering, vol.19, no.2, pp.167–199,

2012.

[40] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect prediction,” IEEE

Transactions on Software Engineering, pp.874–896, 2017.

59

[41] F. Zhang, Q. Zheng, Y. Zou, and A.E. Hassan, “Cross-project defect prediction using a

connectivity-based unsupervised classifier,” Proceedings of the 38th International Confer-

ence on Software Engineering (ICSE), pp.309–320, ACM, 2016.

[42] G. Abaei, Z. Rezaei, and A. Selamat, “Fault prediction by utilizing self-organizing map

and threshold,” Proceedings of the International Conference on Control System, Comput-

ing and Engineering (ICCSCE), pp.465–470, IEEE, 2013.

[43] P.S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad tree-based k-

means clustering algorithm,” IEEE Transactions on Knowledge and Data Engineering,

vol.24, no.6, pp.1146–1150, 2012.

[44] B. Yang, Q. Yin, S. Xu, and P. Guo, “Software quality prediction using affinity propaga-

tion algorithm,” Proceedings of the International Joint Conference on Neural Networks,

pp.1891–1896, IEEE, 2008.

[45] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Unsupervised learning for expert-based

software quality estimation.,” HASE, pp.149–155, Citeseer, 2004.

[46] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect

predictors,” IEEE Transactions on Software Engineering (TSE), vol.33, no.1, pp.2–13,

2007.

[47] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures,” Pro-

ceedings of the 28th International Conference on Software Engineering (ICSE), pp.452–

461, ACM, 2006.

[48] D.E. Neumann, “An enhanced neural network technique for software risk analysis,” IEEE

Transactions on Software Engineering (TSE), vol.28, no.9, pp.904–912, 2002.

[49] Z.M. Hira and D.F. Gillies, “A review of feature selection and feature extraction methods

applied on microarray data,” Advances in Bioinformatics, vol.2015, pp.1–13, 2015.

[50] T. Menzies, D. Owen, and J. Richardson, “The strangest thing about software,” Computer,

vol.40, no.1, pp.54–60, 2007.

[51] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-

company defect prediction,” IEEE Transactions on Software Engineering, vol.39, no.8,

60

pp.1054–1068, 2013.

[52] S.R. Chidamber and C.F. Kemerer, “A metrics suite for object oriented design,” IEEE

Transactions on Software Engineering (TSE), vol.20, no.6, pp.476–493, 1994.

[53] T.J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering

(TSE), vol.SE-2, no.4, pp.308–320, 1976.

[54] M.H. Halstead, Elements of software science, vol.7, Elsevier New York, 1977.

[55] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “The jinx on the NASA

software defect data sets,” Proceedings of the 20th International Conference on Evaluation

and Assessment in Software Engineering, pp.1–5, ACM, 2016.

[56] J.H. McDonald, Handbook of Biological Statistics (3rd ed.)., Sparky House Publishing,

Baltimore, Maryland., 2014.

[57] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed of

backpropagation learning,” Proceedings of the International Workshop on Artificial Neural

Networks, pp.195–201, Springer, 1995.

[58] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.

[59] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, “The WEKA

data mining software: an update,” ACM SIGKDD explorations newsletter, vol.11, no.1,

pp.10–18, 2009.

[60] T.K. Ho, “Random decision forests,” Proceedings of the 3rd International Conference on

Document Analysis and Recognition, vol.1, pp.278–282, IEEE, 1995.

[61] H. Zhang, “The optimality of Naive Bayes,” Proceedings of 17th International Florida

Artificial Intelligence Research Society Conference, pp.562–567, AAAI Press, 2004.

[62] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning, vol.59,

no.1, pp.161–205, 2005.

[63] M. Kuhn, “Caret: classification and regression training,” 2015.

[64] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, and K. Matsumoto, “Automated parame-

ter optimization of classification techniques for defect prediction models,” Proceedings of

61

the 38th International Conference on Software Engineering (ICSE), pp.321–332, ACM,

2016.

[65] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol.17, no.4,

pp.395–416, 2007.

[66] J.A. Hartigan and M.A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Jour-

nal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, no.1, pp.100–108,

1979.

[67] L. Kaufman and P.J. Rousseeuw, Finding groups in data: an introduction to cluster analy-

sis, vol.344, John Wiley & Sons, 2009.

[68] J.C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well-

separated clusters,” J. Cybernet, vol.3, pp.32–57, 1973.

[69] T. Martinetz and K. Schulten, “A “neural-gas” network learns topologies,” Artificial Neu-

ral Networks, vol.1, pp.397–402, 01 1991.

[70] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol.78, no.9, pp.1464–

1480, 1990.

[71] M.A. Hall, “Correlation-based feature selection for machine learning,” PhD thesis, Uni-

versity of Waikato Hamilton, 1999.

[72] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artificial intelli-

gence, vol.151, no.1, pp.155–176, 2003.

[73] C. Tantithamthavorn and A.E. Hassan, “An experience report on defect modelling in prac-

tice: Pitfalls and challenges,” Proceedings of the 40th International Conference on Soft-

ware Engineering: Software Engineering in Practice Track (ICSE-SEIP), pp.286–295,

ACM, 2018.

[74] “Scikit learn: Minmaxscaler,” http://scikit-learn.org/stable/modules/

generated/sklearn.preprocessing.MinMaxScaler.html. [Online; accessed

1-July-2018].

[75] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, and K. Matsumoto, “An empirical com-

parison of model validation techniques for defect prediction models,” IEEE Transactions

62

on Software Engineering (TSE), vol.43, no.1, pp.1–18, 2017.

[76] J. Cohen, “Statistical power analysis for the behavioral sciences,” 1988.

[77] B. Ghotra, S. McIntosh, and A.E. Hassan, “Revisiting the impact of classification tech-

niques on the performance of defect prediction models,” Proceedings of the 37th Interna-

tional Conference on Software Engineering (ICSE), pp.789–800, IEEE Press, 2015.

[78] E. Shihab, Z.M. Jiang, W.M. Ibrahim, B. Adams, and A.E. Hassan, “Understanding the

impact of code and process metrics on post-release defects: A case study on the Eclipse

project,” Proceedings of the International Symposium on Empirical Software Engineering

and Measurement (ESEM), pp.4:1–4:10, ACM, 2010.

[79] D. Zwillinger and S. Kokoska, CRC standard probability and statistics tables and formu-

lae, Crc Press, 1999.

[80] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine

Learning Research, vol.9, no.Nov, pp.2579–2605, 2008.

[81] L. van der Maaten, “Accelerating t-SNE using tree-based algorithms.,” Journal of Machine

Learning Research, vol.15, no.1, pp.3221–3245, 2014.

[82] E. Shihab, “Practical software quality prediction,” Proceedings of the 2014 International

Conference on Software Maintenance and Evolution (ICSME), pp.639–644, IEEE, 2014.

63

