
3URFHHGLQJV�

,QWHUQDWLRQDO�:RUNVKRS�RQ�

(PSLULFDO�6RIWZDUH�(QJLQHHULQJ�LQ�3UDFWLFH������

�,:(6(3�������

1DUD��-DSDQ��1RYHPEHU��VW�������

6SRQVRUHG�E\�
6WDJ(�3URMHFW��0(;7�-DSDQ

2VDND�8QLYHUVLW\�
1DUD�,QVWLWXWH�RI�6FLHQFH�DQG�7HFKQRORJ\��1$,67��

,Q�FRRSHUDWLRQ�ZLWK�
6,*�6RIWZDUH�6FLHQFH��,QIRUPDWLRQ�DQG�6\VWHPV�6RFLHW\��,(,&(�

6,*�6RIWZDUH�(QJLQHHULQJ��,36-�

Inferring Restructuring Operations on Logical Structure of
Java Source Code

Hideaki Hata
Osaka University

Osaka, Japan
h-hata@ist.osaka-u.ac.jp

Osamu Mizuno
Kyoto Institute of Technology

Kyoto, Japan
o-mizuno@kit.ac.jp

Tohru Kikuno
Osaka University

Osaka, Japan
kikuno@ist.osaka-u.ac.jp

ABSTRACT
Restructuring source code structure, such as moving and renaming
classes or methods, are inevitable activities in software develop-
ment, and are recommended for the improvements of maintainabil-
ity. However, it has been not easy to understand properly what log-
ical structural changes occur. This is because we can obtain only
file-level and line-level information from source code management
systems about changes. This paper presents a technique of such in-
ferring restructuring operations on logical structure of Java source
code. For inferring structural change operations, the core part is
mapping elements between two revisions. Previous related studies
tackle this problem based on the analysis of subgraph similarity,
which takes lots of time. We find match candidates based on the
similarity of element contents and identify matches with Bayesian
inference based on empirical data. We report the result of empiri-
cal evaluation of our technique with open source software projects
from Android and Eclipse. We see that our technique identify most
element matches correctly and provide appropriate operations, and
it took only a few seconds to analyze entire history of each project.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.9 [Software Engineering]: Man-
agement—Software configuration management

General Terms
Management

Keywords
change analysis, refactoring, software evolution

1. INTRODUCTION
Software evolves dynamically. While developing and maintaining
source code, restructuring source code structure including moving
and renaming program elements is a common practice. From an
empirical study, Murphy-Hill et al. reported that though pure refac-
torings (root-canal refactorings) rarely occurred, floss refactorings,

which are refactorings with other types of programming activities,
occurred frequently [18].

Though refactorings are recommended and restructuring source code
occurs frequently, there is a problem on understanding those changes.
Mailloux reported an experience of industrial software develop-
ment from the initial implementation to several business phases
[17]. In this report, it is described how configurations, bugs, changes,
and so on were managed as the project grew. At the initial im-
plementation, there was no change management. From the first
release, informal one-to-one coaching and formal documentation
began. As the project grew, an initial training was provided to de-
veloper team. However, it is reported that changes were so fast,
then the initial training became obsolete. As seen in this experi-
ence report, it has been not easy to understand changes.

This paper presents a technique of inferring change operations, es-
pecially restructuring change operations on logical structure of Java
source code. We target moving and renaming of program elements,
such as packages, classes, fields, constructors, and methods. There
are several studies providing change operations between two re-
visions. One approach is a record-and-replay technique [3, 12].
Though these approach are able to provide accurate change oper-
ations, it is not always possible to record change operations be-
cause developers do not always use refactoring tools [18]. The
other studies based on matching techniques. Change operations are
inferred based on identified program element matches. The objec-
tive of most previous studies were identifying what changes occur
between two releases. Most approaches based on the subgraph iso-
morphism problem, which requires large time to analyze. Conse-
quently, analyzing entire histories (every changes) is not practical
because of large time consumption.

We propose a light-weight technique to overcome this limitation.
Our technique do not directly infer restructuring based on finding
subgraph isomorphism, but there are mainly two phases to infer
restructuring. First, we identify matches between individual ele-
ment using simple heuristics and then restructuring is inferred using
Bayesian inference based on empirical data. Our technique is em-
pirically evaluated with open source software projects in Android
and Eclipse. From this evaluation, we see that our technique infers
most change operations properly and takes only a few seconds to
analyze entire history of each project.

The rest of this paper is organized as follows. Section 2 describes
restructuring operations we target and clarifies that program ele-
ment matching problem is the core of structure change operation
inference. Section 3 discusses program element matching problem

��

Previous revision

package pck ;

p u b l i c c l a s s Clsa {
void mthx () {
}

}

p u b l i c c l a s s Clsb {
void mthy () {
}

}

Changed revision

package pck ;

p u b l i c c l a s s Clsa {
void mthp (i n t a) {
}

}

p u b l i c c l a s s Clsc {
void mthq () {
}

}

Figure 1: A change example between two revisions.

with related work. In Section 4, we explain our inference algorithm
and evaluate our technique in Section 5. Finally, we conclude in
Section 6.

2. RESTRUCTURING OPERATIONS
Motivation. Changes of software structure is inevitable and impor-
tant, but it is difficult to understand such changes. In some paper,
it is reported that the lack of change management is big risk of
software quality and team management [17, 21]. Tools that help
developers to understand restructuring changes should be required.

Definition. The problem addressed in this paper is proposing a
technique that suggests restructuring operations applied to change
software structure between two revisions of software. In source
code, there are some structures, such as physical structures (direc-
tories and files), logical structures (packages, classes, methods, and
so on), dependencies (define-use and overriding) [14]. This paper
targets changes on logical structures. We treat packages, classes,
fields, constructors, and methods as program elements in logical
structures of Java source code. Targeted restructuring operations
include rename, move, hide, and unhide following the terms in [22].
Rename means the identifier changes in this paper. So method
renames is the changes of method signatures, that is changes on
method name, parameters.

Overview. Figure 1 is an example of source code change. If a
method mthp is identified as a modified version of a method mthx,
that is, a match is found between the two methods, it is easy to in-
terpret that the method is renamed from mthx to mthp and its
parameter is changed. The method is not moved since the method
exists in a same class Clsa. If a match is found between a method
mthy and a method mthq , it is easy to suggest that the method is
renamed. However, this case is different from the previous case.
The method mthy exists in a class Clsb and the method mthq ex-
ists in a class Clsc. If the class Clsb and the class Clsc are differ-
ent one, we can recognize that the method is moved from the class
Clsb to Clsc. If the class Clsc is a renamed version of Clsb, the
method is not moved but just renamed. Changes on element names
or parameters for constructors and methods are identified based on
corresponding matches. To identify whether elements are moved
or not, it is needed to investigate their parent element matches. In
summary, we have to identify every program element matches.

3. PROGRAM ELEMENT MATCHING
The problem of identifying program element matches can be seen
as a link prediction problem [6, 13], which is a problem of predict-

Figure 2: Link prediction problem.

Table 1: Information for program element matching
Studies Topological info. Node attributes
S. Kim et al. [16] calls name, text, metrics
Godfrey and Zou [7] calls name, metrics
Wu et al. [23] calls name
Fluri et al. [5] structure name
Dig et al. [2] calls, structure tokens
Weißgerber and Diehl [22] structure name, text
Prete et al. [20] calls, structure text
Xing and Stroulia [24] structure name
Dagenais and Robillard [1] calls, structure name

ing the existence of a link between two nodes in a network as shown
in Figure 2. For program elements, networks can be seen in logical
structures, call dependency graphs, and so on. Existence of the link
can be regarded as a match between two program elements. The
link prediction problem can fall into two categories in accordance
with the information used for prediction [13]:

Topological-information-based methods: nearby nodes are sim-
ilar or not.

Node-information-based methods: attributes of nodes are simi-
lar or not.

There are many studies inferring change operations. Table 1 sum-
marizes previous studies based on the two information

Origin identification. S. Kim et al. applied several method match-
ing techniques for origin analysis identifying renaming and mov-
ing to open source software projects, and evaluated the effective-
ness of the techniques [16]. They reported that though clone de-
tection yields an accuracy value 67.4, function body diff achieved
90.2. Splitting and merging of software entities are targeted by
origin analysis. Godfrey and Zou proposed a technique of infer-
ring such events based on matching procedures using multiple cri-
teria including names, signatures, metric values, and call depen-
dencies [7]. Splitting and merging correspondence analysis is also
known as one-to-many and many-to-one matching. Wu et al. com-
bined text similarity analysis on names and call dependency anal-
ysis for those method matching [23]. Fluri et al. proposed change
distilling, a tree differencing algorithm [5]. Change distilling target
not only method-level changes but also more fine-grained element
changes. Name string similarities and tree similarities are calcu-
lated for matching.

Refactoring identification. Dig et al. proposed a technique for de-
tecting refactorings based on identifying renaming packages, classes,
methods, and moving methods [2]. Those changes are identified by
using structural data, call-graph and tokens from entities. Weißger-
ber and Diehl presented a technique to detect changes that are likely
to be refactorings [22]. Their matching technique is based on struc-
ture similarity and code clone analysis. M. Kim and Notkin pro-
posed an approach, LSdiff to discover and represent systematic code

��

changes [14]. They intended to infer what changes are occurred
based on analyzed structure differences. The matches are analyzed
based on a set of predicates that describe program elements, their
containment relationships, and their structural dependencies. REF-
FINDER proposed by Prete et al. extends predicate sets of LSdiff
for identifying refactorings [20]. It supports sixty-three refactor-
ing types. Though original LSdiff does not identify matches, REF-
FINDER does.

Framework usage changes. Xing and Stroulia proposed an ap-
proach for API-evolution support, called Diff-CatchUP [25]. On
the step of change identification, UML-diff, which is based on
name similarity and code dependency similarity of program el-
ements [24], is used. After identifying changes, plausible API
replacements are proposed. Dagenais and Robillard presented a
technique to recommend adaptive changes for clients of framework
code based on structure change analysis [1]. Their matching tech-
nique is based on structure similarity and out going call dependency
similarity.

Discussion. As shown in Table 1, every study uses both meth-
ods for program element matching. As topological-information–
based methods and node-information-based methods have differ-
ent advantages and limitations, the combination of both methods
is expected to achieve better results. Most studies mainly adopt
topological-information-based methods and use node-information-
based methods for program element matching.

Topological-information-based methods require unchanged or eas-
ily understandable neighborhood. Therefore, it is difficult to iden-
tify matching elements if there is no enough nearby elements or
there are major changes. Wu et al. reported the limitations and
insist that topological-information-based methods cannot be over-
come them [23]. Fluri et al. reported following two limitations [5]:

• Mismatching can propagate. Not only mismatching for each
targeting entity, correlate entities can be mismatched.

• The worst-case complexity increase. To decrease mismatch-
ing, complex algorithm is needed and this increase the worst-
case complexity.

Because of these problems, previous techniques are not light-weight
for analyzing entire histories. In addition, some studies report the
difficulties of identifying moving operations [5, 24].

4. INFERENCE ALGORITHM
Our algorithm infers restructuring operations between two revi-
sions of Java source code. Our algorithm consists of three parts:
(1) finding candidates of program element matches, (2) identifying
program element matches, (3) interpreting restructuring operations.

For program element matching in the part (1) and (2) , we use only
node information because there are problems in using topological
information as seen before.

4.1 Finding match candidates
We have proposed a system Historage1 that can track program el-
ements beyond renaming and moving [10, 11]. With this system,
1A tool to build Historage is available from https://github.
com/hdrky/git2historage.

match candidates between program elements can be found based
on the similarity of their text. We have found that it is possible to
find most of match candidates in methods, constructors, and fields
if contents are similar enough [11]. It is also possible to find match
candidates between classes with the same technique.

The percentages of the same content in the size of smaller content
(original or new) are calculated as text similarity values. In the
previous study [11], we immediately identify matches based only
on the similarity value. If the value is larger than or equal to 30%,
elements can be regarded as matches, and if the value is less than
30%, elements are regarded as independent elements.

Though this procedure works relatively well, we miss some matches
if the similarity values are low, which is caused by major modifi-
cation. The next part of our algorithm is introduced for decreasing
such missing.

4.2 Identifying matches
Though the high similarity value is a good evidence for finding el-
ement matches, we can use other node information as additional
evidence. These additional evidence should be valuable especially
when the similarity value is low. In this part, we identify matches
based on Bayesian inference. If we can obtain additional node in-
formation X , we can calculate the posterior probability of matches
as follows:

P (match|X) =
P (match)P (X|match)

P (X)

We identify matches if the posterior probability P (match|X) is
greater than or equal to 50%, where P (X) = P (match)P (X|mat
ch)+P (match)P (X|notmatch). To build not a project-specific
model but a general model, we will determine parameters based on
empirical investigation of several open source projects.

Prior probability. From the empirical study [11], if the sim-
ilarity value is greater than or equal to 30%, more than 95% of
matches are correct. There are not many matches if the similarity
value is less than 30%. Based on this observation, we determine
the prior probability as follows:

High text similarity: P (match) = 95%，P (not match) = 5%

Low text similarity: P (match) = 20%，P (not match) = 80%

Evidence. For additional evidence, we collect following two node
information: (i) names of program elements, (ii) existence of cor-
responding child elements. The similarity of names between two
elements are widely used for matching [1,5,7,16,22–24] as seen in
Table 1. The existence of corresponding child elements is an addi-
tional evidence from our observation. If there is a match between
classes, which means the matched class is equal, there should be
elements that exists in the previous and the new class. Though
additional information (i) can be used for every program element
types, (ii) can be used for only class and package.

(i) names of program elements. To compute the similarity of pro-
gram element names (s1 and s2), we calculate their longest com-

��

!"

#!"

$!"

%!"

&!"

'!"

(!"

)#
!*
"
)$
!*
"
)%
!*
"
)&
!*
"
)'
!*
"
)(
!*
"
)+
!*
"
),
!*
"
)-
!*
"

)#
!!
*"
#!
!*
"

./
01

20
34
5!

6780"9:8:;7/:<5!

87<4="
3><"87<4="

(a) Browser project

!"

#!"

$!"

%!"

&!"

'!!"

('
!)
"
(#
!)
"
(*
!)
"
($
!)
"
(+
!)
"
(%
!)
"
(,
!)
"
(&
!)
"
(-
!)
"

('
!!
)"
'!
!)
"

./
01

20
34
5"

6780"9:8:;7/:<5!

87<4="
3><"87<4="

(b) Xpand project

Figure 3: Name similarity and matches.

mon subsequence (LCS). We adopt the following expression pro-
posed in [7] for the name similarity:

length(LCS(s1, s2) ∗ 2)
length(s1) + length(s2)

Based on the name similarity, we want to determine the parameter
of P (name sim.|match) and P (name sim.|not match). We inves-
tigate four open source software projects (Browser, Phone, EMF
Compare, Xpand) to see the relation of the name similarity and the
existence of program element matches. Figure 3 shows the distri-
bution of program element matches based on the name similarity
in two projects, Browser and Xpand. Though most matches have
higher name similarities (more than or equal to 70%), there are a
few matches that have middle name similarities (40% to70%). Not
match candidates have low name similarities (less than 40%) and
middle name similarities. We found similar distribution on every
project. Based on these observation, we determine the parameter
as follows:

P (name sim.high|match) = 0.85

P (name sim.middle|match) = 0.1

P (name sim.low|match) = 0.05

P (name sim.high|not match) = 0.05

P (name sim.middle|not match) = 0.15

P (name sim.low|not match) = 0.8

(ii) existence of corresponding child elements. We investigate
the existence of corresponding child elements for program element
match candidates. From empirical investigation, we observed that
there are a few matches without corresponding child elements, and
there are few cases for not matches with child elements. We deter-
mine the parameters as follows:

P (exists child|match) = 0.9

P (not exists child|match) = 0.1

P (exists child|not match) = 0.05

P (not exists child|not match) = 0.95

Built model. The name similarity and the existence of corre-
sponding child elements can be seen as independent features. There-
fore we a built naive Bayes classifier as follows:

P (name sim., child|match) = P (name sim.|match)P (child|match)

Using determined parameters, we build a classifier model. Instead
of the detail posterior probability values, we show that when our
model identify match candidates as matches. For methods, con-
structors, and fields, which do not have child elements, matches
are identified if any one of the following conditions is satisfied:

• Text similarity value is greater than or equal to 30%.

• Name similarity value is greater than or equal to 70%.

For classes and packages, matches are identified if any one of the
following conditions is satisfied:

• Text similarity value is greater than or equal to 30% and
name similarity value is greater than or equal to 70%.

• Text similarity value is greater than or equal to 30% and there
are corresponding child elements.

• Name similarity value is greater than or equal to 40% and
there are corresponding child elements.

Program element match identification begins for methods, construc-
tors and fields. After identifying these matches, it is easy to know
there are corresponding child elements for classes. Then we iden-
tify matches for classes. Finally, we identify matches of packages.
As seen in our classify model, we use only node attribute informa-
tion, which should fit our intuition.

4.3 Interpreting restructuring operations
After identifying every program element matches, we interpret re-
structuring operations. Renaming is easily known between matches.
As seen in Section 2, moving can be identified after clarifying
whether parent elements are same (matched) or different (not matched).
Though some paper describes the limitations of identifying mov-
ing operations [5, 24], there is no such limitation in our technique.
Now our technique support the following restructuring operations:
move, rename, parameter change, access modifier change (hide or
unhide).

Figure 4 presents an example of inferred restructuring operations.
In a package com.android.phone, there are changes of two
methods as follows:

Package com . a n d r o i d . phone
PhoneApp . j a v a

C l a s s PhoneApp
Method d i s p l a y C a l l S c r e e n () −> p r i v a t e d i s p l a y C a l l S c r e e n () : 1 . h i d e

P h o n e U t i l s . j a v a −> C a l l N o t i f i e r . j a v a
C l a s s P h o n e U t i l s −> C a l l N o t i f i e r

Method showIncomingCal lUi () −> p r i v a t e showIncomingCal l () : 2 . move & rename & h i d e

Figure 4: An example of inferred restructuring operations.

Table 2: Target project data.
Project Initial Last # Changes

Android Browser 2008-10-21 2011-05-03 1,517
Contacts 2008-10-21 2011-04-04 2,082
Phone 2008-10-21 2011-05-31 2,253

Eclipse ECF 2004-12-03 2011-05-17 5,251
EMF Compare 2007-04-03 2011-05-24 860
Xpand 2007-11-10 2011-05-31 637

1. A method displayCallScreen() is hidden by being
attached a private access modifier.

2. A method showIncomingCallUi() that existed in a class
PhoneUtils is moved to a class CallNotifier, and is
renamed showIncomingCall, and hidden by being at-
tached a private access modifier.

These information should be useful for further research on fine-
grained level, such as software evolution analysis, historical in-
formation based fault-prone/failure-prone module prediction, code
clone management, and so on. Text-based output like Figure 4 may
not be human readable. Appropriate visualization is one of required
future work.

5. EVALUATION
In this section, we evaluate the accuracy of our technique and the
performance of analysis time. We investigate the accuracy of iden-
tifying program element matches because inference of restructur-
ing operations depends on this identification. As shown in Table
2, we select six open source software projects from Android and
Eclipse to empirically evaluate our technique. Each project is de-
veloped more than two years and is committed (changed) about 500
to 5, 000 times. These projects are written in Java and Git reposi-
tories are available.

5.1 Program element matching
We manually investigate every match candidates. To evaluate with
Recall measure, we need to prepare reference set that should be
collected from every potential matches, which is very hard task.
Hence we measure CRecall, which is the number of identified cor-
rect matches divided by the number of correct matches in match
candidates. From our large inspection, there are few cases that
there are correct matches that are not identified as match candi-
dates. Precision is the number of identified correct matches divided
by the number of all identified matches. Since we manually iden-
tify correct matches, we may introduce some bias.

Table 3 summarizes the result of each project. The result is divided
in two tables based on the text similarity values, that is, (a) for text

Table 3: Matching evaluation.
(a) text similarity ≥ 30%
Method et al.† Else‡

Project Num.* CRec. Prec. Num.* CRec. Prec.
Browser 66/66 1.00 1.00 2/2 1.00 1.00
Contacts 162/162 1.00 1.00 10/10 1.00 1.00
Phone 102/102 1.00 1.00 6/6 1.00 1.00
ECF 894/897 1.00 1.00 125/125 1.00 1.00
EMF Compare 84/85 1.00 0.99 7/7 1.00 1.00
Xpand 178/189 1.00 0.94 2/2 1.00 1.00

(b) text similarity < 30%
Method et al.† Else‡

Project Num.* CRec. Prec. Num.* CRec. Prec.
Browser 8/79 0.88 1.00 0/13 – –
Contacts 9/33 0.89 1.00 2/3 0 0
Phone 13/31 1.00 1.00 0/0 – –
ECF 98/287 0.95 1.00 9/22 0.89 1.00
EMF Compare 20/38 0.70 1.00 0/2 – –
Xpand 7/20 0.29 1.00 0/0 – –
†: methods, constructors, and fields.
‡: classes and packages.
*: number of matches / number of match candidates.

similarity value is greater than or equal to 30% and (b) for text sim-
ilarity value is less than 30%, because match identification with low
text similarity is more difficult than with high text similarity. From
Table 3 (a), which is a summary of matching with high text similar-
ities, we can see that all matches are identified (every CRecall value
is 1.00) and there are a few false positives (precision values range
from 0.94 to 1.00). Table 3 (b) is a summary of matching with low
text similarities. This case is relatively difficult because there are
not many correct matches in entire match candidates as seen in the
second and the fifth row of Table 3. As seen in Table 3 (b), there
are no false positives (high precision except for matches of classes
and packages in Contacts project). CRecall values ranges from 0 to
1.00. Matches with low text similarities can be identified based on
the new evidence introduced in Section 4.2. We can see that naive
Bayes inference framework works relatively well.

Most of program element matches are identified well. To decrease
false positives and false negatives for more improvement, there are
some possible plans as follows:

• Readjust parameters of naive Bayes models.

• Find new evidences for naive Bayes models.

• Build different models for different program element types.

5.2 Performance
We show a rough comparison of performance based on reported
papers. At this time, we do not compare our technique with pre-

��

Table 4: A rough comparison of performance
Studies Time for one change analysis
Wu et al. [23] a few minutes
Dig et al. [2] several minutes
Prete et al. [20] several seconds to a hour
Xing and Stroulia [24] several seconds to a hour
Dagenais and Robillard [1] several hours
This paper less than a second

vious techniques with same hardware platforms and same target
projects. Table 4 summarize the reported time for analyzing one
change between two revisions. Note that though previous studies
analyze medium-size or large-seize projects, our target projects are
relatively small-size. Previous techniques require from a few min-
utes to several hours to analyze one change, which may be difficult
to analyze entire histories (hundreds to thousands of changes). Our
technique took less than a second for one change and only two sec-
onds for entire changes of each project in Table 2. Major reason of
this difference is that our technique consists of simple methods us-
ing only the information of elements (nodes), though other studies
mainly use topological-information methods, which require high
cost.

6. CONCLUSION
This paper presents a technique for inferring restructuring change
operations on Java source code. Though previous techniques used
topological information for program element matching, which have
some limitations, our technique uses only node information. From
empirical evaluation with six open source software projects from
Android and Eclipse, it is revealed that our technique identifies
program element matches with high accuracy. In addition, our tech-
nique require only a few seconds for analyzing entire histories.

With our technique, it is possible to analyze fine-grained and detail
project histories. There are some possible application of this tech-
nique, such as fault-prone/failure-prone module prediction based
on histories [8, 9, 19] and code clone history analysis [4, 15]. Im-
provements of program element matching and comparison with
other techniques on same environment and same target projects are
future work of our research.

7. ACKNOWLEDGMENTS
This research is supported by Grant-in-Aid for JSPS Fellows (No.23-
4335).

8. REFERENCES
[1] B. Dagenais and M. P. Robillard. Recommending adaptive

changes for framework evolution. ICSE ’08, pages
481–490,2008.

[2] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
ECOOP ’06, pages 404–428, 2006.

[3] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen.
Refactoring-aware configuration management for
object-oriented programs. ICSE ’07, pages 427–436, 2007.

[4] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in
evolving software. ICSE ’07, pages 158–167, 2007.

[5] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng., 33:725–743,
November 2007.

[6] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD
Explor. Newsl., 7:3–12, December 2005.

[7] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Softw. Eng., 31:166–181, February 2005.

[8] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. ICSM ’05, pages 263–272, 2005.

[9] H. Hata, O. Mizuno, and T. Kikuno. Fault-prone module
detection using large-scale text features based on spam
filtering. Empirical Softw. Eng., 15:147–165, April 2010.

[10] H. Hata, O. Mizuno, and T. Kikuno. Reconstructing
fine-grained versioning repositories with git for method-level
bug prediction. IWESEP ‘10, pages 27–32, 2010.

[11] H. Hata, O. Mizuno, and T. Kikuno. Historage: fine-grained
version control system for java. IWPSE-EVOL ’11, pages
96–100, 2011.

[12] J. Henkel and A. Diwan. CatchUp!: capturing and replaying
refactorings to support api evolution. ICSE ’05, pages
274–283, 2005.

[13] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and
K. Tsuda. Link propagation: A fast semi-supervised learning
algorithm for link prediction. SDM ‘09, pages 1099–1110,
2009.

[14] M. Kim and D. Notkin. Discovering and representing
systematic code changes. ICSE ’09, pages 309–319, 2009.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. ESEC/FSE-13,
pages 187–196, 2005.

[16] S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions
change their names: Automatic detection of origin
relationships. WCRE ’05, pages 143–152, 2005.

[17] M. Mailloux. Application frameworks: how they become
your enemy. SPLASH ’10, pages 115–122, 2010.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. ICSE ’09, pages 287–297, 2009.

[19] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. ICSE ’05, pages
284–292, 2005.

[20] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex refactorings.
ICSM ’10, pages 1–10, 2010.

[21] J. Streit and M. Pizka. Why software quality improvement
fails: (and how to succeed nevertheless). ICSE ’11, pages
726–735, 2011.

[22] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. ASE ’06, pages 231–240, 2006.

[23] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. AURA:
a hybrid approach to identify framework evolution. ICSE
’10, pages 325–334, 2010.

[24] Z. Xing and E. Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. ASE ’05, pages 54–65,
2005.

[25] Z. Xing and E. Stroulia. Api-evolution support with
diff-catchup. IEEE Trans. Softw. Eng., 33:818–836,
December 2007.

��

	2011-1st
	paper1
	paper2-1st
	paper2-2nd
	paper2-3rd
	paper2-4th
	papaer3-0
	paper3-1st
	1 Introduction
	2 Restructuring Operations
	3 Program Element Matching
	4 Inference Algorithm
	4.1 Finding match candidates
	4.2 Identifying matches

	paper3-2nd
	4 Inference Algorithm
	4.3 Interpreting restructuring operations

	paper3-3rd
	5 Evaluation
	5.1 Program element matching
	5.2 Performance

	6 Conclusion
	7 Acknowledgments
	8 References

	paper4
	paper5-0
	paper5
	paper6
	1. INTRODUCTION
	2. SUSHI: INTEGRATING INFORMATION BETWEEN MULTIPLE DSSs
	2.1 Overview
	2.2 Architecture of SUSHI
	2.3 Procedure of Estimation

	3. PRELIMINARY EVALUATION
	4. FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	paper7-0
	paper7
	paper8
	paper9-0
	paper9

