An MVC-based Analysis of Object-Oriented System Prototyping

for Banking Related GUI Applications
— Correlationship between OO Metrics and Efforts for Requirement Change —

Satoru Uehara, Osamu Mizuno, Yumi Itou and Tohru Kikuno
Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University, Japan
{s-uehara, o-mizuno, itou, kikuno } @ics.es.osaka-u.ac.jp

Abstract it is widely utilized into practice. As a matter of fact, the
object-oriented paradigm has high capabilities to handle large

In this paper we analyze statistically the efforts for C+systems, change them, reuse the part of systems, and so on,
program modification which is needed by a given requirememtich are important factor to assure the quality of the product
change during the prototyping development of a certain Gdhd the productivity of the development team.
application. In the analysis we consider both C++ program Until now, various approaches have been presented as guide-
P to be updated and the resultant C++ prografti, and dis- |ines and actually unique graphical notations for deriving
cuss the correlation between the valié$P) of the Object- the object-oriented design, such as OMT[13] and Booch’s
Oriented metrics obtained frof and the effort& (') need- method[2] have already been proposed. Additionally, a large
ed to produce”’. According to the definitions &fl (P) and number of object-oriented programming languages such as S-
E(P'), we present two approaches in this paper. malltalk, C++, Objective-C and Java have been introduced.

Inthe firstapproach, we takd (P) as the value obtained byThey of course implemented the object oriented properties
applying the metrics to the whole source cddandE(P') as such as class, encapsulation, inheritance, polymorphism, and
the lines of code&OC) that are actually modified or created,so on. Thus they can make it easy to utilize the object-oriented
respectively. However, the experimental result cannot shg#radigm into actual software development process. Recent-
strong correlation betweeM () andE(F'). ly, object-oriented approach is often used because it is very

Based on the analysis results of the first approach, we pe&ympatible with operating systems which have event driven
pose the second approach to consider the object-oriented prggchitecture and Graphical User Interface(GUI), such as Win-
erties more directly. The analysis process consists of followiggws.
three steps: 1) take only the classesfnclassify them ac- o the other hand, in order to evaluate and support the
cording to the MVC paradigm originally for Smalitalk theirgg gevelopment, the object-oriented metrics have been intro-
functions, and then evaluaté (P) for the classified classes,yceq, since the traditional software metrics were not appro-
2) in order to evaluate the efforts for code modification, def”ﬂ)’ﬁate for applying the OO development. The OO metrics are

E(P') as the heuristic value which is calculated empiricall,,a,ated and newly proposed in much research(s, 7, 9.
from the numbers of methods and members created or mod- hile applying the OO paradigm into practicaly u:c,e the

ified, and 3) analyze the relationship between the values o . : .
o .~ __prototyping development is more applicable rather than tra-
M (P) on the classified classes i and the values dE(P’')
o, . ditional waterfall model. The prototyping development can
on the source codes iR’. From the experimental result, we \ . . o
. X . reveal the customer’s requirement into the product, and it is
can prove there exists a high correlation between them.

compatible to the OO paradigm.

In the prototyping development, the first product is devel-
oped(including design, coding and test) based on the initial
1 Introduction and thus incomplete requirement of the customer. Then the

productis delivered to the customer and checked by them. The
In order to manage the software development, a large numb@stomer returns the changes in requirements to the develop-
of methodologies and techniques have already been proposesl. The developer performs the development to reflect the
For realizing high quality and productivity of the softwaraequirement. These process iterated until the customer satis-
the Object-Oriented(O0) paradigm has been attracted, &ied the product or the deadline of delivery comes. Thus, it is

important to estimate the efforts to update the product for tRe Motivation
prototyping development, when the changes in requirement
are returned from the customer. The adequate estimation Qilfl Prototyping

make the prototyping development to be more productive one. . .]
Figure 1 shows an outline of typical prototyping process[6].

Therefore, we set the goal of our study as finding the prégénerally speaking, the prototyping development proceeds
tical method to estimate accurately the efforts for updatifgnsists of the rapid interactions between customers and de-
the program. However, in order to establish the estimatiH@'OperS- One of specific characteristics of the prototyping is
methodology, we must analyze the relationship among the Hiere are not complete specifications during the development.
velopers, the environments, the source codes, the metrics, Big developers design and implement the product based on

so on. In this paper, we perform the analysis of the first sté]§ customers’ requirements, and deliver the prototype of pro-
toward the final goal. gram to the customers. The customers try to test the prototype,

and return the changes of requirements to the developers. The

In this paper, we investigate the activities for updating th@op is iterated until the customers satisfy the program.
program due to changes of requirements. We consider the
programP before updating and the prograPhafter updating,
and investigate the correlation between the values of metrics :;‘;“i'iremen ts
M (P) which is measured fron®?, and the amounts of efforts a
E(P') which is calculated fron®'. Based on the definitions
of M(P) andE(P'), we present two approaches in this paper. Change in

Requiremerj

=

In the first approach, we takd (P) as the value obtained Implementation
by applying the OO metrics to the whole source cétland

E(P') as the lines of codelsQC) that are actually modified or Test
created. However, the experimental result cannot show strong Program
correlation betwee (P) andE(P’), sinceLOC does not

consider the object-oriented characteristics and the application Final Program
to the whole source code is too vague to conclude any specific
properties.

Customer Developer

Based on the results of the first approach, we propose therigure 1. General prototyping development pro-
second approach to consider the object-oriented propertiegess
more directly. The key idea of second approach is as follows:
1) take the classes iR, classify them according to their func- _) o
tions using the MVC paradigm[4, 12], and then evalbate®) During the protqtypmg developm(_ant, the productivity of
for the classified classes, 2) in order to evaluate the efforts f§velopmentteam is one of the mostimportant factor, because
code modification, definE(P’) as the heuristic value whichthe product have to be delivered to the customers as soon as
is calculated empirically from the numbers of methods aR@Ssible. Thus, the estimation of the efforts on the prototyping
members created or modified. We also consider the creafi§iyelopment is an essential problem from the management

and modification of the classes separately. point of view.
Generally speaking, it is very natual and easy to combine
Then we measure the values Mf(P) for each classified the prototyping developmentand object-oriented developmen-
classes Model, View and Controller. Finally we propose tfieBecause the object-oriented paradigm makes it easy to un-
formulas which can reflect the difficulties for updating. Frogerstand the system structure and reuse the previous compo-

the experimental result, we can prove there exists a high dagnts of other systems, and developers can deliver the product
relation between them. rapidly using the advantages of object-oriented development.

This paper is organized as follows: Section 2 shows tEGZ Efforts Estimation
motivation of our study. Section 3 explains the development
process and the OO metrics which are used in this study. S¢amerous studies have been done with the estimation on the
tion 4 shows the first analysis based on the legacy metric, @oftware development process. Basili et al. have proposed
the result of it. Section 5 describes the key idea of this stuiliye framework to predict the fault-proneness of the classes
and Section 6 shows the second analysis. Finally, Sectiohy7using the object-oriented metrics[1, 3]. Since their aim is
summarizes the main results and the future research workto estimate the quality, we cannot use their result directly to

our objective. On the other hand, Kusumoto et al. develop8d Process and Metrics

a simulator to estimate the efforts and faults of the software

project[8]. However, their simulator was targeted to the sta@:1 ~ Software Development Process
dard waterfall model, so it is hard to apply to the prototyping;

development. Therefore we have to establish a new metho?g@)ure 3 shows the software development process actually

estimate the efforts for the object-oriented prototyping dev _op_ted in the target. prc_)ject. The project s a development of
opment. anking related application. The platform of the program was

Figure 2 shows a certain situation of the prototyping dev%_{indows 95/NT, and development environment was Microsoft
opment. Inthis situation, we have a certain version of progra ual C++. For the development, the OO development was

P and requirement changdrom the customers, and we Wanperformed according to the OMT.

to estimate the efforts needed to update the progfanto P’ 1 hen we adopted a typical prototyping development pro-
according ta) cess. Three developers were engaged in the initial design, and

two of them took part in the successive prototyping develop-
ment. During the prototyping, since the customers’ require-
ment was changed twice, the development was iterated for

Program P — . three times. Finally, three versions of progré P, and P;
Design &

were generated.

Change in — Implementation
requirements &
Initial Design &
Requirements Implementation
First
Program P' <& Test P1 Develop
Test
Developer [717
Changes in
Requirements Second
Figure 2. Estimation of the efforts — P2 Develop
es
We can formulate this estimation as follows: [~~~ 7-~- -1
ch - Design &
anges in Impl tati
EffOT’t(P — Pl) = eSt(P7 57 5) Requirements mplementation Third
P Development
wheree is the environment factor such as developers, tools, Test

and so on. In this study, we consider that bétande are
constant for simplicity. One of the reasons is that less complex Final Program P3
method is required to use in the actual developmentfield. Then Customer Developer
the estimation formula is transformed as follows:

Effort(P — P') = est(P) Figure 3. Development process
We use the object-oriented metrics measured on progtam A change in requirement shown in Fig.3 consists of small
to establish the functioast(P). requirement changes. For each small requirement change, the
classes in the program are modified and/or created. Further-
2.3 Objectives more each change can be identified by the comments on the
program.

As mentioned in the previous subsection, the final goal of our
study is the estimation of the efforts. In order to establi$1 . . .

the effort estimation method, the objective of this study is o'2 Object-oriented metrics

analyze the relationship between the metrics measured befarthe object-oriented development, we can point out some
updating the progran? and the efforts needed to update thiactors which are related to the amount of efforts for updating
programP into P'. For convenience, we denote the metrithe program.

measured on the prografhasM (P), and the efforts needed] o

to update the prograr® into P’ asE(P'). According to the ~® Complexity of the class definition.

definitions ofM (P) andE(P’), we present two approachesin Generally, the more complex the class is, the more effort
this paper. is needed to modify it. There are various metrics to

show the complexity of the class. Among them, we
choose the weighted methods per cM8€C , the depth .
of inheritanceDIT and the number of childreNOC. WMC — Zci

e Interaction of the classes.

Interacting the other object by message passing is one
of important characteristics of the OO paradigm. How- For simplicity, we assume that all the method complex-
ever, if there are too many coupled classes in a class, it ities are unity ¢; = 1). ThusWMC actually shows the

is difficult to modify the class because there are many number of methods.

classes which are affected by the modification. Thus we

choose the metri€BO. Similarly, we consider that the 2) DIT (Depth of Inheritance Tree)

interaction between the methods in the same class might

Depth of inheritance of the class is tBdT metric for
affect the efforts. Thus we choose the metrii@OM .

the class:
In the following, we explain the definition of metrics to be

used. These metrics are originally defined in [5]: DIT = the number of super-classes

Table 1. Evaluation of metrics 3) NOC (Number Of Children)

Class | WMC | DIT | NOC | CBO |LCOM NOC is a measure of how many subclasses are going to
C1 14 1 0 5 33 . .
C2 1 1 0 2 37 inherit the methods of the parent class:
Cs3 9 1 0 5 10
Gl Bl 1o s |%
5 . .
Cé 5 1 0 3 4 NOC = the number of immediate subclasses
P I A - B subordinated to a class in the class hierarchy
Co 22 1 0 3 121
C10 11 1 0 6 27
sl & ol 3| 4) CBO (Coupling Between Object classes)
C13 7 3 0 9 19
gu g 4 0 % 3 CBO for a class is a count of the number of other classes
sl 20 20 sl 31 to which it is coupled.
C17 5 6 0 2 10 . . .
g:; g g g § 180 Consider a class which has: member variables
C20 7 5 0 4 21 Aq, -+, A,, andn methodsMy, - -+, M,,. CBO can be
cu 3 & H 2 » expressed as follows:
C23 10 4 0 7 35
Go | o | 4o | |2
25
Cz6 8 4 0 8 14 CBO = |[{O}U{R1} U{R2}U---U{R,}|
C27 8 4 0 7 14
alsl s
29
C3o 17 4 0 14 64 where{O} is a set of classes which is defined as a type
S I S A I - of member variablesty, - - -, A,,, and{R;} is a set of
C33 17 5 0 1 104 .
o H . 0 9 5 classes called by methadd;.
C35 10 6 0 8 39
el Bl sl S &S 5) LCOM (Lack of COhesion in Methods)
C3s 10 6 0 8 39))
Cao 16 4 0 15 94 LCOM is the cohesion between methods.
C40 17 4 0 13 64
el 5| s A 7 S - Consider a clas§ with n methodsVy, - - M. Let{;}
C43 17 4 0 12 | 136 be a set of instance variables used by methéd Let
P =A{(Li,)|; NI = ¢} andQ = {(L;, [;)|i N I; #
¢}. ThenLCOM can be expressed as follows:
1) WMC (Weighted Methods per Class)
WMC is the total complexity of weighted methods per Lcom = { 1PI=1el if|P|>]Q|
class. 0 otherwise

Consider a clas§' with n methodsi, - - -, M, that are
defined in the class. Let be the complexny ofaMethod Then we apply the OO metrics to the progrdm Table 1
M;: shows the values of metrics for each class.

Development Process First Analysis

M(P1)
-WMC(C;)
- DIT(C;)
Program P1 —tl—pp ‘ -NOC(Cy
- CBO(Cy)
Change in —— . 700 1 - LCOM(C;)
requirements § & °
&£ 600 |
W
N 500 |
o 400 |
Program P3 300
—
200 . R = 00054
100 .
Devel
eveloper . Py o . E(P3)
0 100 200 300 ~LOCE)
Figure 4. Outline of first analysis
3.3 Other data modified and creatddOC (C;) inthe modified clas€;. Then,

i f hcl i in th mP’:
Table 2 shows the resultant data of the target project. At firvsvt(? countLOC (Cs) for each clase; in the progra

the prototype progranf; had 43 classes and the size wag.OC(C;) = lines of codes which are modified or created
about 6.KLOC *. After two successive requirement changes, in classC;

the number of classes increases to 58, and the size becomes

about 8.%XLOC . Here, we use the notatidf(C;) to represent the OO metrics

measured from the clag$ in the programP. Then we con-
sider the correlation betwedh(C;) andE(C;). For example,

Table 2. Characteristics of programs Fig. 4 shows the correlation between the meti@OM (C;)

Version| # of classes | LOA(P) andLOC (C5).
P1 43 6295
P2 53 7765 i
P3 53 8925 4.2 Experimental Result

Table 3 shows the result of analysis. The correlation coeffi-
cients between the OO metriggIC, DIT, NOC, CBO and
LCOM) andLOC (C;), respectively, are shown in it.

4 First Analysis

4.1 Outline Table 3. Correlation coefficients for LOC(C;)
wMC] DIT [NoCc[CBOJLCO
Figure 4 shows the outline of the first analysis. We analyze Correlation| ¢ 51 {002 0.05 | 0.12 | 0.07
coerricien)))))

the correlation between the OO metrMg P) and the efforts
E(P’). In the analysis below, for simplicity, we compound
the developme_nt process by combining the second and thirsg\S the result of analysis, we can say that there are not
developments in Fig. 3 into one development. any specific high correlations between the OO meti¢s’;)

Here, we introduce the notatin(Cf) to represent the ef- 54 5 (). Here, we discuss the reasons of the result.
forts needed to modify the claés in P’. In the first analysis, First, it is not adequate to consideOC as efforts needed

we assume the effor&(C;) as the lines of codes which arg, modify the OO programs, becaus®C cannot consider
1Hereafter, the value oEOC implies the lines of code excluding theth€ OO characteristics in the program. Second, it can be said
comments. that the metrics obtained from the whole program were too

scattered to get any specific characteristics from them. chieating a member variable could be the most difficult work,
order to solve the problems found in the first analysis, we hawecause if the type of new member variable is the other class,

to introduce some new idea. it is inevitable to refer the definition, structure and how to use.
5 Keyldea 5.2.2 Formulas for efforts (create)
5.1 Classifications of class&s12] In the case of creating a new class, we can measure the amount

. . of creating efforts from the prograf’, but we cannot com-
In order to classify the classes, we use the MVC paradigmighe it with any metrics on the prografbecause a new class

12]. In the MVC paradigm, the user's input, the modelingq not exist onP. However, it must not be ignored since the
of the external world, and the visual feedback to the user igaion of the class is important factor of the OO develop-

explicitly separated as three types of functions: Model, Vient Thus we try to introduce the substitute measure which
and Controller. The Model manages the behavior and dafg, e compared with created new class.

of the application domain, responds to requests for informa-
tion about its state, and responds to instructions to change

state. The View manages the graphical and/or textual output Program P

to the portion of the bitmapped display that is allocated to its @@

application. Finally, the Controller interprets the mouse and

keyboard inputs from the user, commanding the model and/or @ | Design &

the view to change appropriately. Change in —-»l.'mp'eme"ta“m

requirements §

Since it is said that the MVC paradigm is suitable to the
development of the GUI application, we apply it to our pro- \
gram and classify all the classes into three types. We expect @@ ——{ Test

Program P'

that the properties of the classes are emphasized to extract the @

correlations between the OO metrigs(C;) and the efforts 2 and Cs are modified classes. Developer
E(Cz) . Ca is newly created class.

5.2 Empirically calculated efforts Figure 5. Related modified classes

From the result of the first analysis, we have to investigate) . .)
the other efforts metric butOC. Thus we introduce a new " Fig. S, consider a certain requirement chaigen the

metric to measure the amount of efforts needed to update RRRIram?. In order to reflect the requirement change iffto

programs. We consider two cases of updating the prograif¢ have to create a new claSs and modify two classes’

modification of the existing classes and creation of the n@RdCs at the same time. Here we define a setpaindCs as
classes. the related classes with, with respect to the changg and

denote them as a setl-C.

521 Formulas for efforts (modify) _ Then we define th# (rel-C;), which de_notes the OO met-
rics measured from the related classe®in
In the case of modifying the existing claé%, we calculate
the efforts of modification as follows: M (rel-C;) = Z M (C;)
C; belong to rel-C;
E(Ci|modify) = w1 x mb. + wz X mt,, + w3 X mt,
Then we calculate the efforts of creating the clégsas

wheremb, is the number of member variables which are nevxggnows_

created onC;, mt,, is the number of methods which ar
modified, mt. is the number of methods which are newly
created, andos, w» andws are the weighting constants. In E(Cilcreate) = w1 x mbe +ws x mi.

this study, we determine these constantgwas w,, ws) = +w1 X rel-mb,. + wy X rel-mt,, + ws X rel-mt.
(5,1,2). The weighting is currently based on the experience

of developers. The developers in the target OO developmetiererel-mb. denotes the number of member variables which
consider that modifying a method is an easy work becausari¢ newly created in the related classesC;, rel-mt,, de-
may not affect other parts of program. On the other hanthtes the number of methods which are modifieadtrC;,
creating a method seems to be more difficult, since they havelrel-mt. denotes the number of methods which are created
to refer the class definition or the other class. Additionally rel-C;.

Development Process Second Analysis

M(Contoroller)
- WMC(C;)
-DIT(C)
 — - .
Program P1 —— NOC(C)
_ - CBO(Cy)
Change in —_— < 0 1 -Lcom(cy
requirements § & °
&N 600
R ®
N
G‘Qst
S
Program P3
~——
E(Controller)
- E(C;lmodify)
Developer - E(Cj|create)
0 20 40 60 80

Figure 6. Outline of second analysis

5.2.3 Validation of formulas 6 Second Analysis

In order to verify the validity of the formulas above, we an@ased on the key idea shown in Section 5, we perform the
lyze the correlation between the difficulty of the classes asdcond analysis.
the value of the proposed metric by the Spearman’s rank cor-
relation. Here we only show the validation of the formula fcg 1 outli
. utline

efforts of modification.

Here, we explain the outline of the second analysis. In the
analysis, we introduce two key factors. At first, we classify all
the classes into three types: Model, View and Controller. In

Table 4. Heuristi ki f difficult
ab’e exnstic rariing of AUy Table 1, the class&s; to C';3are Model classes§;14to Co7 and

Class | Rank Class | Rank S . .
C1 12.5 Ca2 18 C2g o Cy are classified as View and Controller, respectively.
C4 55 Cs3 3 Next, for each class, i.e. Controller, we investigate the corre-
s 2 Sl lation between the OO metrids (Controller) and the efforts
Co 12.5 C36 14 E(Controller). Figure 6 shows an example of the analysis
g15 195 337 §I;'> for the Controller class, where we chods€&C;|modify) for
peoodl I ca | 20 X axis andLCOM (C;) for Y axis. The correlation coefficient
C3o0 11 Ca2 4 was calculated as 0.75.
C31 8 Ca3 1

6.2 Experimental Result

First, we interviewed the developers of target project, andw we show the experimental results for two cases: modifi-
askedthemto rank all the classes in progfaby the difficulty cation of classes and creation of classes.
to modify. Table 4 shows the ranking of difficulty for each First, Table 5 shows the values ofb., mt,,, mt. and
modified class. Table 5, to be given in subsection 6.2, shoyegculated effort&(C;|modify) for each modified class.
the caluculated efforts by the proposed weighting formula. Table 6 shows correlation coefficients between OO metrics
Thenwe perform the rank correlation analysis for the datahh(C;) (WMC , DIT ,NOC, CBO andLCOM ,) and the efforts
Table 4 and Table 5. As the result of analysis, the SpearmdbismodificationE(C;|modify). Itis shown that the Controller
rank correlation coefficient was 0.86. Thus, we can say tltddss has high correlation witRMC andLCOM (the values
the proposed weighting formulae have a certain degreeobtoefficients are 0.64 and 0.75, respectively). Figure 7 shows
validation. some typical scattered graphs of Controller class.

Table 5. Calculated efforts (Case of modifica-

. %)
tion) o R
Class || mb, | mt, | mt,_ | B(C, imodify S
C1 1 1 3 12 sor .
c4 0 o 6 12 400 b R“=0.5693
Cs 3 6 15 51
C7 0 0 1 2 300
Co 1 1 2 10 200 |
C15 0 0 1 2 o .
C2s 1 2 1 9 100 F .
C29 0 1 0 1 o [e®)))
C30 0 1 2 5
C31 0 1 2 5 0 0020 30 40 50 g @Qmagiff
C32 0 0 1 2
C33 3 4 5 29
C34 0 4 0 4
C3s 0 1 2 5
C3e 0 2 1 4 345
Cs7 0 0 3 6 S0
C39 0 1 1 3 = °
Cat 0 1 0 1 335 .
Ca2 12 0 4 68 30t R’ =0.4001
C43 6 14 6 56 25
20 °.
15 ° ® ®
10} ®e
5 [)
Table 6. Correlation coefficient for E(C;|modify) T e o o
WMC] DIT | NOC| CBOJLCO E@moai}y
Model |-0.14| - | --- | 0.04 | -0.16
View
Controller | 0.64 | -0.36| ---- | 0.00 | 0.75
All 0.53 [-0.23]-0.15] 0.00 | 0.64

Figure 7. Scattered graph for the Controller
(case of modification)

Next, we investigate the case of class creation. Table 7
showsthe values etl-mb., rel-mt,,, rel-mt. and calculated
effortsE(C;| create) for each created class.

Table 8 shows the correlation coefficients between the
forts of class creatioik(Ci|create) and the OO metrics of o ever the result of the analysis might be a little bit

related modified classad (rel-C;). It can be seen that rel-y; oy~ Especially, we must investigate the generalization

aF'Ver high correlations exist bgtween them, especially ,f8f the weighting constant(currently determined heuristically)
View and Controller classes. Figure 8 shows some typlgmd the OO metrics itselves

scattered graphs for View class.

in the prototyping development. For the analysis, we made
%\ﬁ/o approaches, and we can show some successful results in
e second approach.

Considering the problems above, we summarize our future
work as follows:

6.3 Discussions e We have to apply the analysis to other projects.
From the result of the analyses, we can say that there are & The weighting formula shown in Section 5 have to be
certain extent of correlations between the OO metidg’;) investigated its validity much more.

and the newly defined efforts of modificati®{C;). Espe- _])
cially, in case of creating classes, we can see relatively higtt For the choice of OO metrics, we have to examine the
correlations between them. For the classification of the class- Other metrics.

es, it can be seen that the Controller class has high tendency {p Finally, we should establish the estimating method from
correlate with the OO metrics, especidlyMC andLCOM . M (P) to E(P").

7 Conclusion References

In this paper, we investigated the relationship between the OJ1] V. R. Basili, L. C. Briand and W. L. Melo: “A Vali-
metricsM (P) and the effort€(P’) for updating the program dation of Object-Oriented Design Metrics as Quality

Table 7. Calculated efforts (Case of creation)

Class || reFmb_ | rel-mt,,| rekmt, | mb,| mt. | E(C;|create)
Caa 4 13 8 1 4 52
Cas 1 4 8 1 4 38
C46 1 3 7 1 4 35
Ca7 1 4 8 1 3 36
Cas 4 3 8 1 3 50
Cag 0 1 0 0 6 13
Cso 0 0 2 1 3 15
Cs1 6 7 5 10| 11 119
Cs2 1 4 5 4 | 7 53
Cs3 3 6 2 6 | 11 77
Cs4 6 7 5 519 90
Css 6 7 5 8 |11 109
Csé 4 3 8 3 |17 88
Cs7 1 3 7 3|15 67
Cs8 1 0 5 1113 46

Table 8. Correlation coefficient for

(2]

(3]

(4]

[5] S. R. Chidamber and C. F. Kemerer: “A Metrics Suit-[11]

E(C;|create)

WMC| DIT | NOC| CBO |LCO.
Model 0.35| - ---- | 0.35 | -0.35
View 0.94 | 0.91 | -0.45] 0.97 | 0.90
Controller | 0.87 | -0.87 | -0.87 | 0.87 | 0.87
All 0.82 | 0.78 | -0.37] 0.90 | 0.78

;1400

Q R%=0.8279
L1200 |
3
Q1000 |
-
800 |
600 |-
400
200
0
° %0 100 gcleredt
ouor R? = 0.8847
L0}
g
100 |
=
80 |
60 |
40
20 b
0 . ,
0 20 40 60 80 100 14
éf& |create%

Indicators,” IEEE Transactions of Software Engineer- Figure 8. Scattered graph for the View (case of

ing, Vol.22, N0.10, pp.751-761, 1996.

G. Booch: Object Oriented Analysis and Design With
Applications The Benjamin/Cummings, 1994.

L. C.Briand, J. Daly, V. Porter and J. igt: “Predicting
Fault-Prone Classes with Design Measures in Object-
Oriented Systems,” Proc. 9th International Sympo-
sium on Software Reliability Engineering(ISSRE’98),
pp.334-343, 1998.

S. Burbeck: “Applications Programming in Smalltalk-
80(TM): How to use Model-View-Controller (MVC),”
http://st-www.cs.uiuc.edu/users/smarch/st-
docs/mvc.html |, 1992.

e for Object Oriented Design”, IEEE Transactions

on Software Engineering, Vol.20, No.6, pp.476—493,
[12

1994,

[6] J. Martin: Rapid Application Developmertlacmillan

(7]

Publishing Company, 1991

[10]

creation)

[8] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,

Y. Takagi and K. Sakamoto: “A New Project Simula-
tor Based on Generalized Stochastic Petri-Net,” Proc.
19th International Conference on Software Engineer-
ing(ICSE’97), pp.293-303, 1997.

[9] W. Li and S. Henry: “Object-oriented Metrics That

Predict Maintainability,” Journal of Systems and Soft-
ware, Vol.23, pp.111-122, 1993.

M. Lorenz and J. KiddObject Oriented Software Met-
rics, Prentice Hall, 1994.

K. H. Moller and D. J. Paulish:Software Metrics
Chapman & Hall, 1993.

] L. J. Pinson and W. S. WienerAn Introduction to

Object-Oriented Programming and Smalltafiddison
Wesley, 1988.

[13] J. RumbaughObiject-Oriented Modeling and Design

E. M. Kim: “Program Complexity Metric and safe-

ty Verification Method for Object-oriented Software
Development,” PhD. Dissertation, Osaka University,
January, 1997.

Prentice Hall, 1991.

