
Application of Generalized Stochastic Petri-net to Quantitative

Evaluation of Software Process

Osamu MIZUNO, Yuji HIRAYAMA, Shinji KUSUMOTO and Tohru KIKUNO

Department of Information and Computer Sciences,

Faculty of Engineering Science, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560, Japan

E-mail: o-mizuno@ics.es.osaka-u.ac.jp

1. Introduction
As the complexity and size of software increase, project
management becomes important to develop reliable soft-
ware cost-e�ectively within speci�ed time constraints.
In order to manage a software project e�ectively, it is
necessary to establish a control method based on the ob-
jective and quantitative evaluation data on the current
status of the software project.
We have already presented quantitative evaluations of

the software development process described by General-
ized Stochastic Petri-net (GSPN)[3]. However, the eval-
uations in [3] cannot deal with the development period
su�ciently because of restrictions on the GSPN model.
This paper de�nes a new hierarchical model for soft-

ware project by extending the previous GSPN model
and by introducing the concept of \workload", and pro-
poses a method to evaluate the software process from
the viewpoints of the quality, cost and delivery date.
As the result, the new model can take the in
uence of
human factors into account, and thus can evaluate the
dynamic aspect of software project. Finally, the results
of the case study of the proposed method provide us with
some implications on software project management.

2. Fundamental Model

2.1 Extended GSPN [3]

A Petri-net is one of the most powerful models for repre-
senting and analyzing concurrent processes such as those
occurring in software development process. A stochastic
Petri-net is an extended model of a Petri-net by incor-
porating timing information. It has two types of tran-
sitions: timed transition and immediate transition. An
immediate transition is the transition whose �ring delay
is zero. A timed transition needs speci�ed time to �re.
Marsan et al. have proposed a generalized stochastic

Petri-net (GSPN) [8] whose transition has exponential
distributed �ring rate. A GSPN has been used exten-
sively to model and analyze dynamic behaviors of sys-
tems and software processes. However, a GSPN can-
not totally evaluate the important factors of software
project.
So, we have extended a GSPN in order to quantita-

tively evaluate software processes from the viewpoints

of quality, cost and delivery. In the extended GSPN,
a token has some attributes, which are useful for ac-
tivity evaluation. Additionally, each transition of the
extended GSPN has an execution function which is eval-
uated in time of �ring. The value of each attribute of the
token is updated by evaluating the execution functions.

2.2 Problems of extended GSPN

The extended GSPN model[3] did not include the follow-
ing factors which a�ect the behaviors of the developers:

1. Communication overheads � � � Communication
overheads are recognized to be serious in the soft-
ware development. For example, it is impossible for
one thousand developers to complete the software
in a month that completed for one thousand man-
months[1]. The major reason is that the increase
of developers induces the increase of overheads for
communications among the developers.

2. Di�erence of experience � � � The capability of each
developer is strongly related to the productivity
and quality of software. It is reported that there are
large individual di�erences in programming perfor-
mance and developers with high performance tend
to develop programs with fewer faults[9][11].

3. Confusion by incompleteness � � � The design and
coding activities mainly include translation work
from input products into output products. For ex-
ample, the coding activity is described as transla-
tion work from the design speci�cations into the
source code. In such translation activities, if there
are some omissions of required description on the
input products, it needs corresponding inquiries,
and then communication overheads increase[2].

4. Stress by delivery date � � � Usually, a delivery date
or a deadline is �xed for each activity on the devel-
opment plan. As the deadline closes in, stress on
developers gets serious and could a�ect their perfor-
mance negatively. It is reported that stress caused
by the deadlines or short development time incurs
the high incidence of errors and faults[4].

In a practical development, since these factors change
the development period dynamically, it is very di�cult
to estimate the period precisely. The method in [3] sim-
pli�es the estimation by assuming that the value of the
development period always becomes constant. Thus the
period cannot be evaluated su�ciently in the previous
model.

3. Key Idea of Solution

In order to solve the problems, this paper proposes a
new concept of \workload" which describes
uctuation
of the development period and the product size. Next,
three factors: developers' experience level, completion
rate of products and deadline for activities, are incor-
porated to take the dynamic in
uence of human factors
into account. (About these factors, subsection 4.1 will
describe in detail.)
Generally speaking, an e�ort is used to measure the

amount of the activity. But, the e�ort doesn't become
clear until the activity is over, and thus the e�ort is
not suitable to determine the amount of uncompleted
activity. Additionally, the e�ort includes not only the
amount of work needed for purely execution of the ac-
tivity, but also the amount of communication among the
developers.
For example, let us consider an activity of 10 man-

days. Even if this activity is performed by a developer
in 10 days, it could not be performed by 10 developers
in a day. One of the main reasons is that time to com-
municate among the developers increases as the number
of developers increases.
Here, we newly de�ne the term \workload" of an ac-

tivity as the total time needed for a developer who has
the standard capability to complete the activity. Addi-
tionally, the e�ciency of the activity under such a con-
dition is quanti�ed as 1. The value of e�ciency depends
on the environment, such as the number of the develop-
ers, the necessity of communication and performance of
CASE tools. Then, the development time is calculated
as the result of dividing the workload by the e�ciency
of the activity.

Example 1 Now we consider the following two cases
of an activity whose workload is 20 hours.

Case 1: Two developers, with the standard capability
execute the activity and ten percent of the total de-
velopment time is spent for communication.

the activity for 10 hours, then the attained work-
load becomes 18 (=10�2�0.9).

Case 2: Four developers, with the standard capability,
execute the activity and twenty percent of the total
development time is spent for communication.

For this case, if each developer takes part in
the activity for 5 hours, then the attained workload
becomes 16 (=5�4�0.8).

In the proposed model, the workload is assigned to
each activity depending on the input products for the
activity. For example, for the coding activity, the larger
the size of design speci�cations, the larger workload is
assigned. For the debug activity, the more the number of
faults contained in input products, the larger workload
is assigned. Consuming of the workload assigned to an
activity corresponds to the progress of the activity in
the development. Growth of product can be modeled by
changing the values of the size or the number of faults
in the output product.

4. New Hierarchical Model

The proposed model is a hierarchical model which con-
sists of Project Model and Process Model. Figure 1
shows the outline of the hierarchical model.
Project model includes three key components: activ-

ities, developers and products. Some attributes are at-
tached to each of them.
Process model includes a set of activity models which

include speci�cations of design, coding, review, test, de-
bug activities, and so on. Activity model is described
by an extended GSPN.

update
attribute values

Project model

deliver
 firing rates of
 transitions

Process modelAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

model for
 design,coding and debug

AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

activities

products developers
{M }i{P }i

{A }i

model for
 review and test

r2
1r

3r

4r

5r 6r 7r

Figure 1: Outline of hierarchical model

4.1 Project model

Project model focuses on three key components: activ-
ities, products and developers, and attaches several at-
tributes to each of them. (See Table 1)
An activity has eight kinds of attributes, which are

type, entry/exit condition, input/output product, work-
force, deadline and workload. (1) Type shows the type of
the activity, such as design, coding, review, test, debug
and so on. (2) Entry condition and (3) exit condition
specify conditions for beginning and ending the activity,

Table 1: Project template

Attributes of activity Ai

type
entry condition
exit condition
input product
output product
workforce
deadline
workload

Attributes of product Pi

size
number of faults
completion rate

Attribute of developer Mi

experience level

respectively. (4) Input product describes a set of prod-
ucts given to the activity as the input products and the
degree to which each of input products a�ects the deter-
mination of workload assigned to the activity as tuples.
(5)Output product describes a set of output products de-
veloped in the activity and the weight assigned to each
of the products. The variations of product size and num-
ber of faults are distributed to the products according
to each weight. Thus, the sum of each weight is required
to be one. (6) Workforce speci�es the developers who
engage in the activity and the ratio of time in which
each of developers can engage in the activity to his or
her business hours as tuples. (7) Deadline represents the
appointed date for the completion of the activity �xed
on the development plan. (8) Workload represents the
workload assigned to the activity and consumed amount
of it as a tuple.
A product has three kinds of attributes, which are

size, the number of faults and completion rate. (1) Size
represents the product size in document pages or the
lines of source code. (2) Number of faults counts faults in
the product. (3) Completion rate represents the extent
to which omissions or obscurities are excluded from the
product as a rate.
A developer has an attribute experience level which is

determined according to his/her length of service. We
classify developers' experience levels into the following
three levels: novice, standard and expert level. They
are quanti�ed as discrete values 1, 2 and 3, respectively.

Example 2 Table 2 shows an example of Project model
description. This project is composed of �ve activities
(A1; � � � ; A5), seven products and three developers. Note
that workloads of activities A1; � � � ; A5 and attributes
of all products except for initial input product P0 are
determined during the execution of the model. Thus,
they are not yet speci�ed in Table 2.
Parallel execution of several activities can easily be

de�ned by utilizing both entry condition of activity and
completion rate of product. For example of the parallel
execution, refer to [6].

4.2 Activity model

Activity model is prepared for each type of activities
such as design, coding, review, test and debug. The de-
scriptions of Activity models are given using extended
GSPN. Figure 2 shows the description of the design ac-
tivity. In the extended GSPN, a token has three at-
tributes: product size s, the number of faults f and
consumed workload w. These attributes are used to
represent the current status of development that varies
over the execution of each activity model.
Each transition corresponds to the developers' be-

havior such as thinking, writing and communicating or
event which occurs during an activity. Places corre-
spond to waiting states for occurrences of behaviors or
events.
In addition, each transition has a function (called ex-

ecution function) to be evaluated on its �ring. The ex-
ecution of the functions updates the attribute values of
the token.

Example 3 Figure 2 shows a description of the de-
sign activity. Here, we consider three kinds of devel-
opers' behaviors in the design activity: communicating
among developers, thinking needed for problems solu-
tion and writing for putting down the solution in docu-
ments. Transitions t1, t2 and t3 in Figure 2 correspond
to communicating, thinking and writing, and are given
the �ring rates rcm; rth and rwr, respectively. The �ring
rate rcm of transition t1 means that the average �ring
delay of transition t1 is 1=rcm.

r th wrr

t1

t2

P1 P2

rcm

t3

t1 t2 t3

w=w+1- f = f + 1
s = s + 1

attributes of token
s product size
f number of faults
w consumed workload

transition

execution
 function

in(with rate p)

Figure 2: Design activity model

4.3 Firing rate of transitions

The �ring rates of the transitions are formulated by the
following ten functions fcm, fth, fwr, fpr, frd, fdt, fmd,
fps, flc and fin. These functions should be concretely
speci�ed based on the property of the target project.
In the following, M is the number of developers en-

gaged in the activity, L is the developer's experience

level, �L is the sum of each developer's experience, S
is the total size of the input products, R is the com-
pletion rate of the input products, F is the number of
faults of the input products, D is the number of the
days from the current date to the deadline of the ac-
tivity. Kcm;Kth;Kwr and Kin are parameters given to
each activity and concerned with communicating, think-
ing, writing and fault injection rate, respectively.

(1) Communicating rate rcm
rcm = fcm(M;L;R)

(2) Thinking rate rth
rth = fth(M;L)

(3) Writing rate rwr
rwr = fwr(M;L)

(4) Preparing rate rpr
rpr = fpr(M;L; S)

(5) Reading rate rrd
rrd = frd(M;L)

(6) Fault detecting rate rdt
rdt = fdt(M;L; S; F)

(7) Fault modifying rate rmd

rmd = fmd(M;L)

(8) Testcase passing rate rps
rps = fps(M)

(9) Fault localizing rate rlc
rlc = flc(M;L; S; F)

Here, we will explain the functions used in the design
and coding activity. Functions fcm; fth and fwr make
it possible to dynamically determine the frequency of
communications or the di�culty in thinking and writ-
ing according to the number of developers and the expe-
rience levels of developers or completion rates of input
products.

Example 4 In the design activity, rcm is concretely
formulated as follows.

rcm = Kcm �

M2

�L� R

Next, rth and rwr are concretely formulated as follows.

rth = Kth �
�L

M
�M = Kth � �L

rwr = Kwr �
�L

M
�M = Kwr � �L

On the other hand, rcm; rpr; rrd; rdt and rmd are used
in the review activity, rcm; rpr; rps; rdt and rwr are used
in the test activity and rcm; rlc and rmd are used in the
debug activity.

4.4 E�ects of transition �ring

Activity model handles fault injections in the design ac-
tivity as the stochastic events whose occurrences depend
on fault injection rate pin. In general, pin is formulated
by the following function:

(10) Fault injection rate pin
pin = fin(M;L;R;D)

Example 5 In the design activity, pin is concretely
formulated as follows.

pin = Kin �

M

LRD
�M

By using this function, it is possible to take account
of dynamic in
uence on the fault injection rate caused
by the deadline of the activity or developers' experience
levels.
Moreover, the increases of product size at every �r-

ing of writing transition and consumption of workload
at every �ring of thinking transition are described by
the corresponding execution functions. At each �ring
of transition, the values of token's attributes can be
changed by evaluating its execution function.

Example 6 In the design activity model depicted in
Figure 2, for example, transitions t1 and t2 which repre-
sent communicating and thinking, respectively, can �re
when a token exists in place P1. If communicating tran-
sition t1 �res, it has no e�ect on the attributes values,
and the token returns to place P1 and just time corre-
sponding to the �ring delay elapses.
If transition t2 �res, by evaluating its execution func-

tion, consumed workload w increases by one, and the
token moves to place P2. When the token exist in place
P2, only transition t3 which represents writing behavior
is enable. If transition t3 �res, product size s increase
by one, and the number of faults f could increase ac-
cording to fault injection rate pin. After the �ring of t3,
the token moves back to place P1.

5. Execution of Model

The development process speci�ed by the hierarchical
model is carried out by repeating the interactions be-
tween Project model and Activity models. In this sec-
tion, we explain how this hierarchical model is carried
out.

Example 7 We apply the proposed model to the soft-
ware development process shown in Figure 3. Here, we
explain the execution of the model by using Activity A7.
Activity A7 is the module design activity. Activity A7

is executed until it consumes all the assigned workload.
Now, assume that the execution of A7 has completed on
the 59th day. The assigned and consumed workload of
A7 are 172 and 117, respectively. The input and output
product of A7 are P4 and P7, respectively.

On the 60th day, the following three steps are carried
out:
Step 1. Based on the the values of the attributes of the
activity, products and developers, Project model com-
putes the �ring rates of transitions of Activity models.
In this case, project model sets the values of Kcm;Kth

andKwr as 0:1; 0:2 and 0:2, respectively. In Figure 4(a),
the �ring rate of A7 is calculated as follows:

rcm = Kcm �

12

1� 1
= 0:10

rth = Kth � 1 = 0:20

rwr = Kwr � 1 = 0:20

Step 2. Project model delivers the �ring rates to the
corresponding Activity model (GSPN model), and then
Process model executes the model. In Figure 4(b), a de-
sign activity model is executed by Process model with
the speci�ed �ring rate rcm; rth and rwr. The GSPN
computes the current size of product(= 3) and con-
sumed workload(= 8).
Step 3. Process model returns the execution results
to Project model. Then Project model updates relevant
attributes of activities and products based on the re-
turned results. In Figure 4(c), at the end of the 60th
day, consumed workload of A7 becomes 125, and the
size of P7 becomes 34.

AA

AAA
AAA

AA
AA

AA
AA

AA
AA

AAA
AAA

AA

AA
AA

AAA
AAA

AA
AA

AAAAA

AA
AA

AA
AA

AAA

AAA
AAA

AAA
AAA

AA
AAAA
AA

AA

AAA
AAA

AA
AA

AA
AA

AAA
AAA

AA
AA

AAA
AAA
AAA

AAA
AAA

AA
AA

AA
AA

AA
AA

AAA
AAA

AAA
AAA

AA
AA

A19 A20 A21 A22

A23 A24 A25

A32

A26 A27 A28

A 29 A30

A 31

A1

2A 3A

4A 5A 6A

7A 8A 9A 10A

11A 12A 13A

15A

A14

A16 A17 A18

A 34

A33

Concept design

Function design

Structure design

Module design

Coding

Unit test

Unit debug

Integration test

Integration debug

Function test

Function debug

Verification test

Verification debug

Figure 3: Development process
ow

6. Conclusion

This paper has proposed a new hierarchical model for
software project which can evaluate the software process
from the viewpoints of the quality, cost and development
period. In the new model, by introducing the concept

of workload and by taking the in
uence of human fac-
tor into account, it is possible to evaluate the dynamic
aspect of software project.
Experimental evaluations of the model by applying

real software development data are currently under
investigation[5].

Acknowledgement

The authors would like to thank Professor Ichiro
Suzuki of the University of Wisconsin at Milwaukee for
his careful reading of the earlier version of this paper
and helpful comments.

References

[1] Brooks F. P., Jr.: The Mythical Man-Month,
Addison-Wesley (1975).

[2] Curtis B., Krasner H. and Iscoe N.: \A �eld
study of the software design process for large
systems", Communications of the ACM, Vol.31,
No.11, pp.1268-1287 (1988).

[3] Furusawa K. et al.:\Modeling and quantitative
evaluation of software process based on a Gen-
eralized Stochastic Petri-net", Proc. of 15th Soft-
ware Reliability Symposium, pp.99-104 (1994)(in
Japanese).

[4] Furuyama T., Arai Y. and Iio K.: \Fault genera-
tion model and mental stress e�ect analysis", The
Journal of Systems and Software, Vol.26, pp.31-
42 (1994).

[5] Hirayama Y. et al.:\Hierarchical project manage-
ment model based on quantitative evaluation of
software process", Technical Report of IEICE.
FTS95-74 (1995-12)(in Japanese).

[6] Hirayama Y., Mizuno O., Kusumoto S. and
Kikuno T.: \Hierarchical project management
model for quantitative evaluation of software pro-
cess", Proc. of the International Symposium on
Software Engineering for the Next Generation,
pp.40-49 (1996).

[7] Lee G. and Murata T.: \A �-distributed stochas-
tic Petri net model for software project time/cost
management", The Journal of Systems and Soft-
ware,Vol.26, No.2, pp.149-165 (1994).

[8] Marsan A., Conte G. and Balbo G.: \A class
of generalized stochastic Petri nets for the per-
formance evaluation of multiprocessor systems",
ACM Transactions on Computer System, Vol.2,
No.2, pp.93-122 (1984).

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Process Model

(a) Step 1

AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

A7 executing
workload =117/172

P4 size = 43
c.rate = 1.0

P7 size = 31
c.rate = 1.0

Project Model

e.level = 1M1

design activity A7

AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

A7 executing
workload =117/172

P7

Project Model

M1

(b) Step 2
Process Model

rates
firing

(A7)
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

A7 workload = 125/172

P7

Project Model

M1

(c) Step 3

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Process Model

execution
results (A7)

deliver update

model for
 design,coding and debug

model for
 review and test

design activity model
rcm = 0.10

rwr = 0.20

design activity model
rcm

rwr
thrr = 0.20th

executing

size = 34

Token
s = 3
w = 8

r2
1r

3r

4r

5r 6r 7r

Figure 4: Execution on the 60th day

[9] Matsumoto K., Kusumoto S., Kikuno T. and
Torii K.: \An experimental evaluation of term
performance in program development based
on model { Extension of programmer perfor-
mance model", Journal of Information Process-
ing, Vol.15, No.3, pp.466-473 (1992).

[10] Ra�o D. M.: \Evaluating the impact of process
improvements quantitatively using process mod-
eling", Proc. of CASCON93, Vol.1, pp.290-313
(1993).

[11] Sackman H., Erickson W. J. and Grant E. E.:
\Exploratory experimental studies comparing on-
line and o�ine programming performance", Com-
munications of the ACM, Vol.11, No.1, pp.3-11
(1968).

[12] Tvedt J. D. and Collofello J. S.: \Evaluating
the e�ectiveness of process improvements on soft-
ware development cycle time via system dynam-
ics modeling", Proc. of COMPSAC95, pp.318-325
(1995).

Table 2: Example of project description

A1

type FD
entry c. (A1,non-executed)
exit c. (A1,consumed)
input p. (P0; 7:0)
output p. (P1; 0:3); (P2; 0:5); (P3; 0:2)
workforce (M1; 1:0)
deadline 20

A2

type PG
entry c. (A1,done)
exit c. (A2,consumed)
input p. (P1; 1:2)
output p. (P4; 1:0)
workforce (M2; 1:0); (M3; 1:0)
deadline 35

A3

type PG
entry c. (A1,done)
exit c. (A3,consumed)
input p. (P2; 1:1)
output p. (P5; 1:0)
workforce (M1; 1:0)
deadline 35

A4

type FT
entry c. (A2,done), (A3,done)
exit c. (A4,consumed)
input p. (P3; 2:0); (P4; 0:2); (P5; 0:25)
output p. (P6; 1:0)
workforce (M2; 1:0)
deadline 60

A5

type FTD
entry c. (A4,running)
exit c. (A4,done),(A5,consumed)
input p. (P6; 2:4)
output p. (P4; 0:45); (P5; 0:55)
workforce (M1; 1:0); (M3; 1:0)
deadline 65

P0
size 8
fault 0
c. rate 1.0

M1

e. level 3

M2

e. level 2

M3

e. level 1

