
Development of Formal Model Based Test
– Toward Automatic Testing Framework for Embedded Systems –

Takahiro ANDO∗, Shinji KAWASAKI ∗, Eun Hye CHOI∗, Hideaki NISHIHARA∗,
Masahiro AOKI†, Keiichi YOSHISAKA†, Keisuke SHIMATANI†, Munekazu FURUICHI†,

and Osamu MIZUNO§
∗National Institute of Advanced Industrial Science and Technology

†Daikin Industries, Ltd.
§Kyoto Institute of Technology

This presentation proposes a testing framework
called “Formal Model Based Test (FMBT)”. It is a
framework to improve embedded system developments
with formal specifications, exhaustive test generations,
and automatic test executions. Formal descriptions
make specifications consistent, and exhaustive test gen-
erations avoid an oversight of tests. Thus, we expect a
reliable test process can be obtained by FMBT.
PROBLEM DEFINITION: We recognize a problem
in current functional tests for an entire system, which
rely on individual efforts. When the tests are gener-
ated by hand from specifications written in a natural
language, their quality depends on test engineers’
experiences and intuitions. That might cause a lack of
necessary tests.Moreover, manpowered testing might
cause oversights or mistakes of tests.
SOLUTIONS: We attempt to minimize manpowered
tasks in testing processes and to improve them by using
the FMBT. Test engineers will execute testing pro-
cesses in the FMBT as follows: (1) Write specifications
of a developing system in a formal language. (2) Gen-
erate tests exhaustively from the formal specifications.
(3) Execute tests automatically and exhaustively.

This way has the following effects: First, describing
the specifications in formal removes ambiguities and
makes the gist of the designers clear. Next, we can
obtain the tests independent of test engineers’ skills.
Moreover, we can avoid oversights and mistakes by
executing automatically tests exhaustively.

We show our activities for building the FMBT
framework. First, we have designed and developed
a formal specification language1 for test generation,
called “Sens”. The specifications in the Sens descrip-
tion are constraints for state transitions of the systems.
We can verify the consistency of the specifications and
detect defects of them, and thus we can improve the

1. http://cfv.jp/cvs/introduction/pdf/PS2011-002.pdf

quality of the specifications.
The important feature of Sens language is that

the domain of variables can be limited for the test
generation, independent of specifications. It makes
clear designer’s focus for test. This supports a test-
oriented design and an efficient test generation from
Sens specifications.

Second, we are developing a test generator which
generates tests exhaustively from Sens specifications.
The generated tests satisfy the specifications, and do
not include lack of necessary tests.

Our test generator uses a SAT solver as its core
engine, which solves satisfiability problems at high
speed. With a SAT solver, our generator can find
distinct and enormous test quickly. In our feasibility
study for a real air-conditioning system, it succeeded
in generating about 900,000 tests in 30 minutes.

Testing embedded systems is generally performed
on actual hardware. In addition, the various environ-
ments of the system executions are considered in the
testing. In many industrial companies, a test engineer
executes tests and checks the results by hand. This
traditional way takes heavy cost and time, and thus
cannot give sufficient test executions, as well as ex-
haustive tests.
TOWARD PRACTICAL APPLICATIONS: To over-
come the deficiency, we propose to adopt automatic
test executions by “Cluster-In-the-Loop Simulation
(CILS)” in our framework. CILS is a technique that
simulates a whole embedded system including hard-
ware components, network devices, and environment,
in a cluster computing system. In CILS, software appli-
cations can be executed and tested on hardware simu-
lation environment even before hardware is completed.
In the future, we will integrate our test generator
and the CILS system, to develop the automatic test
environment for embedded systems.


