
A Selective Software Testing Method
Based on Priorities Assigned to Functional Modules

Masayuki Hirayama†‡, Tetsuya Yamamoto†,
Jiro Okayasu†

† R&D Center System Engineering Lab.,
TOSHIBA Corporation, Japan

masayuki.hirayama@toshiba.co.jp

Osamu Mizuno‡, Tohru Kikuno‡
‡ Graduate School of Engineering Science,

Osaka University, Japan
{o-mizuno, kikuno}@ics.es.osaka-u.ac.jp

Abstract

As software systems have been introduced to many ad-
vanced applications, the size of software systems increases
so much. Simultaneously, the lifetime of software systems
becomes very small and thus their development is required
to accomplish within relatively short period. In this paper,
we propose a new selective software testing method that
aims to attain the requirement of short period development.
The proposed method consists of 3 steps: Assign priorities
to functional modules (Step 1), Derive a test specification
(Step 2), and Construct a test plan (Step 3) according to the
priorities. In Step 1, for development of functional modules,
we select both product and process properties to calculate
priorities. Then, in Step 2, we generate detailed test items
for each module according to its priority. Finally, in Step
3, we manage test resources including time and developer’s
skill to attain the requirement. As a result of experimental
application, we can show superiority of the proposed test-
ing method to the conventional testing method.
Keywords: Software testing, Testing priority, Design of
testing specification

1. Introduction

According to the growth of the use of software, the size
of software tends to increase. Consequently, the amount
of testing required also increases, since large software con-
tains many functions, operations and behaviors, all of which
should be tested[1, 10]. However, the period available for
software development is usually limited. As a result, in the
worst case, testing of some items is omitted. The same sit-
uation applies to software embedded in products containing
microcomputers. In particular, in regard to information sys-
tems whose functional specifications have ballooned in re-
cent years, the complexity of the systems has been increas-

ing so that it is very difficult to test them.

At present, no effective solutions are available for assur-
ing reliability of software within a limited period of time.
Conventionally, discussion of software system testing has
focused on techniques to increase coverage of source code
and functions[3, 4, 6, 11]. But recently, in the development
of large systems, if an attempt is made to extract as many
test items as possible so as to achieve coverage of all func-
tions of the target system, the number of test items will be-
come unmanageably huge. There is simply insufficient time
available to test all these test items. Therefore, software sys-
tem testing focused on coverage has become inappropriate.
Considering the recent trends of software development, a
highly efficient and highly reliable testing method capable
of detecting a high ratio of system faults is required. Also
required is a testing method capable of detecting and elim-
inating faults that would have serious impacts on the soft-
ware system[7].

In order to satisfy these requirements, this paper dis-
cusses a selective testing method. Concerning a selec-
tive testing approach, Musa proposed the test item selec-
tion approach, too[8]. His approach focused on the oper-
ational situation for mainly business systems in user side,
and performed tests with referring to the operational pat-
terns. Musa’s approach did not touch with products’ spec-
ification and functions’ features in detail, and also did not
consider the features of development process focusing on
the embedded software. These product’s feature and pro-
cess feature for embedded software are as important as the
software operational profiles for business software. There
are other methods to generate test items using operational
profile[2]. On the other hand, Elbaum et al. analyzed ef-
fects of priorized testing[9]. They proposed the metrics for
assessing the rate of fault detection of prioritized test cases
and their prioritization technique are mainly used for deter-
mining the execution order of test suites. They do not refer
to how to give priority for each function in the target soft-

ware.
In this method, testing priorities for functions of the tar-

get software are assigned from various viewpoints such as
product’s feature and development process view. Based on
the priorities assigned to functions, effective testing can be
performed. In this paper, we outline the selective testing
method in which the test items are selected and tested based
on the priorities assigned to functions in embedded soft-
ware. This paper also presents an experimental example of
this method and discusses the effectiveness of this method.

2. Selective Testing Method

2.1. Outline

Generally, in conventional testing, software reliability is
assured by testing all possible test items of the target soft-
ware. In some cases, a great amount of effort is expended on
testing items that have little influence to system reliability,
since the conventional technique accords the same priority
to all test items. So, in such cases a long period is required
for software testing.

On the contrary, in a case of selective testing methods,
functions in the target software are prioritized. Functions
with high priorities are tested in detail and functions with
low priorities are tested less intensively. Moreover, the or-
der of testing is also controlled. That is, in order to use
the period of system testing effectively, the selective testing
method aims to acquire the highest reliability in the shortest
period of testing.

However, an effective technique for prioritizing testing
functions has not been proposed until now. In this research,
we propose a systematic technique for prioritizing func-
tions, generating test items based on priorities, and control-
ling the order of testing. Figure 1 shows an outline of our
proposed method. As Figure 1 shows, our selective method
consists of three phases: function priority assignment, test
item generation, and test control.

2.2. Function priority assignment

Test items for functions in the target system are priori-
tized by referring to use case analysis results. Concerning
the assignment of priority, the viewpoints and metrics for
test priority evaluation are prepared. A system function list
with weighted priority is created based on the prioritization,
and it is used in the system test phase.

2.3. Test item generation

Referring to the priority evaluation for each function, test
items for each function are designed. In this test item gen-
eration, the quality and quantity of required test items are

1. Function

priority assignment

2. Test item

generation

3. Test control

Chose the Metrics

from evaluating viewpoint

Determine the testing strategy

high

middle

low

Activity charts

Deviation analysis

Coverage

Activity charts

Coverage

Use case Description

Testing resource assignment

Testing order determination

Priorities

Function list

with priorities

Test

Specification

Test Plan

Figure 1. Outline of proposed method

controlled according to the priorities of the functions to be
tested. For a function with high priority, use case descrip-
tion is used and deviation analysis from a normal case is
performed, and finally detailed test items are extracted[5].
On the other hand, for a function with low priority, only the
general operation indicated in the software specifications is
checked. As a result of this work, test items are classified
according to their priority.

2.4. Test control

Considering the test period and resources available, the
execution sequence or order of test items generated is con-
trolled and the person in charge of the system test is desig-
nated. In order to guarantee achievement of high reliability
within the limited test period, it is necessary to detect the
more important faults at an early stage. For this reason, in
control of test work, an execution sequence is determined
according to the priority of the test items and their ease of
testing. Moreover, highly skilled people are assigned to
high priority functions. This information is collected in a
test plan document and serves as the input for the actual test
work.

3. Technique for Test Priority Assignment

3.1. Outline

Generally, faults do not exist uniformly in software.
Moreover, the influence on the user or the system varies
among faults. An efficient testing technique focused on test-
ing the portion involving many serious faults is proposed
here. In the proposed technique, in order to realize a test
based on the above-mentioned concept, functions in the tar-

get system are evaluated from two or more viewpoints, and
are assigned priority for testing.

Test priority assignment is realized by the following four
steps.

Step-1 Extraction of the testing function

Functions for testing are listed, referring to the specifi-
cations of the target software.

Step-2 Setting of the evaluation viewpoint for testing pri-
ority

The viewpoint for function prioritizing is discussed
and determined.

Step-3 Setting of the metrics weight

Metrics for prioritizing are determined for the view-
points. Also, weighting of metrics is discussed and
determined. This means, in the testing of a system,
the tester decides which metrics are assigned a high
weight.

Step-4 Prioritizing of the testing function

Based on the weighted metrics, the test priorities for
functions are determined. According to priorities, dif-
ferent instruction for testing is assigned to each test
item.

3.2. Evaluation viewpoints for priority assignment

Regarding software faults, it is necessary to take into
consideration three factors: fault injecting, fault detection,
and fault influence. Also, in assigning priority for test items,
these factors should be considered. Functional size and
complexity of developed software have great influences on
fault injecting. And the skill of the developer of the target
system and the development process employed in the soft-
ware design phase or implementation phase also have great
influences on fault injecting.

On the other hand, fault detection has been largely con-
cerned with use cases and the use frequency of functions.
Concerning the influences of faults, it is necessary to con-
sider what kind of influences faults have on users. There-
fore, in prioritizing test items, fault injecting, fault detec-
tion, and fault influence are taken into consideration.

Regarding the scope of evaluation for functions, “S1:
Product property” and “S2: Process property” are consid-
ered. Figure 2 shows the scopes, views and metrics for pri-
oritizing function.

(a) Product property

Product property contains evaluation metrics for a soft-
ware product. Product property is determined in ad-
vance for all functions to be realized as a system or
software.

S:Scope V:View TM:Metrics

S1:Product Property

S2:Process Property

V1: System’s view

V2: User’s view

V3: Developer’s view

V4: Developer’s skill

V5: Development process

TM11: Function size (LOC)

TM12: Function complexity (CL)

TM13: Ratio of newly developed

TM14: Ratio of reuse

TM15: Quality of reused code

TM21: Use frequency

TM22: Use scenario’s complexity

TM23: Fault’s fatal degree

TM51: Importance degree for testing

in functional architecture

TM31: Skill

TM32: Experience of similar projects

TM41: Sufficiency of review

TM42: Accuracy of design specification

TM43: Sufficiency of unit test

Figure 2. Evaluation viewpoints and metrics

V1: System’s viewpoint In particular, a system view-
point is important for evaluation of fault inject-
ing. This viewpoint takes into account the size
and complexity of software. Also taken into ac-
count are the ratio of software reuse, the ratio of
the newly development portion of the software
and the quality of reused code.

V2: User’s viewpoint The user viewpoint is closely
related to fault detection. This viewpoint takes
into account the complexity of the user’s use sce-
nario (operation), the use frequency, the degree
of the seriousness of faults, etc. For example,
in the case of cellular phone software, functions
that are important for younger users are different
from those are important for other users. Thus,
for the user viewpoint, it is important to take into
account the variation of the actor and the use sce-
nario in the UML use case description.

V3: Developer’s viewpoint Usually, the developer
has sufficient knowledge of the structure of the
developed function or of the relations among
functions. Also, the developer has sufficient
knowledge of the faults in previous products of
a similar nature and a good understanding of the
functions that should be tested. From the view-
point of the developer, which functions should be
tested is taken into account.

(b) Process property

The process property has a great influence on fault in-
jecting. Regarding the process property, the following
points concerning software functions are evaluated.

– Skill of the developer in charge

– Development process – Was the development
process performed properly?

V4: Developers’ skill Many software faults are at-
tributable to the inadequacy of the developer’s
skill. If two software developers independently
of each other tackle the same software develop-
ment task, the one whose skill level is lower will
cause more faults.

V5: Development process Even if two developers
have the same skill level, the appropriateness of
the respective development processes employed
by the developers has an important bearing on
the number and seriousness of the faults. Expe-
rience indicates that if an inappropriate develop-
ment process is employed, the number and seri-
ousness of the faults increases.

3.3. Evaluation metrics

Functions are quantitatively evaluated from the above-
mentioned viewpoints, and testing priorities are assigned
to the functions. Thus, evaluation metrics (T Mi j) for mea-
suring and evaluating testing priority are prepared for the
above-mentioned viewpoints (Vi).

For example, regarding the system viewpoint, T M11: the
size of functional structure (LOC), T M12: complexity (CL:
cyclomatic number), T M13: ratio of newly developed soft-
ware, T M14: ratio of reuse, etc. are adopted as evaluation
metrics.

The value of each evaluation metrics (T Mi j) is from 1 to
10. This value is given as a relative evaluation among the
target testing functions.

For example, T M13 is valued according to the ratio of
newly developed lines of code for each function. If the ratio
of newly developed lines of code is from 0% to 10% and
10% to 20%, T M13 is determined to 1 and 2, respectively.
For another example, as shown in Fig. 3, T M11 is assigned
from 1 to 10 according to each function’s size in software.
Assume that the size of the largest function is 1000LOC
and the size of the smallest function is 100LOC. For func-
tions with 100 – 190LOC and 910 – 1000LOC, T M 11 is
determined to 1 and 10, respectively. According to this def-
inition, for a function with 560LOC, T M11 is determined to
6.

S1: Product property

V1: System view

TM11: Function size

1: Very small

5: Medium

10: Very large

Figure 3. An example of evaluation

3.4. Decision on test priority value

It is necessary to consider the various viewpoints de-
scribed above in order to assign priorities to testing func-
tions. However, the function that an end user considers im-
portant does not always coincide with the function on which
the developer focuses in software testing. Also, the func-
tion that an end user considers important does not coincide
with the function considered to be important according to
the process viewpoint. Therefore, it is necessary to make an
overall judgment of the evaluation results based on two or
more viewpoints, rather than based on a single viewpoint. In
actual testing, we have to determine which viewpoints and
metrics are important. This strategy is achieved by weight-
ing of metrics.

For example, regarding a function K, if the value of eval-
uation metrics T Mi j is Xi j, and the weight of this metrics
(test strategy coefficient) is Wi j, a test priority is calculated
by the following formula. (Wi j is a weighting factor with a
value of from 0 to 1.0.)

Test priority(K) =
∑

Wi j × Xi j

For example, in a test, in the case that a strategy focused
on the user viewpoint is adopted, the weighting factors for
user’s use frequency (T M21) and the fatal degree of a de-
tected fault (T M23) are about 1.0. Also, the weight coef-
ficient of evaluation metrics for the developer’s viewpoint
(V3) should be 0.2 or lower. Moreover, regarding the view-
points and metrics (Fig. 2) for evaluation, it is possible to
use only their subsets. For example, in the case that a pro-
cess property is not taken into account, all the coefficients
of evaluation metrics for a process property are 0.

Let us consider the example of the document storage
function in word processing software. The following three
evaluation metrics are considered.

• T M12: function complexity

• T M21: use frequency

• T M23: fatal degree of fault

Each value is set to T M12 = 4, T M21 = 6, and T M23 = 8.
A weighting factor is set to W12= 0.2, W21 = 1.0, and W23 =

1.0. The test priority of this document storage function is
calculated by the following formulas: 0.2 × 4 + 1.0 × 6 +
1.0 × 8 = 14.8.

4. Application Experiment

4.1. Purpose of experiment

Here, an experiment to evaluate the effectiveness of the
selective test technique is introduced. In the experiment,

the proposed technique was applied to the test process of
a “software development tool” development. In the experi-
ment, as shown in Fig. 4, two independent test teams, A and
B, were prepared for the purpose of comparison.

Test team A Test team BCoordinator

Software specification Test item generation

by conventional method
Proposed method

Function prioritizing

Generate test specification

Test planning

Test specificationB (PB)

Test specification A (PA)

Testing target software

Testing with PA Testing with PB

Detected faults (cA) Detected faults (cB)

Debugging

Next version software

Testing

Test specification

generating

Figure 4. Outline of experiment

One team A performed the selective test and the other
team B performed the conventional test, and the fault de-
tection performances were compared. In the conventional
test, all test items were tested in the order of the test spec-
ifications. In Fig. 4, χA and χB represent sets of detected
faults by team A and team B, respectively. Then, PA and PB

represent test specifications for teams A and B, respectively.
From the results of this experiment, we confirmed the

following facts. In the case of the selective test technique,
many important faults were detected as a result of assign-
ment of priorities to target testing functions. On the other
hand, in the case of the conventional test, the rate of detec-
tion of important faults was low compared with that in the
case of the selective test technique.

4.2. Target software for testing

The target software of this experiment was a tool that
supports a unit test. The main functions of this tool are
selection of a test target module, automatic generation of
test data, and automatic generation of a stub driver. The
main features are as follows.

Language: C Language.

Size of software: 30KLOC.

Ratio of newly developed software: all newly devel-
oped

4.3. Design of experiment

4.3.1 Test team

Two independent teams, A and B, tested the functions of
the target software using the selective test technique and
the conventional test technique, respectively. In this experi-
ment, the software-development experience of the members
of the two teams and their skills are the same level, and there
is little difference in their capabilities. Also, software de-
sign and implementation was done by a different team from
those performing the testing. Furthermore, apart from these
teams, the person who prepared the software specifications
coordinated the entire experiment. The organization of the
experiment is shown in Fig.4.

4.3.2 Test specification preparation

First, based on the specifications of software, a member of
team B prepared test specification PB in the conventional
manner. Next, after the test experiment coordinator checked
test specification B, the functions of the target software were
prioritized. Then, the test experiment coordinator prepared
test specification PA for the selective test based on the re-
sult of prioritization. In test specification A, the priority
was specified in three phases (high, medium, low) for each
functional item. Test team A was instructed to execute the
test using test specification A. Test team B was instructed to
execute the test using test specification B.

4.3.3 Implementation of the tests

In the test phase, test teams A and B tested independently.
The test period consisted of 3 cycles. Figure 5 outlines the
overall procedure of the experiment. The period of time
for each cycle was about one week. The faults detected by
each team within each cycle were fed back to the developer
upon completion of each cycle, and correction and debug-
ging of the detected faults were done. Upon completion of
this work, the next cycle was begun. Then, a regression test
was performed for the new version of the software, using
the same test specification as in the preceding cycle.

4.4. Prioritization of test items

In this experiment, we focused on evaluation of the user
viewpoint (V2) of product property. In the experiment,
T M21: the use frequency of each function, T M22: the use
scenario’s complexity, and T M23: the fatal degree of fault
were adopted as evaluation metrics. The experiment coor-
dinator determined the value of evaluation metrics for func-
tions, taking into consideration the outline, the character-
istics, etc. of each function from the specifications. Also,
as a test strategy, equal weight was given to all evaluation

Team A:

Test items with priorities

Team B:

Conventional test items

Debugging by Development team (cA È cB)

Team A:

Test items with priorities

Team B:

Conventional test items

Debugging by Development team (cA È cB)

Team A:

Test items with priorities

Team B:

Conventional test items

Debugging by Development team (cA È cB)

cycle 1

cycle 2

cycle 3

Figure 5. Detail of test execution

metrics. Therefore, the test priority of a function can be
calculated by the following formula: 0.33 × T M 21 + 0.33 ×
T M22 + 0.33 × T M23.

4.5. Classifications of test items

Figure 6 shows a list of functions sorted in the order of
the priority after evaluation of each function. In this ex-
periment, we classified all functions as following way: (1)
We firstly determined “High priority” functions by choos-
ing 50% of all functions from the top of the list in Fig. 6. In
this case, 118 functions are classified as high priority1. (2)
We then determine “Medium priority” functions by choos-
ing 25% of functions from the top of the rest of functions.
(3) Finally, the rest of functions are classified as “Low pri-
ority.”

In this experiment, since the target software was under
actual development, we had to be careful on the reliability
of software. So we enlarged the ratio of high priority func-
tions. The numbers of test items for the priority levels were
as follows: 118 high priority test items, 51 medium priority
test items, and 56 low priority test items.

A part of the test specification A prepared for team A is
shown in Fig. 7(a). As shown in this figure, the test spec-
ification A provides concrete instructions for test items of
high priority functions, such as where importance should
be placed in testing or test variations. On the other hand,
regarding test items of low priority functions, the test spec-
ification A specifies that tests with low intensity are suffi-
cient. As shown in Fig. 7(b), the test specification B for
team B does not provide any particular instructions for any
test item.

1Since including functions with the same score, the number of func-
tions are slightly different with 50% of all functions.

5. Experimental Result

5.1. Fault detection in each cycle

Table 1 shows the number of detected faults of each cycle
in the experiment. As mentioned before, χA and χB repre-
sent sets of faults detected by test teams A and B, respec-
tively.

Table 1. Number of detected faults for each
cycle

(a) Cycle-1
Cycle-1 Priority Total

High Medium Low

χA 11 3 5 19
χB 8 2 7 17

χA ∩ χB 5 2 4 11
χA ∪ χB 14 3 8 25

(b) Cycle-2
Priority Total

High Medium Low

χA 8 1 5 16
χB 4 2 5 11

χA ∩ χB 0 0 3 3
χA ∪ χB 12 3 7 22

(c) Cycle-3
Priority Total

High Medium Low

χA 6 0 2 8
χB 0 1 1 2

χA ∩ χB 0 0 1 1
χA ∪ χB 6 1 2 9

(1) Cycle-1

A total of 14 faults related to high priority functions were
detected by the selective testing team A and the conven-
tional testing team B. Team A detected about 80 percent of
these. The number of faults detected by both the team A and
the team B was 5 (= |χA ∩ χB|). The number of faults re-
lated to high priority functions detected by the conventional
testing team B but not by the selective testing team A was 3
(= |χB − (χA ∩ χB)|). As a result of detailed investigation
of these three items, we confirmed that no clear instruc-
tion was provided for these three items, although detailed
instructions should have been provided in the test specifica-
tion because their priority is high. Also, a total of 8 faults re-
lated to low priority functions were detected, approximately
90 percent(= 7/8) of which were detected by conventional
testing.

Test strategy
fatal degree use frequency complexity

0.33 0.33 0.33

Function Functions system property score
ID function Category Operation fatal degree use frequency complexity

9 project window refresh latest data 8 6 9 7.67
2 main open the project 9 5 10 7.67

42 test case window show the all items 6 10 7 7.67
1 main create a new project 10 2 9 7
0 initial activity perform the initial activity 10 5 3 6

34 value setting dialog edit the setting value 6 7 5 6
23 pattern generation window show the all items 6 5 7 6
30 value setting dialog random 5 7 6 6
31 value setting dialog limited value 7 4 7 6
63 value setting dialog show the setting value 6 8 4 6

7 project window operate the tree 5 10 2 5.67
8 project window add the project source 7 2 8 5.67

45 test case window select a test case 4 10 3 5.67
58 test execution dialog execute test 7 6 3 5.33
28 pattern generation window save the generated pattern 9 3 3 5

Figure 6. Functions to be tested with priority

(a) Test specification in Selective testing method

Item No. Test item Expecting results Judgment

1 Execute the generating pattern window 1. Each "box" should be indicated
Note1: Execute the Existing pattern and New
pattern

(Variable, type, method of generation,loop)

Note2:In the value setting, consider the all
type value - Global,Arg.Stub.

2. Arg.,variable,stub in a testing target
module should be shown
3. Arg.,variable,sub which are called by
testing target module should be shown
4.----

2 Select and click the "Line" Value setting dialog should be shown
Note1: Test only basic pattern In case of 1-(7)(8),the dialog should not be

shown.
3 Select the "Line" and click the Detail setting in

the menu.
Same as No.2.

Note1: Test only basic pattern

(b) Test specification in Conventional testing method

Item No. Test item Expecting results Judgment
1 Execute the generating pattern window 1. Each "box" should be indicated

(Variable, type, method of generation,loop)
2. Arg.,variable,stub in a testing target
module should be shown
3. Arg.,variable,sub which are called by
testing target module should be shown
4.----

2 Select and click the "Line" Value setting dialog should be shown
In case of 1-(7)(8),the dialog should not be
shown.

3 Select the "Line" and click the Detail setting in
the menu.

Same as No.2.

Indication for high priority test items

Indication for low priority test items

Figure 7. Test specifications to be delivered

(2) Cycle-2

A total of 22 faults were detected, almost the same number
as were detected in cycle-1. As a result of analysis of these
22 faults, it was confirmed that they can be classified into
the following three categories:

a) Faults related to new functions (software) that had not
been implemented at the time of cycle-1.

b) New faults resulting from fault correction in cycle-1.

c) Errors in correction of faults in cycle-1.

Of these faults, six are considered to be type b) or c).
In cycle-2, of 12 faults related to high priority functions,
75 percent (= 8/12) were detected by selective testing.
Twenty-five percent of faults(= 4/12) were detected by con-
ventional testing.

(3) Cycle-3

Following the removal of many of the faults as a result of
cycle-1 and cycle-2, the final authentication test was per-
formed. The total number of faults detected in cycle-3 was
nine, of which 67 percent(= 6/9) were related to high pri-
ority functions, and all of them were detected by selective
testing. About half of the detected faults were errors in cor-
rection of faults in cycle-2.

5.2. Evaluation of detected faults

Table 2 shows the number of detected faults in the three
cycles. In Table 2, faults that were detected in two or more
cycles are counted only once. Of 118 test items for high pri-
ority functions (as mentioned in subsection 4.5), 22 faults
were detected by selective testing and 11 faults were de-
tected by conventional testing. The total number of faults

related to high priority functions was 26. Eighty-five per-
cent (= 22/26) of these were detected by selective testing.
On the other hand, only 42 percent(= 11/26) of them were
detected by conventional testing.

Regarding 51 test items related to medium priority func-
tions (as mentioned in subsection 4.5), each test method
detected four faults. The total number of faults related to
medium priority functions was six when any overlapping
was eliminated.

Regarding 56 test items related to low priority functions
(as mentioned in subsection 4.5), a total of 13 faults were
detected. Of these, seven (54%) were detected by selective
testing and 12 (92%) were detected by conventional testing.

Table 2. Number of test items that detected
faults

Priority Total Selective Conventional
method method

High 26 22 85% 11 42%
Medium 6 4 67% 4 67%

Low 13 7 54% 12 92%
Total 45 33 73% 27 60%

5.3. Test period

Table 3 shows the period of time required for testing
in our experiment. Regarding the period of time required,
no significant difference was observed between the conven-
tional method and the selective method.

Table 3. Time needed for experiment
Cycle Selective method Conventional method

(hours) (hours)

Cycle-1 30 33
Cycle-2 25 23
Cycle-3 13.5 22

6. Evaluation

6.1. Influence of instruction for test items

For selective testing, detailed instructions were provided
for test items related to high priority functions to enable
control of the quality of testing. As a result of the exper-
iment, it was confirmed that regarding test items related to
high priority functions, the number of faults detected by

selective testing was about twice that detected by conven-
tional testing. Regarding test items related to medium prior-
ity functions or low priority functions, no instructions were
provided in selective testing. Consequently, unlike in the
case of detection of faults related to high priority functions,
there is little difference in the rates of fault detection be-
tween selective testing and conventional testing for low and
medium priority functions.

Thus, by selective testing, it is possible to efficiently de-
tect faults that are related to the crucial portion of a test
target system. In selective testing, test items related to high
priority functions are tested in various ways, and test items
related to low priority functions are tested in terms of a sim-
ple pattern of testing.

On the contrary, with conventional testing in which test
items are tested in the order of a specification document,
there is no guarantee whether important functions or por-
tions of a target system are sufficiently tested, and as a re-
sult, there is a possibility that important faults are not de-
tected.

6.2. Efficient use of the test period

Tables 1 to 3 indicate that in selective testing time is used
efficiently by placing importance on test items related to im-
portant functions, and faults are detected efficiently. In par-
ticular, in cycle-3 it is assumed that in the case of the selec-
tive testing method, faults related to high priority functions
are intensively detected in a shorter time than in the case of
the conventional method. In the case of conventional testing
method, time is allocated to each test item equally regard-
less of the degree of importance of test items, and therefore,
it is inefficient.

Based on the results of the experiment, we concluded
that the degree of detection of faults in testing could be
greatly improved by prioritizing functions from the view-
point of the product property. We think that it is possible to
enhance fault detection efficiency and software quality by
taking process property also into account in the prioritizing
step.

6.3. Required effort

In the experiment, additional effort was required mainly
in the prioritizing activities for each test item. Though this
effort was relatively smaller than the other effort required
in the test phase. Effort for prioritizing the functions are
about 2 or 3 hours in total. On the other hand, the overall
test phase activities were required about 3 weeks. So the
additional effort for adapting selective testing method can
be think to be almost permissible margin.

7. Conclusion and Future Work

This paper reported a selective testing method for effi-
cient system testing. In the selective testing method, prop-
erties of functions of the test target system are analyzed, pri-
ority is assigned to each function, and a test plan is drawn up
based on these priorities. The main features of the selective
testing method are as follows.

1. This technique consists of three phases: priority as-
signment for functions to be tested, design of test
items, and testing control.

2. Prioritization of functions of the test target system is
done by referring to the analysis results from the prod-
uct property viewpoint and the process property view-
point.

3. For prioritization of functions, the sum of weighted
evaluation metrics values is adopted.

We experimentally applied this proposed method to a
system test of actual software in order to evaluate the effec-
tiveness of the proposed method. In the experiment, func-
tions were prioritized based on the evaluation from the prod-
uct property viewpoint. It was confirmed that by taking pri-
orities into consideration, it is possible to allocate sufficient
time and effort for testing of important functions, and the
rate of detection of faults related to important functions can
be improved.

In future work, in regard to test strategies, we intend
to investigate prioritization of functions from the process
viewpoint and to identify the most suitable way of weight-
ing the metrics.

References

[1] B. Beizer. Black-box Testing: techniques for functional test-
ing of software and systems. John Wiley & Sons, NY, 1995.

[2] K. Y. Cai. Software defect and operational profile modeling.
Kluwer Academic Publishers, 1998.

[3] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The
combinatorial design approach to automatic test generation.
IEEE Software, 26(9):83–88, 1996.

[4] P. D. Coward. A review of software testing. Information and
Software Technology, 30(3):189–198, 1988.

[5] M. Hirayama, T. Yamamoto, T. Kishimoto, O. Mizuno, and
T. Kikuno. Generating test items for checking illegal behav-
ior in software testing. In Proc. of 9th Asian Test Symposium
(ATS2000), pages 235–240, 2000.

[6] Y. K. Malaiya. Antirandom testing: Getting the most out of
black-box testing. In Proc. 6th International Symposium on
Software Reliability Engineering, pages 86–95, 1995.

[7] D. M. Marks. Testing Very Big Systems. McGraw-Hill, 1992.
[8] J. D. Musa. Software-reliability-engineered testing. IEEE

Computer, 29(11):61–68, 1996.

[9] A. M. S. Elbaum and G. Rothermel. Incorporating varying
test costs and fault severities into test case prioritization. In
Proc. of 23rd International Conference on Software Engi-
neering, pages 329–338, 2001.

[10] I. Sommerville. Software Engineering, 4th edition.
Addison-Wesley, MA, 1992.

[11] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur.
Effect of test set minimization on fault detection effective-
ness. In Proc. of 17th International Conference on Software
Engineering, pages 41–50, 1995.

