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ABSTRACT
The fault-prone module detection in source code is of importance
for assurance of software quality. Most of previous fault-prone de-
tection approaches are based on software metrics. Such approaches,
however, have difficulties in collecting the metrics and constructing
mathematical models based on the metrics.
In order to mitigate such difficulties, we propose a novel ap-

proach for detecting fault-prone modules using a spam filtering
technique, named Fault-Prone Filtering. Because of the increase
of needs for spam e-mail detection, the spam filtering technique
has been progressed as a convenient and effective technique for
text mining. In our approach, fault-prone modules are detected in
a way that the source code modules are considered as text files and
are applied to the spam filter directly.
This paper describes the training on errors procedure to apply

fault-prone filtering in practice. Since no pre-training is required,
this procedure can be applied to actual development field imme-
diately. In order to show the usefulness of our approach, we con-
ducted an experiment using a large source code repository of Java
based open source project. The result of experiment shows that our
approach can classify about 85% of software modules correctly.
The result also indicates that fault-prone modules can be detected
relatively low cost at an early stage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.2.8 [Software Engineering]: Metrics—Product met-
rics; H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Measurement, Reliability
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spam filter, fault-prone modules, text mining
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1. INTRODUCTION
Fault-prone code detection is one of the most traditional and im-

portant area in software engineering. Once fault-prone modules are
detected at an early stage of the development, developers can take
notice on the detected modules more carefully. Furthermore, it is
useful to keep track on the fault-prone modules in order to prevent
injecting another faults in them.
Various studies have been done in the detection of the fault-prone

modules [1,3,6,9,11–17,22]. Most of them used some kind of soft-
ware metrics, such as program complexity, size of modules, object-
oriented metrics, and so on, and constructed mathematical models
to calculate fault-proneness.
We have introduced a spam filter based approach, named Fault-

Prone Filtering, to detect fault-prone modules [18]. The spam filter
is one of the most widely used text mining applications. According
to Postini Inc.’s report, 94% of entire e-mail messages on the In-
ternet are spam on November 2006 [21]. Such explosive increase
of spam e-mail messages triggered development of a lot of spam
filtering techniques [2, 20]. In the spam e-mail filtering, incoming
e-mail messages are classified into spam or ham (non-spam) based
on the frequency of tokens appeared in e-mail messages. Recently,
since the usefulness of Bayesian theory for the spam filtering has
been recognized, most of spam filtering tools implemented them.
Consequently, the accuracy of spam detection has been improved
drastically.
Inspired by the spam filtering technique, we tried to apply text

mining technique to the fault-prone detection. In the fault-prone
filtering, we consider a software module as an e-mail message,
and assume that all of software modules belong to either fault-
prone(FP) or not-fault-prone(NFP). In the previous research [18],
although we have conducted experiments using 10-fold cross val-
idation, the experiments were not sufficient to show practical use-
fulness of our approach. Furthermore, the target software in the
experiment was relatively small.
In this paper, we thus conduct a new experiment based on train-

ing on errors(TOE) procedure that can simulate practical situation.
Training on errors procedure is a reasonable way of classification
and training of spam e-mail filtering. In this procedure, e-mail mes-
sages are classified in arrival order. Only misclassified e-mail mes-
sages are used for training for further classification. This procedure
reduces the time for training and avoids too much training.
The experiment is prepared to simulate actual TOE process us-

ing the source code repository of eclipse project [7]. For the exper-
iment, methods in Java code are considered as software modules.
FP and NFP modules are then collected from the repository. We
then conducted TOE simulation using about 1.2 million modules
and classified them into FP or NFP. The result of experiment shows



that our approach can detect about 90% of modules correctly. Fur-
thermore, we can see that about 85% actual FP modules can be
predicted correctly and critical misclassifications rarely happen.
The rest of this paper is organized as follows: Section 2 describes

related works to this study. The outline of “fault-prone filtering” is
then described in Section 3. An experiment to show the effective-
ness of our approach is shown in Section 4. Section 5 discusses
on the result obtained in the experiment. In Section 6, we com-
pared our approach with other fault-prone prediction studies based
on survey. Section 7 addresses the threats to validity of this study.
Finally, Section 8 summarizes this study and also addresses the fu-
ture work.

2. RELATED WORKS

2.1 Fault-Prone Detection
Much research on detection of fault prone software modules has

been carried out so far. Just looking for works since 1999, a lot
of fault prone prediction studies are found [1, 3, 6, 9, 11–17, 22].
Previous studies can be categorized by data sets, metrics, and clas-
sification techniques.
Data sets used in these studies are three folds: public domain,

open source, and original. First, as for the public domain data
sets, one of the most famous public domain data set is the NASA’s
Metrics Data Program(MDP) [19]. For example, studies such as
[9, 17, 22] used the NASA’s MDP. By using such public domain
data sets, a new approach can be easily comparable with other
approaches. Our approach, however, cannot be applied to such
data sets since it requires raw software code. Next, as for the
open source software data, studies such as [3,6] collected and used
for the evaluation of their fault-prone prediction approaches. Fi-
nally, original data sets are usually used in empirical studies in in-
dustries [1, 15]. Especially, Khoshgoftaar used a data from very
large embedded software system and evaluated classification tech-
niques [15].
Software metrics related to program attribute such as lines of

code, complexity, frequency of modification, coherency, coupling,
and so on are used in most of previous studies. In those stud-
ies, such metrics are considered as explanatory variables and fault-
proneness are considered as an objective variable. Then mathe-
matical models are constructed from those metrics. The selection
of metrics varies according to studies. For example, studies such
as [9, 17, 22] used NASA MDP collected metrics. The object ori-
ented metrics are used in [3]. Some studies used metrics based on
metrics collection tools [1, 6].
Our approach does not use software metrics explicitly. Accu-

rately speaking, it uses the frequency of tokens (combination of
words) in code modules as metrics. To our best knowledge, there
is no work that used the frequency of tokens as predictors of fault
proneness. The calculation of frequency of tokens is done by spam
filtering tool. Brief explanation of calculation is shown in subsec-
tion 3.4.
Selection of classification techniques also varies according to

studies. Khoshgoftaar et al. has been performed a series of fault-
prone prediction studies using various classification techniques. For
example, classification and regression trees [16], tree-based classi-
fication with S-PLUS [13], the Treedisc algorithm [12], Sprint-Sliq
algorithm [14], logistic regression [11]. The comparison was sum-
marized in [15]. Logistic regression is one of frequently used tech-
nique in fault-prone prediction [3, 6, 11]. Menzies et al. compared
three classification techniques and reported that Naive Bayesian
classifier achieved the best accuracy [17].
Our approach adopted Markov random field for the classification

technique. Since it is an extension of naive Bayesian classifier, it is
expected to achieve good accuracy. The comparative study based
on survey is shown in Section 6.

2.2 Spam E-mail Filtering
Spam e-mail filtering is one of the most practical application of

text classification technique nowadays.
At an early stage of spam filtering software, it was mainly based

on pattern matching using dictionaries of spam-prone words in e-
mail messages. However, it is difficult to deal with new spam e-
mail messages including new words. As a result, spammers and
spam filters have been in the rat race.
Graham stated in his article that most spam e-mail messages

can be automatically classified by Bayesian classification in his
article [8]. The merit of Bayesian classification is flexibility for
new spam messages and user’s correction. Inspired by his article,
various spam filtering software based on Bayesian classification
have been developed [2, 20]. Since traditional spam filters such as
SpamAssassin [25] also implemented Bayesian technique in them,
Bayesian classification becomes essential technique for spam filter-
ing nowadays.
CRM114 is developed by Yerazunis [4] as an extension of Bayesian

classification based filtering and it has remarkable accuracy on de-
tecting spam messages. Since it is implemented as a generic text
discriminator, it can be applied to not only spam filtering but also
data stream analysis.

3. FAULT-PRONE FILTERING

3.1 Fundamental Idea
The basic idea of fault-prone filtering is inspired by spam mail

filtering. In the spam mail filtering, the spam filter first trains both
spam and ham (non-spam) e-mail messages from training data set.
Then, an incoming e-mail is classified into either ham or spam by
the spam filter.
This framework is based on the fact that spam e-mail usually in-

clude particular patterns of words or sentences. From a viewpoint
of source code, similar situation usually occurs in faulty software
modules. That is, similar faults may occur in similar contexts. We
thus guessed that faulty software modules have similar pattern of
words or sentences like spam e-mail messages. In order to grab
such features, we adopted a spam filter in fault-prone module pre-
diction.
Intuitively speaking, we try to introduce a new metric as a fault-

prone predictor. The metric is “frequency of particular words”. In
more detail, we do not treat a single word, but we use combinations
of words for the prediction. Thus, the frequency of a certain length
of words is only the metrics used in our approach.
We then try to apply a spam filter to identification of fault-prone

modules. We named this approach as “fault-prone filtering”. That
is, the fault-prone trainer first trains both FP and NFP modules.
Then, a new module can be classified into FP or NFP using the
fault-prone classifier. To do so, we have to prepare spam filtering
software and sets of FP and NFP modules.

3.2 Procedure of Filtering (Training on Errors)
In order to apply our approach to data from source code reposi-

tory, we implemented tools named “FPTrainer” and “FPClassifier”
for training and classifying software modules, respectively.
The typical procedure of fault-prone filtering is summarized as

follows:

1. Apply FPClassifier to a newly created software module (say,



FPClassifier

Correct 
prediction?

Yes

No

Modules sorted by date

Prediction 
(FP / NFP)

Training 
FPTrainer

Get next 
module

Figure 1: Outline of Fault-Prone Filtering by Training on Er-
rors

method in Java, function in C, and so on),Mi, and obtain the
probability to be fault-prone.

2. By the pre-determined threshold tF P (0 < tF P < 1), clas-
sify the moduleMi into FP or NFP.

3. When the actual fault-proneness of Mi is revealed by fault
report, investigate whether the predicted result for Mi was
correct or not.

4. If the predicted result was correct, go to step 1; otherwise,
apply FPTrainer toMi to learn actual fault-proneness and go
to step 1.

This procedure is called “Training on Errors (TOE)” procedure
because training process is invoked only when classification errors
happen. The TOE procedure is quite similar to actual classification
procedure in practice. For example, in actual e-mail filtering, e-
mail messages are classified when they arrived. If some of them are
misclassified, actual results (spam or non-spam) should be trained.
Figure 1 shows an outline of this approach. At this point, we con-

sider that the fault-prone filtering can be applied to the set of soft-
ware modules which are developed in the same (or similar) project.

3.3 Classification Techniques
In this study, we used “CRM114” spam filtering software [5].

The reason why we used CRM114 was its versatility and accuracy.
Since CRM114 is implemented as a language to classify text files
for general purpose, it is easy to apply source code modules. Fur-
thermore, the classification techniques implemented in CRM114
are mainly based on Markov random field model [4] instead of
naive Bayesian classifier.
In this experiment, we used the following 2 classification strate-

gies built in CRM114, which have relatively good accuracy.

1. Sparse Binary Polynomial Hash Markov model (SBPH) [4]

SBPH is an extension of Bayesian classification, mapping
features in the input text into a Markov Random Field. In
this model, tokens are constructed from combinations of n
words (n-grams) in a text file. In CRM114, the number of

words n is set as 5 by default. It is determined by experience
of CRM114 developers. Tokens are then stored in corpuses
via hash tables.

Intuitively speaking, SBPH constructs tokens at most nwords
and uses it as predictors.

Using n-grams for tokenization seems to be effective for our
objective, fault-prone prediction of software source code. For
the spam filtering, the simple Bayesian classification can achieve
high accuracy of filtering. In the simple Bayesian classifi-
cation, the frequency of a single word is stored in corpus.
However, since the difference between an FP module and an
NFP module is more subtle than e-mail messages, a certain
combination or sequence of words should be considered.

2. Orthogonal Sparse Bigrams Markov model (OSB) [23]

OSB is a simplified version of SBPH and the default classifi-
cation model used in CRM114. It consider tokens as combi-
nations of exactly 2 words created in the SBPH model. This
decreases both memory consumption of training and time of
classification. Furthermore, it is reported that OSB usually
achieves higher accuracy than SBPH [23] even though it is a
simplified version of SBPH.

Intuitively speaking, OSB constructs tokens with 2 words
and uses it as predictors.

Let me explain the difference between these text classifiers and
typical Bayesian text classifier. The typical Bayesian text classifier
utilizes the frequency of single words appeared in input text. In the
case of e-mail filtering, the frequency of single words is enough to
achieve high accuracy. However, in the case of source code, the
problem is more complex. In our previous study, we showed that
the use of simple Bayesian text classifier did not achieve enough
accuracy [18].

3.4 Probability Calculation
Here, we explain how these classifiers works briefly. The differ-

ence among these 2 classifiers are in both tokenization and classifi-
cation.

3.4.1 Tokenization
Since SBPH is a base of all technique, we explain how SBPH

tokenizes input text files. At first, words in a source code module
are separated by a lexical analyzer. Then, separators such as braces,
parentheses, colons, semicolons are deleted. SBPH then picks up a
sequence of 5 words. Next, SBPH generates combinations of these
words fixing the first word. For example, a sentence “if (x ==
1) return;” is tokenized as shown in Figure 2.
For all words in a source code module, the above procedure is

applied and tokens are obtained.
In OSB, tokens are extracted from SBPH generated ones so that

they include exactly 2 words in it. Thus, in the same example as
SBPH, tokens are generated as shown in Figure 3. By definition,
the number of tokens drastically decreases compared to SBPH.

3.4.2 Classification
Let TF P and TNF P be sets of tokens included in FP and NFP

corpuses, respectively. The probability of fault-proneness is equiv-
alent to the probability that a given set of tokens Tx is included
in either TF P or TNF P . In SBPH and OSB, the probability that
a new module mnew is faulty, P (TF P |Tmnew ), with given set of
token Tmnew in a new source code module mnew is calculated by



1: if
2: if x
3: if ==
4: if 1
5: if return
6: if x ==
7: if x 1
8: if x return
9: if == 1

10: if == return
11: if 1 return
12: if x == 1
13: if x == return
14: if x 1 return
15: if == 1 return
16: if x == 1 return

Figure 2: Example of tokens for SBPH

1: if x
2: if ==
3: if 1
4: if return

Figure 3: Example of tokens for OSB

the following Bayesian formula:

P (TFP|Tmnew ) =

P (Tmnew |TFP)P (TFP)

P (Tmnew |TFP)P (TFP) + P (Tmnew |TNFP)P (TNFP)

Intuitively speaking, this probability denotes that the new code is
classified into FP. According to P (TF P |Tmnew ) and pre-defined
threshold tF P , classification is performed.

3.5 Classification Example
Here, we present a very simple example of howmodules are clas-

sified by the OSB. Figures 4 (a) and (b) show examples of FP and
NFP modules, respectively. The module fact intended to calcu-
late a factorial of given x recursively. However, implementation in
Figure 4 (a) includes a bug that ++x in line 3 should be --x.
Assume that FPTrainer trains these 2 modules only. In this case,

Bigrams are generated from both modules and trained as either FP
or NFP. The difference between FP and NFP tokens are shown in
Figure 5 (a) and (b), respectively.
In Figure 5 (a), tokens FPx are trained as characteristic of FP

modules and stored in FP corpus. Similarly, tokens NFPx in Figure

�

�

�

�

1: public int fact(int x) {
2: if (x == 1) return 1;
3: return(x*fact(++x));
4: }

(a) Example of an FP module
�

�

�

�

1: public int fact(int x) {
2: if (x == 1) return 1;
3: return(x*fact(--x));
4: }

(b) Example of an NFP module

Figure 4: Example code for classification

FP1: return ++
FP2: x ++
FP3: * ++
FP4: fact ++
FP5: ++ x

(a) Tokens for line 3 of Figure 4 (a)

NFP1: return --
NFP2: x --
NFP3: * --
NFP4: fact --
NFP5: -- x

(b) Tokens for line 3 of Figure 4 (b)

Figure 5: Difference of generated tokens for FP and NFP mod-
ules

�

�

�

�

1: public int sigma(int x) {
2: if (x == 1) return 1;
3: return(x+sigma(++x));
4: }

Figure 6: Example of a new module

5 (b) are trained as NFP and stored in NFP corpus. All other tokens
are stored in both corpuses, too. However, since they are identi-
cal between FP and NFP modules, they have no effect on future
classification.
Then, assume that a newmodule shown in Figure 6 is constructed

and have to be classified. After tokenization, we can obtain the to-
kens shown in Figure 7 near line 3 of Figure 6.
We can see that tokens NEW1, NEW2, NEW8 are found in FP cor-

pus. According to equation (1), we can get probability to be fault-
prone for the newmodule. In this example, P (TFP) = P (TNFP) =
1/2 since there are only 2 modules trained. The number of tokens
in both FP and NFP corpuses is 58. The number of identical tokens
between FP and new module is 53. The number of identical tokens
between NFP and new module is 50. Thus, P (Tmnew |TFP) =
40/58 and P (Tmnew |TNFP) = 37/58. The probability that the
new code is classified as FP is thus calculated as follows:

P (TFP|Tmnew ) =
40
58

× 1
2

40
58

× 1
2

+ 37
58

× 1
2

= 0.519

As a result, a new module in Figure 6 is classified as FP with prob-
ability of 0.519. In fact, the new module has the similar bug that
the FP module in Figure 4 (a) has.
Our approach is based on the tendency that developers often

make similar mistakes and thus inject similar bugs. In other words,

NEW1: return ++
NEW2: x ++
NEW3: + ++
NEW4: sigma ++
NEW5: x x
NEW6: + x
NEW7: sigma x
NEW8: ++ x

Figure 7: Generated tokens for line 3 of Figure 6



Table 1: Target project (eclipse)
Name eclipse
Language Java
Revision control cvs
Size of entire repository 14 GB
Type of faults Bugs
Status of faults Resolved, Verified, Closed
Resolution of faults Fixed
Severity blocker, critical,

major, normal
Priority of faults all
Total number of faults 40,627

it is a pattern of bugs for individual developer. In this example,
making mistake --x for ++x tends to take place in different mod-
ules. By using spam filtering technique, we try to capture such
similar patterns of bugs.
Of course, this is just a trivial example. In the real situation, there

is a lot of other tokens that affects classification. The calculation of
probability thus becomes complex.

4. TRAINING ON ERRORS EXPERIMENT

4.1 Target Project
For the experiment, we selected an open source project that can

track faults. For this reason, we selected eclipse project [7]. Table
1 shows the context of the target project. The eclipse is constructed
in Java language, and revisions are maintained by concurrent ver-
sion control system (cvs). The source repository of cvs used in
this study is uploaded one on the eclipse project Web site, and is
obtained in 27th January, 2007. We obtained fault reports from
the bug database of eclipse project [7]. The total number of faults
found in bug database was 40,627 in the following condition: The
type of these faults is “bugs”, therefore these faults do not include
any enhancements or functional patches. The status of faults are ei-
ther “resolved”, “verified”, or “closed”, and the resolution of faults
is “fixed”. This means that the collected faults have already re-
solved and fixed and thus fixed revision should be included in the
entire repository. The severity of the faults was either blocker, crit-
ical, major, or normal. We did not use trivial bugs in this research.

4.2 Collection of Fault-ProneModules for Ex-
periment

We have to collect both fault-prone(FP) modules and non fault-
prone(NFP) modules from source code repository for this research.
The collection of such modules seems easy for a software project
which has a bug database such as an Open Source Software devel-
opment. However, even in such an environment, the revision con-
trol system and bug database system are usually separated and thus
tracking on the fault-prone modules needs effort. In the develop-
ment of software in companies, the situation becomes harder [15].
We thus have to extract FP and NFP modules by ourselves. We

assumed the target project is a Java-based development in this study.
We also assumed that a module of source code is a method in Java
class. We then extracted FP modules from source code based on an
algorithm shown by Sliwerski et al. [24].
The following restriction and assumption exist in this collection

method:

Restriction We seek FP modules by examining cvs log. There-
fore, faults that does not appear in the cvs log cannot be con-

Revisions of 
related class CLFaultFixed

Fault report: #100
Date: 2006/12/24
A critical bug is found!

Fault f100

date(f100) = 2006/12/24

1.6

Revised in 
2006/12/20

1.7

Revised in 
2007/01/05

1.8

Revised in 
2007/01/15

1.9

Revised in 
2007/01/28

Revision log:
Issue #100 is 
fixed. ...

(1) Find related revision log

(2) Extract MODFaultFixed

(3) Find unchanged modules since date(f100)

y() in rev.
1.6, 1.7, 

and 1.8 are 
fault-prone

Diff
     x()
     y()
     z()

Diff
     x()
     
     z()

Diff     
     

     z()

MODFaultFixed

     x()
     y()
     z()

Figure 8: Collection of FP modules

sidered. That is, the set of FP modules used in this study is
not complete.

Assumption We assume that faults are reported just after they are
injected in the software.

At first, we collected the following information from bug database
of a target project such as Bugzilla.

• FLT : A set of faults found in bug database.

• fi: Each fault in FLT .

• date(fi): Date in which a fault fi is reported.

Here, we consider a software module Mi as a tuple of di, mi,
and sa

i , where di is the last modified date ofMi,mi is source code
ofMi, and sa

i is actual fault status (FP or NFP) ofMi.
We then start mining a source code repository according to the

following algorithm to extract fault-prone modules.

1. For each fault fi, find class files CLFaultFixed in which the
fault has just been fixed by checking all revision logs.

2. Extract modules MODFaultFixed in classes CLFaultFixed.

3. For each module Mi in MODFaultFixed, let sa
i = FP if Mi

is unmodified since date(fi).

4. LetMODF P = {Mi|sa
i = FP }

5. Extract modules MODAllRev in all revision.

6. For each moduleMj inMODFP, track back older revisions
ofMj and append older revisions ofMj toMODFPold only
if theMj has remained unchanged until the bug fix.

7. LetMODNFP = MODAllRev −MODFPold −MODFP.
For each module Mk inMODNF P , let sa

k = NFP.

This algorithm collects fault-prone modules very strictly. In other
words, we collect modules in which faults are certainly included.
Therefore, some modules are not collected as FP since there is a
room that the module is not FP.
An illustrated example of collecting a fault-prone module is shown

in Figure 8. In this example, assume that a class CLFaultFixed has



Table 2: Result of FPFinder for eclipse
# of faults found in cvs log 21,761 (52% of total)
# of FP modules (|MODFP|) 65,782
# of NFP modules (|MODNFP|) 1,113,063

revisions 1.1, 1.2, · · · , 1.9, and revision logs are appended when
each revision is committed. At first, a fault f100 is found in 24th
December, 2006. By searching all revision logs, assume that the
fixed point is found as revision 1.9 of CLFaultFixed (Shown as (1)
in Figure 8). Then, MODFaultFixed can be extracted by taking a
difference between revision 1.8 and 1.9 (Shown as (2) in Figure
8). For each module in MODFaultFixed, we find modules which
are not modified since 24th December, 2006 by searching revision
differences. Here, assume that revision 1.6 ofCLFaultFixed is com-
mitted in 20th December, 2006. Therefore, we have to check all dif-
ferences between revision 1.6 and 1.9. Assume that difference be-
tween revision 1.7 and 1.8 includes modification to x() and z(),
and difference between revision 1.6 and 1.7 includes modification
to z(). Then, we can find that modification to y() between 1.8
and 1.9 is the first modification since the fault f100 was reported,
and the fault f100 is fixed hereupon y() is modified. This implies
that y() has a cause of fault f100. The modules y() in revision
1.6, 1.7, and 1.8 are then added toMODFP (Shown as (3) in Fig-
ure 8). On the other hand, the modules such as x() and z() in
revision 1.8 are not included in MODFP, because they are mod-
ified between 1.6 and 1.8 by some reasons. Of course, they may
include the cause of f100, but the confidence is smaller than that of
y() in 1.8. We thus do not include x() and z() in revision 1.8 in
MODFP .
We implemented a prototype tool named “FPFinder” to track

bugs in the cvs repository. The inputs of FPFinder is a cvs repos-
itory of target project and a bug report to track. The output of
FPFinder are sets of FP modules (MODFP) and NFP modules
(MODNFP).
The result of FPFinder is shown in Table 2. Number of faults

found in cvs log was 21,761. It is 52% of total reported faults in
the bug database. The number of FPmodules corresponded to these
faults was 65,782. The number of NFPmodules becomes huge, and
is 1,113,063.

4.3 Procedure of TOE Experiment
In the experiment, we have to simulate actual TOE procedure in

the experimental environment. To do so, we first prepare a list of
all modules found in subsection 4.2. The list is sorted by the last
modified date (di) of each module so that the first element of the
list is the oldest module. We then start simulated experiment in the
procedure shown in Figure 9. During the simulation, modules are
classified in order of date. If the predicted result sp

i differs from
actual status sa

i , the training procedure is invoked.

4.4 Result of Experiment
In the experiment we conducted 4 experiments with 2 classifiers

and 2 threshold values. That is, (e1) SBPH classifier with tF P =
0.50, (e2) SBPH classifier with tF P = 0.25, (e3) OSB classifier
with tF P = 0.50, and (e4) OSB classifier with tF P = 0.25. On
the threshold, tF P = 0.50 is a normal way of classification. On
the other hand, tF P = 0.25 means that the prediction of modules
tends to be FP than tF P = 0.50. This configuration is reasonable
on fault-prone detection since FP modules must not be missed.
For the evaluation of the experiments, we define several evalu-

ation measurements. Table 3 shows a legend of tables for experi-

tF P : Threshold of probability to determine FP and NFP
sp

i : Predicted fault status (FP or NFP) ofMi

for eachMi in list of modules sorted by di’s
prob = fpclassify(mi)
if prob > tF P then sp

i =FP
else sp

i =NFP
endif
if sa

i �= sp
i then fptrain(mi, sa

i )
endif

endfor

fpclassify(m):
Generate a set of tokens Tm from source codem.
Calculate probability P (TF P | Tm)

using corpuses TF P and TNF P .
Return P (TF P | Tm).

fptrain(m, sa):
Generate a set of tokens Tm fromm.
Store tokens Tm to the corpus Tsa .

Figure 9: Procedure of TOE experiment

Table 3: Legend of experimental result
Prediction
NFP FP

Actual NFP N1 N2

FP N3 N4

mental result. In Table 3, N1 shows the number of modules that
are predicted as NFP and are actually NFP. N2 shows the number
of modules that are predicted as FP but are actually NFP. Usually,
N2 is called false positive. On the contrary N3 shows the num-
ber of modules that are predicted as NFP but are actually FP. N3

is called false negative. Finally N4 shows the number of modules
that are predicted as FP and are actually FP. Therefore, N1 + N4

is the number of correctly predicted modules. Accuracy rate shows
the ratio of correctly predicted modules to entire modules and is
defined as follows:

accuracy =
N1 + N4

N1 + N2 + N3 + N4

The rates of false positive and false negative are defined as follows:

false positive rate =
N2

N1 + N3

false negative rate =
N3

N2 + N4

For evaluation purpose, we used two measurements: recall and
precision. Recall is the ratio of modules correctly predicted as FP
to number of entire modules actually FP. It is defined as follows:

recall =
N4

N3 + N4

Intuitively speaking, the recall implies the reliability of the ap-
proach because large recall denotes that actual FP modules can be
covered by the predicted FP modules.



Table 4: Final classification results in TOE experiment
(a) SBPH classifier with tF P=0.50

Prediction
NFP FP

Actual NFP 1,075,162 (91.2%) 37,901 (3.2%)
FP 26,947 (2.2%) 38,835 (3.3%)

(b) SBPH classifier with tF P=0.25
Prediction

NFP FP
Actual NFP 1,071,765 (90.9%) 41,298 (3.5%)

FP 26,292 (2.2%) 39,490 (3.3%)

(c) OSB classifier with tF P=0.50
Prediction

NFP FP
Actual NFP 1,022,895 (86.8%) 90,168 (7.6%)

FP 17,890 (1.5%) 47,892 (4.1%)

(d) OSB classifier with tF P=0.25
Prediction

NFP FP
Actual NFP 930,218 (78.9%) 182,845 (15.5%)

FP 10,592 (0.9%) 55,190 (4.7%)

Table 5: Evaluation measurements in TOE experiment
Classifiers SBPH OSB
threshold (tF P ) 0.50 0.25 0.50 0.25
Accuracy 0.945 0.943 0.908 0.835
Recall 0.590 0.600 0.728 0.839
Precision 0.506 0.489 0.347 0.232
False positive rate 0.034 0.038 0.087 0.194
False negative rate 0.351 0.325 0.129 0.044

Precision is the ratio of modules correctly predicted as FP to
number of entire modules predicted as FP. It is defined as follows:

precision =
N4

N2 + N4

Intuitively speaking, the precision implies the cost of the approach
because small precision makes much efforts to find actually FP
modules from predicted FP modules.
Table 4 shows the classification results for each experiment at

the final point of train on errors experiment. The evaluation mea-
surements for each experiment is shown in Table 5. From the view-
point of accuracy, SBPH classifiers seems superior to OSB classi-
fier. However, from the viewpoint of recall and false negative, the
OSB is better than SBPH. From the viewpoint of threshold of fault-
prone judgement, setting the threshold tF P to lower value (that is,
more likely to predict FP) makes recall and false negative better in
both classifiers.
Figure 10 shows transitions of evaluation measurements for each

experiment. In these graphs, the x-axis shows all software modules
sorted by dates and smaller number shows older modules. The y-
axis shows rates of accuracy, recall, precision, and so on.
The time needed for experiments using SBPH and OSBwere 125

hours 11 minutes and 12 hours 15 minutes, respectively, on MacPro
workstation with Xeon 2.66GHz processor. Indeed, OSB is ten
times faster than SBPH in this experiment. Since there are over 1
million modules to be classified, classification time per module is
less than 1 second even in SBPH.

5. ANALYSIS OF EXPERIMENTS
By investigating experimental results in more detail, we can ob-

tain interesting findings.

5.1 Difference between Classifiers
Here we discuss the difference of classifiers. Comparing Table 4

(a) through (d), the difference between the SBPH and OSB is found
on the capability of predicting FP modules. We can see in Table 4
(a) and (c) that the numbers of modules predicted as FP,N2 + N4,
are 76,736 and 138,060 for SBPH with tF P = 0.5 and OSB with
tF P = 0.5, respectively. Therefore, we can say that OSB tends to
predict modules as FP even if it is not correct.
For the SBPH with tF P = 0.5, the rates of false positive and

false negative are 0.034 and 0.356, respectively (See Table 5.). On
the other hand, for the OSB with tF P = 0.5, they are 0.087 and
0.129, respectively (See Table 5, too.). In fault-prone detection, it
is usually expected that actual FP modules should not be predicted
as NFP. Low false negative rate helps to avoid such critical mis-
classification. Furthermore, the result of experiment showed that
execution time of OSB is ten times faster than SBPH.
For these reasons, we conclude that OSB classifier is more better

to apply our fault-prone filtering.

5.2 Difference of Threshold
The threshold between FP and NFP is one of the most effective

parameters for the classification. From Table 4 (c) and (d), we can
see that the number of predicted FP modules drastically increases
in the case of OSB classifier. (However, in the case of SBPH shown
in Table 4 (a) and (b), the change is much smaller than the case of
OSB.) From Table 5, we can see that changing the threshold from
0.5 to 0.25 improves the recall, but the precision becomes worse.
Since the recall and the precision is in trade-off, users should de-
termine appropriate threshold for their purpose. In the software
development, it is usually required to detect as many FP modules
as possible. In such case, lower recall is preferred. However, lower
recall increases the precision.
In a case of OSB classifier in the experiment in Table 5, recall

improved from 0.728 to 0.839 by changing the threshold from 0.5
to 0.25. This means 83.9% of actual FP modules is covered in the
predicted FP modules. However, the precision become 0.347 to
0.232. It means that 34.7% of predicted FP modules is actually FP
when tF P = 0.5 and the rate decreases to 23.2% when tF P =
0.25. This implies the increase of detection cost because about 3
out of 4 FP predicted modules are actually NFP and investigating
these 3 modules is in vain for detecting faults. At the same time,
changing threshold decreases the number of false negative. The
rate of false negative becomes 0.044 when tF P = 0.25. In a case
of SBPH, similar tendency is observed in Table 5, too. However,
the degree of improvement is rather small.
We thus conclude that finding admissible threshold is required

for the practical use of our approach.

5.3 Transition of Evaluation Measurements
In Figure 10, it is observed that measurements are not good at an

early stage of the development. However, in all cases, the measure-
ments became saturated after classification and training of 50,000
modules. It is about 4% of total number of modules. This fact in-
dicates that TOE procedure works well after a certain period of the
development.
Investigating the case of eclipse in more detail, it takes 12 months

for the development of initial 50,000 modules. Since the eclipse has
been maintained for 6 years long, it needs 1/6 of total period of the
development until the fault-prone filtering takes effect.
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Figure 10: Transition of evaluation measurements in TOE experiment

We can also see that recall and precision jumped up just after
150,000 modules. Concretely speaking, recall and precision started
to raise up near 158,000 modules and stopped raising near 164,000
modules. During classification of these 6,000 modules, there are
few misclassifications for both FP and NFP. Although we cannot
see what was happened during this period exactly, we guess that
some kind of roll back occurred or a number of code clones [10]
are generated in wide area.
As for the transition of evaluation measurements, it is expected

that these measurements increase as time elapses because the more
training usually achieves more accuracy. However, the recall and
the precision do not follow the expectation. It is because the num-
ber of false positives (N2 in Table 3) and the number of false nega-
tives (N3) increase more rapidly than the number of correctly pre-
dicted as FP (N4). In order to improve this situation, it is required
to achieve more accurate fault-prone detection. To do so, for ex-
ample, the source code oriented classification techniques may be
effective.

6. COMPARATIVE STUDY
Since fault-prone prediction is a traditional research theme in

software engineering, many works has been done so far. We here
compare evaluation measurements with them in order to show the
effectiveness of our approach.
For comparison, we did not perform experiments using other

methods since contexts of previous studies differ widely. Alterna-
tively, we surveyed previous studies and compare their evaluation
measurements shown in their paper with our ones. Thirteen clas-
sification results in seven fault-prone prediction studies since 2002
were surveyed. The following describes summaries of these stud-
ies:

Denaro02 Denaro and Pezze proposed a logistic regression based
fault-prone prediction [6]. The target is open source software
(Apache 1.3 and 2.0). They used 38 metrics that can be col-
lected by tools, RSM and TestBed.

Briand02 Briand et al. proposed an approach based on principle
component analysis(PCA) and logistic regression [3]. They
used open source software for experiment, Xpose and JWriter.
A model is constructed using 22 object oriented metrics.

Guo03 Guo et al. used the Dempster-Shafer Belief Networks for
fault-prone prediction [9]. They used NASA’s MDP (KC2)



Table 6: Comparison with previous fault-prone prediction works
Study Approach Accuracy Recall false negative rate % of N4

Denaro02 [6] Logistic regression 0.906* 0.682* –
Briand02 [3] PCA + Logistic regression 0.840† 0.483*† 0.727† 10.4%
Guo03 [9] Dempster-Shafer Belief Networks 0.690‡ 0.915* – –
Khoshgoftaar04 [15] Sprint-Sliq classification tree 0.747 – 0.208* –

Classification and regression tree 0.699 – 0.149* –
Regression tree in S-PLUS 0.734 – 0.213* –
Treedisc classification tree 0.721 – 0.255* –
C4.5 classification tree 0.746 – 0.213* –
Case-based reasoning 0.728 – 0.277* –
Logistic regression 0.723 – 0.128* –

Bellini05 [1] Discriminant analysis 0.736 0.543*† 0.568† 20.0%
Seliya05 [22] Semi-supervised clustering 0.836* – 0.274* –
Menzies07 [17] Naive Bayes – 0.710** , 0.980* – –
Mizuno07 FP Filtering (CRM114, OSB, tF P = 0.25) 0.835 0.839* 0.044* 4.7%

* The best value shown in paper.
** Average value shown in paper.
† Calculated from data shown in paper.
‡ Approximate value read from graph in paper.

for their case study and thus they used 21 metrics collected
in NASA projects.

Khoshgoftaar04 Khoshgoftaar et al. compared various classifica-
tion techniques for fault-prone prediction [15]. Classifica-
tion techniques used in [15] were Sprint-Sliq classification
tree, classification and regression tree (CART), Regression
tree in S-PLUS, the Treedisc classification tree, C4.5 classifi-
cation tree, case-based reasoning (CBR), and logistic regres-
sion. They applied their approach to very large embedded
system written in high level language (more than 10 million
LOC). They used 28 metrics including call graph metrics,
control flow graph metrics, statement metrics, and software
execution metrics. Ten-fold cross validation is used for eval-
uation.

Bellini05 Bellini et al. proposed a discriminant analysis based ap-
proach [1]. They showed two data sets, INDUSTRIAL and
MEDICAL for experiment. The metrics are collected by
CPP analyzer and PAMPA tools, and the number of metrics
were 113.

Seliya05 Semi-supervised clustering based approach was proposed
by Seliya et al. [22]. They also used NASA’s MDP (JM1 and
KC2), and 13 metrics such as line count, Halstead, McCabe,
branch count, are used.

Menzies07 Menzies et al. compared three classification techniques
for fault-prone prediction in [17]. Then they concluded that
naive Bayesian classifier is the most accurate. They also
used NASA’sMDP (PC1, PC2, PC3, PC4, MW1, KC3, KC4,
CM1) and used 38 metrics related to Halstead, McCabe, and
so on.

Table 6 shows evaluation measurements (accuracy, recall, and
false negative rate) shown in these studies. As mentioned before,
since we consider that the recall is the most important in fault-prone
prediction, we mainly picked up the best value of recall in each
study. If the paper did not show the recall, we collected the best
false negative rate instead.
Each row in Table 6 shows the best recall or false negative rate

and the corresponding accuracy rate for a classification technique.

The mark “*” with a value in Table 6 denotes that the value is the
best case in the paper. The mark “**” denotes that the value is
average value explicitly shown in the paper. The mark “†” indicates
that we calculate the value from the data shown in the paper. The
mark “‡” denotes that the value is approximate one since it was
read from the graph.
Comparison of recall values showed that Guo03 and Menzies07

achieves extremely high recall in their best cases. However, the
value of recall in our approach, 0.845, is still higher than studies
such as Denaro02, Briand02, and Bellini05.
As for the false negative rate, Khoshgoftaar uses it as an evalua-

tion measure in their fault-prone prediction works. We can see that
our approach achieves lowest false negative rate (0.044) in Table 6.
As for the similarity of the context of target software, Denaro02

and Briand02 are more similar to our approach. Comparing our
approach with these two works, accuracy of our approach (0.835)
is slightly smaller than these two works. However, recall of our
approach (0.839) is much higher than them.
Since this is a survey based comparison, we cannot validate ad-

vantage of our approach in a rigorous manner. However, we can
show a certain degree of possibility that FP filtering can be applied
to actual software development.

7. THREATS TO VALIDITY
The threats to validity are categorized into four as recommended

in [26]: external, internal, conclusion, and construction validity. In
this study, external and construction validity can be found.
One of the external validity threats for our study is the general-

izability of the result. In the previous study [18], we applied our
approach to several open source software projects, Eclipse BIRT
plugin and argoUML. Even though these projects are much smaller
than the Eclipse project, we got almost the same results to the ex-
periment in this paper. More application to other projects, espe-
cially industrial ones, may mitigate this threat.
One of the construction validity threats is the collection of fault-

prone modules from open source software projects. As I mentioned
before, the number of faults found in Eclipse cvs repository was
52% of total faults reported in Bugzilla database. The algorithm
adopted in this study has a limitation that faults that is not recorded



in cvs log cannot be collected. In order to make accurate collec-
tion of FP modules from source code repository, further research is
required.

8. CONCLUSION
This paper showed the training on errors procedure to classify

fault-prone software modules using spam filtering technique. In
our fault-prone filtering, source code modules were considered as
text files and they are applied to the spam filter directly. In order to
show the practical usefulness of fault-prone filtering, we conducted
an training on errors experiment using source code repositories of
Java based open source developments. The result of experiment
showed that our approach can classify about 85% of software mod-
ules correctly. Furthermore, the result of experience showed that
we can improve the prediction accuracy by modifying the thresh-
old of the probability.
One of the most important future works is improvement of pre-

diction accuracy. The current spam filter based approach considers
only text information of the source code modules. Although it con-
tributes the speed of the classification and training, some kind of
improvements that considers characteristics of source code can be
implemented without increasing the execution time so much.
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