
Statistical Analysis of Time Series Data on the Number of Faults Detected by
Software Testing

Sousuke AMASAKI, Takashi YOSHITOMI, Osamu MIZUNO, Tohru KIKUNO, and Yasunari TAKAGI
Graduate School of Information Science and Technology, Osaka University, Japan

E-mail: amasaki@ics.es.osaka-u.ac.jp, {o-mizuno,kikuno,y-yakagi}@ist.osaka-u.ac.jp

Abstract

According to a progress of the software process improve-
ment, the time series data on the number of faults detected
by the software testing are collected extensively. In this
paper, we perform statistical analyzes of relationships be-
tween the time series data and the field quality of software
products.

At first, we apply the rank correlation coefficient τ to the
time series data collected from actual software testing in a
certain company, and classify these data into four types of
trends: strict increasing, almost increasing, almost decreas-
ing, and strict decreasing. We then investigate, for each type
of trend, the field quality of software products developed by
the corresponding software projects. As a result of statisti-
cal analyses, we showed that software projects having trend
of almost or strict decreasing in the number of faults de-
tected by the software testing could produce the software
products with high quality.

Keywords: software testing, software quality, statistical
analysis.

1 Introduction

Reducing the cost for software maintenance is recog-
nized as a serious problem, since the lifetime of software
becomes long and software is updated many times accord-
ing to new requirements. It is well known that one of the
fundamental causes for serious excess of cost is the remain-
ing faults in the software. Thus, reducing the number of the
remaining faults at the development is very important [1,7].

A straightforward approach is to perform sufficient test-
ing during the development. In order to manage the testing
effectively, a software reliability growth model (SRGM) is
proposed and really applied to many actual projects [10].
Since the SRGM needs the data on the number of faults de-
tected by the testing activities, software metrics are defined
and these quality data are extensively collected.

In the typical software development projects, the soft-
ware testing consists of the unit test, integration test, func-
tion test, and validation test. Additionally, these tests are

examined successively. Therefore, we can get time series
data from these successive testing activities. However, as
far as we know, these data have been analyzed individually
(that is, data for each unit test, integration test, function test,
or validation test were analyzed), and the relationship or the
trend of time series data has not yet been studied [7,10,12].

In this paper, we try to analyze the trends of the time
series data on the number of faults detected by unit test, in-
tegration test, function test, and validation test, and clarify
the relationship between the trends and the field quality of
software products. This result will make it possible to es-
timate field quality during testing, and make a remarkable
progress in the software process improvement [1, 9, 13].

First, we introduce the Kendall’s rank correlation coef-
ficient τ [6] in order to discuss the trends. Based on the
experimental evaluation of actual project data using the co-
efficient τ , we define four types of trends: strict decreasing,
almost decreasing, almost increasing, and strict increasing.

Then, we investigate, for each type of trend, the field
quality of software products developed by the correspond-
ing software projects. As a result of statistical analyses,
we showed that software projects having trend of almost
or strict decreasing in the number of faults detected by the
software testing could produce the software products with
high quality.

The rest of this paper is organized as follows: Section
2 describes preliminaries of this research. Section 3 shows
the definition of the metrics and the overview of collected
time series data to be used for the analysis. In Section 4,
we classify the projects into four groups based on the trend
of the number of the faults detected in the testing process.
We then show the relationship between the trends and field
quality in Section 5. Finally, Section 6 concludes this paper
and show some future works.

2 Target Projects

2.1 Process Model

In the target projects, the products are developed under
a development process as shown in Figure 1. The devel-
opment process is an ordinal waterfall model. This process

1



Concept Design & Review

Module Design & Review

Function Design & Review

Coding & Review (CR) 

Structure Design & Review

Unit Test & Debug (UT)

Validation Test & Debug (VT)

Integration Test & Debug (IT)

Function Test & Debug (FT)

Design &

Coding phase

Test &

Debug phase

Figure 1. Development process

consists of two successive phases, design & coding phase
and test & debug phase. The design & coding phase is di-
vided into five activities: Concept design, Function design,
Structure design, Module design, and Coding(CR). The
test & debug phase is divided into four activities: Unit test
& debug(UT ), Integration test & debug(IT ), Function test
& debug(FT ), and Validation test & debug(V T ).

One characteristic of the design & coding phase is that
review activity is introduced after each design activity. Re-
view activity enables the detection and correction of faults
in software artifacts as soon as these artifacts are created.
The review activity not only improves the quality of the ar-
tifacts but also helps software development organizations to
reduce their cost of producing software [2,3]. In the review
activity, the documents should be distributed to the persons
concerned in the company, and then review results should
be returned to developers via manager (this review activity
is called peer review [2]). They established several guide-
lines for the review activity. One of them directs that at least
15% of the total efforts for design & coding phase should
be assigned to review activities [9].

The test & debug phase consists of the repetition of a
pair of test activity and debug activity. Test activity is the
process of analyzing a software item to detect the differ-
ences between existing and required conditions and to eval-
uate the features of the software items. Debug activity is the
process to detect, locate, and correct faults [4]. The persons
engaged in the test and debug phase are directed to record
all faults that are detected by the test activity and removed
by the debug activity [13]. In order to improve and assure
the quality of the software product, the product needs to be
tested sufficiently.

2.2 Characteristics of Projects

The projects targeted in this paper are the development
of computer control systems with embedded software in a

certain company. The software products developed by the
projects have the following common characteristics. The
systems are related to retail systems, and thus embedded
software implements rather complex functions dealing with
many sensors, actuators and control signals including vari-
ous kinds of interrupts. Furthermore, since it is delivered in
the form of LSI chips, modification of faults after delivery
is very expensive. Thus, high quality is especially required
for the embedded software.

We use the actual project data of 134 projects, which
have already finished their development. Each project was
carried out between 1995 and 1998. Additionally, we se-
lect these projects under a condition that the total number
of faults detected during the test & debug phase exceeds
more than a certain number. It implies that the size of target
project is relatively large.

3 Time Series Data

3.1 Software Metrics

In this subsection, we define several software metrics
used in this paper.

(1) Frequency of detected faults: DF

The frequency of detected faults (DF ) is the number of
detected faults normalized by the effort needed for an
activity for detection. This metric represents the ability
of developer and density of faults indirectly. In order to
define DF , we introduce the following two parameters
where α is an activity out of five activities CR, UT ,
IT , FT and V T .

Dα: the number of detected faults in an activity α.

Eα: the effort needed for an activity α (measured by
person-day).

For example, the number of detected faults in the Unit
test & debug activity (UT ) is described as DUT . Then
DF for the activity α is defined as follows:

DFα =
Dα

Eα
(1)

According to this definition, we define the frequency of
detected faults DFCR, DFUT , DFIT , DFFT , DFV T

for activities CR, UT , IT , FT , and V T , respectively.

(2) Size of product: S

Here, we introduce the parameter LOC that counts the
total lines of source codes except for comment lines.
Using LOC, the size of product S is defined as fol-
lows:

S =
LOC

1000
(2)

The unit of S is usually represented by KLOC.
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Table 1. Actual project data
No. DF CR DF UT DF IT DF FT DF VT

1 2.1 0.6 0.7 1.8 0.5

2 6.7 0.0 1.7 1.2 0.0

... ... ... ... ... ...

133 11.6 1.8 0.2 1.0 2.9

134 3.3 5.3 15.2 3.3 6.3

Average 7.3 2.2 1.4 0.7 0.8

Median 5.2 1.1 1.1 0.5 0.3

(3) Field fault density: FFD

Field fault density FFD is a metric to measure the
quality of final products. It is defined as follows:

FFD =
Dfield

S
(3)

In this paper, we assume that Dfield is the number of
faults detected during six months after delivery.

3.2 Collected Data

The effort data and faults data are recorded manually and
stored in workstations by each developer. Then, they are
collected by the project leader, and validated by the man-
ager. On the other hand, field faults data are reported by
a quality assurance staff, translated into a fault-based num-
ber by the project leader, and also validated by the manager.
All the validated data are sent to the software engineering
process group (SEPG), who analyzes them and reports the
analysis report back to the project team and development
organization [12].

Table 1 shows the actual project data. It includes qual-
ity data for DFCR, DFUT , DFIT , DFFT , DFV T for 134
projects. Concerning FFD, we have actual data, but we
cannot show them here by the contract with the company.
In Table 1, for projects No.1, No.2, No.133, and No.134,
all metrics data are shown. However actually, for several
projects, some metric data are missing. In this paper, we
can use all of 134 projects since the analysis is applicable in
Sections 4 and 5.

Table 1 also summarizes the average and the median of
DF . As far as we observe the average and the median val-
ues, the values of DF ’s are decreasing as the testing activ-
ities proceed from CR to V T . Then, Figure 2 shows the
actual values of DF ’s for six projects. From this figure, we
can find a certain trend in the successive values of DFCR,
DFUT , DFIT , DFFT , and DFV T . Intuitively speaking,
projects No.5, No.20, and No.41 show the trend of decreas-
ing in these successive DF ’s and project No.63 shows the
trend of increasing in these successive DF ’s.
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(a) Project No.5
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(c) Project No.41

Code R
ev

ie
w

U
nit 

Tes
t

In
te

gra
tio

n T
es

t

Funct
io

n T
es

t

Val
id

at
io

n T
es

t

v
a
lu

e
 o

f 
D

F

Te
st

in
g P

ro
ce

ss

(d) Project No.47
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(e) Project No.63
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(f) Project No.87

Figure 2. Trend of actual data

4 Classification by Trend of Faults Detection

4.1 Key Idea

As is shown in Table 1 and Figure 2, the projects could
be classified into several groups by the trend of faults de-
tection (for example, the trend of increasing or decreasing
in the successive DF values). In order to identify the trend,
we introduce a quantitative measure of the trend. Although
there are many metrics for measuring trend, the rank cor-
relation coefficient is one of the most popular metrics for
monotonic increasing or decreasing trend [6,11]. In this pa-
per, we adopt the Kendall’s rank correlation coefficient τ .

The following shows the definition of Kendall’s rank
correlation coefficient τ : Here, we use two variables X
and Y for comparison, and represent i-th observation by
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Xi and Yi. For any sample of n observations, there are
n(n − 1)/2 possible comparisons of points (Xi, Yi) and
(Xj , Yj) (1 ≤ i, j ≤ n). Firstly, we define C to be the
number of pairs that are concordant, and D to be the num-
ber of pairs that are not concordant, respectively. Then, τ is
defined by the following formula:

τ =
(C − D)

√
[(n

2 ) − nx] · [(n
2 ) − ny]

(4)

where nx and ny is the number of ties involving X and Y
respectively. Thus, the range of τ becomes −1 ≤ τ ≤ 1.

By using the Kendall’s τ calculated by Equation 4, we
can quantitatively measure the trend of faults detection. In
this paper, we define the following four types of trends
based on the value of τ .

(a) Strict decreasing type(SD) (τ = −1)

(b) Almost decreasing type(AD) (−1 < τ < 0)

(c) Almost increasing type(AI) (0 ≤ τ < 1)

(d) Strict increasing type(SI) (τ = 1)

Here, we explain the motivation of the classification for
τ . We firstly tried to define the two trends: decreasing
(−1 ≤ τ < 0 ) and increasing (0 ≤ τ ≤ 1). However, based
on the experience of the actual developers, there may be a
significant difference between the projects with τ = −1 (or
τ = 1) and −1 < τ < 0 (or 0 ≤ τ < 1). We thus use the
above four types in this paper.

Projects No.5 and No.41 with τ = −1 in Figures 2(a)
and 2(c), respectively, are classified into type SD. Then,
project No.20 with τ = −0.8 in Figure 2(b) and project
No.87 with τ = −0.6 in Figure 2(f) are type AD. Project
No.47 with τ = 0.33 in Figure 2(d) is type AI . Finally,
project No.63 with τ = 1 in Figure 2(e) is type SI . This
result implies that the value of Kendall’s τ is adequate for
distinguishing these trends.

The followings present interpretations of four trends:

(a) Strict decreasing: Many faults are detected and re-
moved in the early stage, and then a few faults are de-
tected and removed in the later stage. Thus, it is ex-
pectable that only a very few faults remain in the final
software product.

(b) Almost decreasing: This type is similar to “strict de-
creasing type”. But the trend is not strict, and thus a
few remaining faults may be found.

(c) Strict increasing: A few faults are detected and removed
in the early stage, and then many faults are detected
and removed in the later stage. Thus, many faults still
remain in the final software product.

(d) Almost increasing: This type is similar to “strict in-
creasing type”. But the trend is not so strict, and thus
many faults may remain.

Table 2. Classification by fault detection trend

Types
Number of

projects (%)

Strict decreasing

(SD)
51 (38.1%)

Almost decreasing

(AD)
64 (47.8%)

Almost increasing

(AI)
16 (11.9%)

Strict increasing

(SI)
3 (2.2%)

Because of taking these trend for classification, the effect
of the factors such as the skill level of development team,
the kind of product, etc. is mitigated and included in the
trend.

4.2 Classification Result

Table 2 shows the result of classification by applying
Kendall’s rank correlation coefficient τ to 134 projects. We
can see that almost 38% projects are in type SD, and almost
48% projects are in type AD. Thus, 86% projects have de-
creasing trends. But the rest 14% projects have increasing
trends (that is, types AI and SI).

In order to find the relationship between the FFD and
four types, we present histograms of the FFD in Figure 3.
Please note that y-axis of Figure 3 denotes the ranks of the
values of FFD rather than the values themselves. Here,
the rank of each project takes a value from 1 to 134. Thus,
rank= 1 implies the highest quality (that is, FFD = 0 in
actual data) and rank= 134 implies the lowest quality (for
this case, we cannot show actual value of FFD by the con-
tract). Figures 3(a) and (b) show that almost half of projects
with types SD and AD have the rank= 1 and thus have
very high quality. On the other hand, Figure 3(c) and (d)
show that types SI and AI tend to include projects with
lower quality on the average. Figure 3 also shows the aver-
age rank of the field quality for each type.

From Table 2 and Figure 3, we can expect that the aver-
age field quality of the projects with the types SD and AD
is rather good. On the other hand, the field quality is not
so good for types SI and AI . Concerning this property, we
will investigate further in the next section.

5 Relationship between Trend and Field
Quality

5.1 Outline of Analysis

In order to compare field quality of projects having four
types of trends, we introduce the parameter θ of the loca-
tion on the rank of the FFD. In this paper, we define θSD,
for projects with type SD, to be the average rank of FFD.
Similarly, we define θAD, θAI , and θSI for projects with
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Figure 3. Histogram of FFD for each type

types AD, AI , and SI , respectively. For simplicity, we call
θSD, θAD, θAI , and θSI the average FFD of projects with
types SD, AD, AI , and SI , respectively. Then, from the
interpretations, we naturally derive the following relation-
ship.

θSD ≤ θAD ≤ θAI ≤ θSI (5)

In this paper, we planned two steps of analysis for the
average FFD, θSD, θAD, θAI , and θSI of projects.

Step 1. (Jonckheere Test [8]) We check if there is a signif-
icance difference among θSD, θAD, θAI , and θSI

and there exists the order shown in Equation 5.

Step 2. (Multiple Comparison) Since the order exists
among θSD, θAD, θAI , and θSI , we perform Ryan’s
procedure [5]. Ryan’s procedure consists of the fol-
lowing procedure: Firstly, compare the farthermost
pair on order. Next, compare the next farthermost
pairs. By performing pairwise comparison step by
step, we finally analyze a significant difference be-
tween neighboring pairs.

5.2 Experimental Evaluation

(A) Jonckheere test

We define two hypotheses H0 and H1 for the average
FFD, θSD, θAD, θAI , and θSI of projects. The hypoth-
esis H1 is clearly alternative of the null hypothesis H0. In
this analysis, the level of significance α is chosen as 0.05.
H0: There is no difference among θSD, θAD, θAI , and θSI .
That is, the following relation holds:

θSD = θAD = θAI = θSI (6)

H1: Either of the following relations comes true:

θSD < θAD ≤ θAI ≤ θSI (7)

θSD ≤ θAD < θAI ≤ θSI (8)

θSD ≤ θAD ≤ θAI < θSI (9)

θSD < θAD < θAI ≤ θSI (10)

θSD < θAD ≤ θAI < θSI (11)

θSD ≤ θAD < θAI < θSI (12)

θSD < θAD < θAI < θSI (13)

By Jonckheere test, since the probability that H0 cannot
be rejected becomes 0.02, the null hypothesis H0 is rejected
at the 0.05 level. Thus, the alternative hypothesis H1 is ac-
cepted. This result implies that there is a statistically signif-
icant difference in the average FFD, θSD, θAD, θAI , and
θSI of projects as a whole, and the field quality becomes
larger in the order of SD, AD, AI , and SI . However, at
this stage we cannot know which relation in the hypothesis
H1 holds.
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Table 3. Result of Ryan’s pairwise comparison

Step
Nominal

significance level α'
Pair of types p-value

1 α'=0.017 (θSD, θSI) 0.017

(θSD, θAI) 0.016

(θAD, θSI) 0.024

(θSD, θAD) 0.430
(θAD, θAI) 0.026

(θAI, θSI) 0.089

2 α'=0.025

3 α'=0.05

(B) Ryan’s multiple comparison

Next, the result of Ryan’s pairwise comparison is summa-
rized in Table 3. Step 1 shows there is somewhat significant
difference between θSD and θSI . Similarly Step 2 shows
there is a significance difference between θSD and θAI , and
also between θAD and θSI . Step 3 implies that there is sig-
nificant difference between θAD and θAI . But, there is not
significance difference between θSD and θAD, and between
θAI and θSI . One of the reasons why there is no difference
between type AI and SI is that the number of projects in-
cluded in the class SI was rather small. We therefore need
more project data and have to perform further analysis as a
future work.

From these facts, Equation 8 holds for the average FFD
of projects. This implies that the average rank of the field
fault density FFD becomes larger according to the order of
θSD, θAD, θAI , and θSI , and that especially large difference
exists between θAD and θAI .

In subsections 4.1 and 4.2, we estimated that two types
SD and AD behave the same way with respect to (the rank
of) FFD. Similarly two types SI and AI behave the same
way. But, there is a large difference between two types AI
and AD. The estimation agrees with this result.

6 Conclusion

In this paper, we have analyzed time series data on the
number of faults detected by successive code review and
testing activities. By applying the rank correlation coeffi-
cient to actual project data, we have successfully classified
the data into four types of trends: SI , AI , AD and SD.
Then, we have investigated the relationships between trends
and field quality, and showed that software project having
trend AD or SD would produce high quality products.

However, since we used only the data from embedded
software projects, we have to analyze the data from other
kinds of projects. On the other hand, construction of a
model, which calculates the number of remaining faults
based on time series quality data, is also an important fu-
ture work.

The goal of this research is to estimate field quality based
on the time series data on the number of faults detected by
various review activities and testing activities. In order to
attain the goal, we must analyze the reason why the target

project has a specific trend. Especially, for the trends SI
and AI , we need a process improvement based on the rea-
sons.
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