
1

Systematic Generation of Software Test Items

Based on System Behavior from User's View-

point

Masayuki Hirayama, Tetsuya Yamamoto

R&D Center System Engineering Lab., TOSHIBA Corporation

1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan

masayuki.hirayama@toshiba.co.jp

Takuya Kishimoto

R&D Group, Home Appliance Company, TOSHIBA Corporation

Osamu Mizuno, Tohru Kikuno

Dept. of Informatics and Mathematical Science, Osaka University

Abstract

This paper proposes a new design method for software test, which will

produce test cases based on Use-Case Analysis, and then generate test items sys-

tematically using Software Fault Tree Analysis. The attractive features of the

proposed method are summarized as follows: (1) use cases are described from

the end users' viewpoint, (2) Illegal behaviors on the use-case description are

transformed into test items to be checked, and (3) test items are generated sys-

tematically without their duplication. The experimental application to defrosting

subsystem of refrigerator con�rms the e�ectiveness of the proposed method.

1. Introduction

Recently, many computer systems or software systems are introduced into

our social or daily life. For example, most of electrical appliances have embedded

software in them. If software faults are remained in an electrical appliance and the

electrical appliance suddenly don't work correctly, then the scope of its e�ect or

damage may become enormously large. Therefore even for electrical appliances,

ensuring the reliability of software becomes an essential requirement[6].

When an embedded software in electrical appliances is relatively small in

size, the formal method based on �nite state machine is used e�ectively[2]. The

test items for legal behaviors are generated using transition sequences on the �nite

state machine. On the contrary, test items for illegal behaviors are successfully

derived and checked carefully by experienced developers.

PSAM5
c2000 by Universal Academy Press, Inc.

2

Since customers' demands for electrical appliances have increased rapidly,

the size of software has already become large. Then the formal approach doesn't

work e�ectively in the development. The formal method can be applied only to

the core part of the system.

In this paper, we propose a new method for generating test items to check

illegal behaviors in the development of electrical appliances. The proposed method

has the following attractive features.

(1) Description from users' point of view: In order to describe the target sys-

tem's behavior from user's point of view(rather than developer's point of

view), the use case description proposed by UML[1] is applied.

(2) Systematic detection of illegal behaviors: In order to detect systematically

the main factors of illegal behaviors of the target system, the deviation

analysis[3, 4] is performed on the use case description.

(3) Stepwise generation of test items: The software fault tree[2, 6] for the target

system is constructed based on the deviation analysis, and then test items

for checking illegal behaviors are generated stepwisely from the fault tree.

Similar approach has already been proposed for general software by Smidts

et al.[5]. They implemented an architecture based software reliability model and

extensively used fault trees in the analysis. But it seems to be di�cult to apply

their method to the development of electrical appliances.

2. New Design Method

The proposed method consists of the following �ve steps:

Step-1 (System behavior understanding): We describe the software block-diagram

and hardware block-diagram. By doing this, we can understand an outline

of the functional behavior of the target software system.

Step-2 (Use case analysis): We describe typical behavior of the target software

using activity chart and clarify important reliability factors by applying

use case analysis. Use case description and analysis are borrowed from the

object-oriented developing methodology (UML).

Step-3 (Deviation analysis): According to guide words, we extract unusual sit-

uations in the use case description and �nd such operations that deviate

from the basic behavior and cause abnormalities.

3

Step-4 (Software fault tree construction): We analyze the situations that bring

undesirable illegal behaviors by referring to analysis results and use case de-

scription. We then successively consider the internal processing of software,

and �nally construct a kind of fault tree.

Step-5 (Test item generation): By extracting the factor on the leaf of the soft-

ware fault tree, we generate test items that check this factor.

Furthermore, we construct a keyword dictionary and place such restriction

on the words in Step 2, Step 3 and Step 4 that they must be taken from the

keyword dictionary. By this restriction, we can avoid miscommunication among

Step 2, Step 3 and Step 4.

3. Application to Refrigerator

In order to con�rm the e�ectiveness, we have analyzed real development

of refrigerator. In the analysis, we consider software for a defrosting subsystem

(See Figure 1). The refrigerator has two cooling rooms: a freezing room and a

refrigerating room. The defrosting function is constructed by two basic activating

operations for the defrosting heater and defrosting fan, and it is controlled based

on the states of two rooms, elapsed time of defrosting, and rooms' conditions.

At Step-1, the engineer reads carefully the given functional speci�cation to

understand the functions of the defroster unit, and then describes software block

diagrams for the defroster.

Refrigerator system

8>>>>>>>>>><
>>>>>>>>>>:

Freezing room

8>><
>>:

Defrosting timer

Defrosting fan

Defrosting heater

Room thermometer

Refrigerating room

8>><
>>:

Defrosting timer

Defrosting fan

Defrosting heater

Room thermometer

Fig. 1. Organization of refrigerator system

At Step-2, the use case description for the defroster function is described

based on the software block diagrams and the functional speci�cation. First, the

top-level layer of the use case description(shown in Figure 2(a)) is described by

tracing the block diagrams roughly. The transition between activities is repre-

sented by two kinds of arrows: �! and |{�. An arrow �! shows a usual or

4

Check condition
for defrosting

Check condition
for defrosting

Defrost the
freezing room
Defrost the

freezing room
Defrost the

refrigerating room
Defrost the

refrigerating room

<Checking | Failure>

<Defrosting | Failure>

Check elapsed time of
freezing room
Check elapsed time of
freezing room

Count elapsed time of
freezing room
Count elapsed time of
freezing room

<Checking | Failure>

<F-Timer | Expire (5.0h)>

In initial behavior
<Defrosting history | Exist>

(a) Top Layer

(b) 2nd Layer

<Defrosting
| Failure>

<Checking
| Failure>

<R-Timer
| Expire (5.0h)>

Check history of
R/F defrosting

Check history of
R/F defrosting

Check elapsed time of
refrigerating room
Check elapsed time of
refrigerating room

<Checking
| Failure>

<Defrosting history
| Not exist>

Defrost the refrigerating room
Defrost the freezing room

Fig. 2. Use case analysis

legal behavior, but the other arrow |{� shows an unusual or illegal behavior. The

engineers then described a detailed description. For example, the activity \Check

condition for defrosting" in Figure 2(a) is extended into the detailed description

shown in Figure 2(b) using the functional speci�cation.

At Step-3, the illegal behaviors of the defroster are extracted by tracing the

activity chart shown in Figure 2. The guide words, prepared for the experiment,

support to extract the detail of an illegal behavior. For example, consider the

activity \Check history of R/F defrosting." The guide words for the \history"

are \not exist" and \be incorrect," and the guide word for \check" is \be not

activated." These guide words are extensively used in Step-4.

At Step-4, by tracing the activity chart in Figure 2, the software fault

tree shown in Figure 3 is constructed as follows: First, the root node is deter-

mined. Since the most crucial failure for the defroster is that the frost cannot

be removed, the failure \Refrigerator cannot defrost" is adopted as the root. Ac-

cording to the top layer description, three nodes \Failure in checking condition

for defrosting," \Failure in defrosting freezing room" and \Failure in defrosting

refrigerating room" are chosen as the next level nodes of the software fault tree.

Then, for the \Failure in checking condition for defrosting," the nodes \Failure

in checking history of R/F defrosting," \Failure in checking elapsed time of F-

room" and so on are derived as the next level nodes. Then, using the result of

the deviation analysis, each node is expanded to some nodes successively.

At Step-5, test items are derived from the leaves and interior nodes of the

software fault tree. From the leaves with light gray in Figure 3, the test items

5

Timer speed
was too slow.

Timer speed
was too fast.

Timer data
is incorrect.

Timer data
is lost.

F-room timer is
not activated.

The history
record does not
exist.

The history
record is
incorrect.

Checking the
history record
is not activated.

Refrigerator
cannot defrost

Failure in
checking elapsed
time of F-room

Failure in
checking history
of R/F defrosting

Failure in defrosting
refrigerating room

Failure in defrosting
the freezing room

Failure in checking
condition for defrosting

Failure in
checking elapsed
time of R-room

Timer is not
set as 5
hours.

Fig. 3. Software fault tree

A1.1 to A3.4 shown in Figure 4 are generated.

4. Experimental Evaluation

The following were concluded from an experimental application of the

proposed method to the refrigerator control software.

(1) With relatively a few additional e�ort, we can generate test items suitable

to check behaviors (especially, illegal behaviors) of the target system.

(2) The proposed method generates test items in more detailed descriptions,

which reects and thus corresponds to the implementation of the target

software.

(3) The proposed method generates systematically all necessary test items with-

out omission(if a given speci�cation is well written and complete).

5. Discussion

In software testing, checking of such illegal behaviors that were overlooked

at test design needs a lot of extra costs. Generally speaking, essential functions of

the products would be occasionally overlooked when user's viewpoint comes �rst.

But, since the proposed method is currently developed only for embedded software

in electrical appliances and the fault tree analysis is applied at the �nal stage of

the proposed method, such defects may be avoided and test items generated by

6

Condition Test Items

A2 Checking
history of R/F
defrosting

A2.1 Does defrosting history exist?

A1.1 Is history checking activated?

A3
Initial defrosting
after switch on

A3.1 Is F-room timer activated?

A3.2 Does F-room timer count?

A3.3 Does F-room timer count correctly?

A3.6 Is F or R-defroster activated, so far as timer count is
larger than 5 hours?

A3.4 Is F-room timer set for5 hours?

A3.5 Is neither F- nor R-defroster activated, so far as F- and
R-room timer < 5 hours?

......

A8
Defrosting timer >
6 hours

A8.1 Is the remaining time correct?

A8.2 Is the timer set by half of the remaining time?

......

A2.2 Is defrosting history correct?

A1 Switch on
defrosting

......

A9 Check for
residual ice

Fig. 4. Generated test items

the proposed method cover all essential functions. Thus, as a result, we can expect

test costs might be shortened compared with the one by conventional method.

References

[1] H. -E. Eriksson and M. Penker, UML toolkit, John-Wiley & sons, 1997.

[2] T. Fukaya, M. Hirayama and Y. Mihara, \Software speci�cation veri�cation

using FTA," Proc. of FTCS-24, pp.131{133, 1994.

[3] N. G. Leveson, Safeware: System safety and computers, Addison-Wesley,

1995.

[4] J. D. Reese, et al., \Software deviation analysis," Proc. of 19th Interna-

tional Conference on Software Engineering(ICSE'97), pp.250{260, 1997.

[5] C. Smidts and D. Sova, \An Architectural Model for Software Reliabil-

ity Quanti�cation: Sources of Data," Reliability Engineering and System

Safety, vol.64, 279{290, 1999.

[6] K. Tamura, J. Okayasu and M. Hirayama, \A software testing method

based on hazard analysis and planning," Proc. of ISSRE'98, pp.103{110,

1998.

