
An MVC-based Analysis of Object-Oriented System Prototyping
for Banking Related GUI Applications

– Correlationship between OO Metrics and Efforts for Requirement Change –

Satoru Uehara, Osamu Mizuno, Yumi Itou and Tohru Kikuno
Department of Informatics and Mathematical Science,

Graduate School of Engineering Science, Osaka University, Japan
fs-uehara, o-mizuno, itou, kikuno g@ics.es.osaka-u.ac.jp

Abstract

In this paper we analyze statistically the efforts for C++
program modification which is needed by a given requirement
change during the prototyping development of a certain GUI
application. In the analysis we consider both C++ program
P to be updated and the resultant C++ programP 0, and dis-
cuss the correlation between the valuesM(P) of the Object-
Oriented metrics obtained fromP and the effortsE(P 0) need-
ed to produceP 0. According to the definitions ofM(P) and
E(P 0), we present two approaches in this paper.

In the first approach, we takeM(P) as the value obtained by
applying the metrics to the whole source codeP andE(P 0) as
the lines of codes(LOC) that are actually modified or created,
respectively. However, the experimental result cannot show
strong correlation betweenM (P) andE(P 0).

Based on the analysis results of the first approach, we pro-
pose the second approach to consider the object-oriented prop-
erties more directly. The analysis process consists of following
three steps: 1) take only the classes inP , classify them ac-
cording to the MVC paradigm originally for Smalltalk their
functions, and then evaluateM(P) for the classified classes,
2) in order to evaluate the efforts for code modification, define
E(P 0) as the heuristic value which is calculated empirically
from the numbers of methods and members created or mod-
ified, and 3) analyze the relationship between the values of
M(P) on the classified classes inP and the values ofE(P 0)
on the source codes inP 0. From the experimental result, we
can prove there exists a high correlation between them.

1 Introduction

In order to manage the software development, a large number
of methodologies and techniques have already been proposed.
For realizing high quality and productivity of the software,
the Object-Oriented(OO) paradigm has been attracted, and

it is widely utilized into practice. As a matter of fact, the
object-oriented paradigm has high capabilities to handle large
systems, change them, reuse the part of systems, and so on,
which are important factor to assure the quality of the product
and the productivity of the development team.

Until now, various approaches have been presented as guide-
lines and actually unique graphical notations for deriving
the object-oriented design, such as OMT[13] and Booch’s
method[2] have already been proposed. Additionally, a large
number of object-oriented programming languages such as S-
malltalk, C++, Objective-C and Java have been introduced.
They of course implemented the object oriented properties
such as class, encapsulation, inheritance, polymorphism, and
so on. Thus they can make it easy to utilize the object-oriented
paradigm into actual software development process. Recent-
ly, object-oriented approach is often used because it is very
compatible with operating systems which have event driven
architecture and Graphical User Interface(GUI), such as Win-
dows.

On the other hand, in order to evaluate and support the
OO development, the object-oriented metrics have been intro-
duced, since the traditional software metrics were not appro-
priate for applying the OO development. The OO metrics are
evaluated and newly proposed in much research[5, 7, 9].

While applying the OO paradigm into practical use, the
prototyping development is more applicable rather than tra-
ditional waterfall model. The prototyping development can
reveal the customer’s requirement into the product, and it is
compatible to the OO paradigm.

In the prototyping development, the first product is devel-
oped(including design, coding and test) based on the initial
and thus incomplete requirement of the customer. Then the
product is delivered to the customer and checked by them. The
customer returns the changes in requirements to the develop-
ers. The developer performs the development to reflect the
requirement. These process iterated until the customer satis-
fies the product or the deadline of delivery comes. Thus, it is

important to estimate the efforts to update the product for the
prototyping development, when the changes in requirement
are returned from the customer. The adequate estimation will
make the prototyping development to be more productive one.

Therefore, we set the goal of our study as finding the prac-
tical method to estimate accurately the efforts for updating
the program. However, in order to establish the estimating
methodology, we must analyze the relationship among the de-
velopers, the environments, the source codes, the metrics, and
so on. In this paper, we perform the analysis of the first step
toward the final goal.

In this paper, we investigate the activities for updating the
program due to changes of requirements. We consider the
programP before updating and the programP 0 after updating,
and investigate the correlation between the values of metrics
M(P) which is measured fromP , and the amounts of efforts
E(P 0) which is calculated fromP 0. Based on the definitions
of M (P) andE(P 0), we present two approaches in this paper.

In the first approach, we takeM (P) as the value obtained
by applying the OO metrics to the whole source codeP and
E(P 0)as the lines of codes(LOC) that are actually modified or
created. However, the experimental result cannot show strong
correlation betweenM(P) andE(P 0), sinceLOC does not
consider the object-oriented characteristics and the application
to the whole source code is too vague to conclude any specific
properties.

Based on the results of the first approach, we propose the
second approach to consider the object-oriented properties
more directly. The key idea of second approach is as follows:
1) take the classes inP , classify them according to their func-
tions using the MVC paradigm[4, 12], and then evaluateM(P)
for the classified classes, 2) in order to evaluate the efforts for
code modification, defineE(P 0) as the heuristic value which
is calculated empirically from the numbers of methods and
members created or modified. We also consider the creation
and modification of the classes separately.

Then we measure the values ofM(P) for each classified
classes Model, View and Controller. Finally we propose the
formulas which can reflect the difficulties for updating. From
the experimental result, we can prove there exists a high cor-
relation between them.

This paper is organized as follows: Section 2 shows the
motivation of our study. Section 3 explains the development
process and the OO metrics which are used in this study. Sec-
tion 4 shows the first analysis based on the legacy metric, and
the result of it. Section 5 describes the key idea of this study
and Section 6 shows the second analysis. Finally, Section 7
summarizes the main results and the future research work.

2 Motivation

2.1 Prototyping

Figure 1 shows an outline of typical prototyping process[6].
Generally speaking, the prototyping development proceeds
consists of the rapid interactions between customers and de-
velopers. One of specific characteristics of the prototyping is
there are not complete specifications during the development.
The developers design and implement the product based on
the customers’ requirements, and deliver the prototype of pro-
gram to the customers. The customers try to test the prototype,
and return the changes of requirements to the developers. The
loop is iterated until the customers satisfy the program.

InitialInitial
RequirementsRequirements

Final ProgramFinal Program

TestTest

CustomerCustomer

Change inChange in

RequirementRequirement

DesignDesign

ImplementationImplementation

DeveloperDeveloper

TestTest
ProgramProgram

Figure 1. General prototyping development pro-
cess

During the prototyping development, the productivity of
development team is one of the most important factor, because
the product have to be delivered to the customers as soon as
possible. Thus, the estimation of the efforts on the prototyping
development is an essential problem from the management
point of view.

Generally speaking, it is very natual and easy to combine
the prototyping development and object-oriented developmen-
t. Because the object-oriented paradigm makes it easy to un-
derstand the system structure and reuse the previous compo-
nents of other systems, and developers can deliver the product
rapidly using the advantages of object-oriented development.

2.2 Efforts Estimation

Numerous studies have been done with the estimation on the
software development process. Basili et al. have proposed
the framework to predict the fault-proneness of the classes
by using the object-oriented metrics[1, 3]. Since their aim is
to estimate the quality, we cannot use their result directly to

our objective. On the other hand, Kusumoto et al. developed
a simulator to estimate the efforts and faults of the software
project[8]. However, their simulator was targeted to the stan-
dard waterfall model, so it is hard to apply to the prototyping
development. Therefore we have to establish a new method to
estimate the efforts for the object-oriented prototyping devel-
opment.

Figure 2 shows a certain situation of the prototyping devel-
opment. In this situation, we have a certain version of program
P and requirement change� from the customers, and we want
to estimate the efforts needed to update the programP intoP 0

according to�.

DeveloperDeveloper

TestTest

Program PProgram P

Change inChange in
requirements requirements dd

Program P'Program P'

Design &Design &
ImplementationImplementation

Figure 2. Estimation of the efforts

We can formulate this estimation as follows:

E�ort(P ! P 0) = est(P; �; ")

where" is the environment factor such as developers, tools,
and so on. In this study, we consider that both� and" are
constant for simplicity. One of the reasons is that less complex
method is required to use in the actual development field. Then
the estimation formula is transformed as follows:

E�ort(P ! P 0) = est(P)

We use the object-oriented metrics measured on programP

to establish the functionest(P).

2.3 Objectives

As mentioned in the previous subsection, the final goal of our
study is the estimation of the efforts. In order to establish
the effort estimation method, the objective of this study is to
analyze the relationship between the metrics measured before
updating the programP and the efforts needed to update the
programP into P 0. For convenience, we denote the metrics
measured on the programP asM (P), and the efforts needed
to update the programP into P 0 asE(P 0). According to the
definitions ofM(P) andE(P 0), we present two approaches in
this paper.

3 Process and Metrics

3.1 Software Development Process

Figure 3 shows the software development process actually
adopted in the target project. The project is a development of
banking related application. The platform of the program was
Windows95/NT, and development environment was Microsoft
Visual C++. For the development, the OO development was
performed according to the OMT.

Then we adopted a typical prototyping development pro-
cess. Three developers were engaged in the initial design, and
two of them took part in the successive prototyping develop-
ment. During the prototyping, since the customers’ require-
ment was changed twice, the development was iterated for
three times. Finally, three versions of programP1, P2 andP3

were generated.

PP11

CustomerCustomer DeveloperDeveloper

TestTest

Design &Design &
ImplementationImplementation

Changes inChanges in
RequirementsRequirements

InitialInitial
RequirementsRequirements

TestTest

TestTest

Design &Design &
ImplementationImplementation

PP22

Changes inChanges in
RequirementsRequirements

TestTest

TestTest

Design &Design &
ImplementationImplementation

Final Program PFinal Program P33

TestTest
PP33

FirstFirst
DevelopmentDevelopment

SecondSecond
DevelopmentDevelopment

ThirdThird
DevelopmentDevelopment

Figure 3. Development process

A change in requirement shown in Fig.3 consists of small
requirement changes. For each small requirement change, the
classes in the program are modified and/or created. Further-
more each change can be identified by the comments on the
program.

3.2 Object-oriented metrics

In the object-oriented development, we can point out some
factors which are related to the amount of efforts for updating
the program.

� Complexity of the class definition.

Generally, the more complex the class is, the more effort
is needed to modify it. There are various metrics to

show the complexity of the class. Among them, we
choose the weighted methods per classWMC , the depth
of inheritanceDIT and the number of childrenNOC.

� Interaction of the classes.

Interacting the other object by message passing is one
of important characteristics of the OO paradigm. How-
ever, if there are too many coupled classes in a class, it
is difficult to modify the class because there are many
classes which are affected by the modification. Thus we
choose the metricCBO. Similarly, we consider that the
interaction between the methods in the same class might
affect the efforts. Thus we choose the metricLCOM .

In the following, we explain the definition of metrics to be
used. These metrics are originally defined in [5]:

Table 1. Evaluation of metrics
ClassClass WMC DIT NOC CBO LCOM

CC11

CC22

CC33

CC44

CC55

CC66

CC77

CC88

CC99

CC1010

CC1111

CC1212

CC1313

CC1414

CC1515

CC1616

CC1717

CC1818

CC1919

CC2020

CC2121

CC2222

CC2323

CC2424

CC2525

CC2626

CC2727

CC2828

CC2929

CC3030

CC3131

CC3232

CC3333

CC3434

CC3535

CC3636

CC3737

CC3838

CC3939

CC4040

CC4141

CC4242

CC4343

1414
1111
99
2121
1515
55
1313
66
2222
1111
66
2121
77
33
22
55
55
55
55
77
55
55
1010
99
99
88
88
1515
1818
1717
2121
1515
1717
1111
1010
1717
1818
1010
1616
1717
66
3939
1717

11
11
11
11
11
11
11
11
11
11
11
11
33
44
55
66
66
66
44
55
66
66
44
44
44
44
44
44
55
44
44
44
55
66
66
44
44
66
44
44
44
33
44

00
00
00
00
00
00
00
00
00
00
00
00
00
00
55
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

55
22
55
44
55
33
66
33
33
66
33
33
99
22
11
22
22
22
55
44
22
22
77
88
1111
88
77
1515
1111
1414
2020
1212
1111
99
88
2020
1515
88
1515
1313
2828
1919
1212

3333
3737
1010
140140
5555
44
4040
99

121121
2727
99

144144
1919
33
11
1010
1010
1010
88
2121
1010
1010
3535
2020
2222
1414
1414
7373
123123
6464
9898
7575
104104
5555
3939
8888
6363
3939
9494
6464
1515
619619
136136

1) WMC (Weighted Methods per Class)

WMC is the total complexity of weighted methods per
class.

Consider a classC with n methodsM1; � � � ;Mn that are
defined in the class. Letci be the complexity of a Method
Mi:

WMC =

nX
i=1

ci

For simplicity, we assume that all the method complex-
ities are unity (ci = 1). ThusWMC actually shows the
number of methodsn.

2) DIT (Depth of Inheritance Tree)

Depth of inheritance of the class is theDIT metric for
the class:

DIT = the number of super-classes

3) NOC (Number Of Children)

NOC is a measure of how many subclasses are going to
inherit the methods of the parent class:

NOC = the number of immediate subclasses
subordinated to a class in the class hierarchy

4) CBO (Coupling Between Object classes)

CBO for a class is a count of the number of other classes
to which it is coupled.

Consider a class which hasm member variables
A1; � � � ; Am andn methodsM1; � � � ;Mn. CBO can be
expressed as follows:

CBO = jfOg [fR1g [fR2g [� � � [fRngj

wherefOg is a set of classes which is defined as a type
of member variablesA1; � � � ; Am, andfRig is a set of
classes called by methodMi.

5) LCOM (Lack of COhesion in Methods)

LCOM is the cohesion between methods.

Consider a classC with nmethodsM1; � � �Mn. LetfIig
be a set of instance variables used by methodMi. Let
P = f(Ii; Ij)jIi \ Ij = �g andQ = f(Ii; Ij)jIi \ Ij 6=
�g. ThenLCOM can be expressed as follows:

LCOM =

�
jP j � jQj if jP j > jQj
0 otherwise

Then we apply the OO metrics to the programP . Table 1
shows the values of metrics for each class.

R2 = 0.0054

0

100

200

300

400

500

600

700

0 100 200 300

M(PM(P11))

- WMC(C- WMC(Cii))

- DIT(C- DIT(Cii))

- NOC(C- NOC(Cii))

- CBO(C- CBO(Cii))

- LCOM(C- LCOM(Cii))

DeveloperDeveloper

Program PProgram P11

Change inChange in
requirements requirements dd

Program PProgram P33

D
ev

el
opm

en
t

D
ev

el
opm

en
t

(U
pdat

in
g)

(U
pdat

in
g)

First AnalysisFirst Analysis

E(PE(P33))

- LOC(C- LOC(Cii))

Development ProcessDevelopment Process

Figure 4. Outline of first analysis

3.3 Other data

Table 2 shows the resultant data of the target project. At first,
the prototype programP1 had 43 classes and the size was
about 6.3KLOC 1. After two successive requirement changes,
the number of classes increases to 58, and the size becomes
about 8.9KLOC .

Table 2. Characteristics of programs
VersionVersion # of classes# of classes LOCLOC((PPii))

PP11

PP22

PP33

62956295
77657765
89258925

4343
5353
5858

4 First Analysis

4.1 Outline

Figure 4 shows the outline of the first analysis. We analyze
the correlation between the OO metricsM(P) and the efforts
E(P 0). In the analysis below, for simplicity, we compound
the development process by combining the second and third
developments in Fig. 3 into one development.

Here, we introduce the notationE(Ci) to represent the ef-
forts needed to modify the classCi in P 0. In the first analysis,
we assume the effortsE(Ci) as the lines of codes which are

1Hereafter, the value ofLOC implies the lines of code excluding the
comments.

modified and createdLOC(Ci) in the modified classCi. Then,
we countLOC(Ci) for each classCi in the programP 0:

LOC(Ci) = lines of codes which are modified or created
in classCi

Here, we use the notationM (Ci) to represent the OO metrics
measured from the classCi in the programP . Then we con-
sider the correlation betweenM(Ci) andE(Ci). For example,
Fig. 4 shows the correlation between the metricLCOM (Ci)
andLOC(Ci).

4.2 Experimental Result

Table 3 shows the result of analysis. The correlation coeffi-
cients between the OO metrics(WMC , DIT , NOC, CBO and
LCOM) andLOC(Ci), respectively, are shown in it.

Table 3. Correlation coefficients for LOC(Ci)

CorrelationCorrelation
coefficientcoefficient

WMC DIT NOC CBO LCOM

0.210.21 -0.02-0.02 0.050.05 0.120.12 0.070.07

As the result of analysis, we can say that there are not
any specific high correlations between the OO metricsM(Ci)
and LOC(Ci). Here, we discuss the reasons of the result.
First, it is not adequate to considerLOC as efforts needed
to modify the OO programs, becauseLOC cannot consider
the OO characteristics in the program. Second, it can be said
that the metrics obtained from the whole program were too

scattered to get any specific characteristics from them. In
order to solve the problems found in the first analysis, we have
to introduce some new idea.

5 Key Idea

5.1 Classifications of classes[4,12]

In order to classify the classes, we use the MVC paradigm[4,
12]. In the MVC paradigm, the user’s input, the modeling
of the external world, and the visual feedback to the user are
explicitly separated as three types of functions: Model, View
and Controller. The Model manages the behavior and data
of the application domain, responds to requests for informa-
tion about its state, and responds to instructions to change
state. The View manages the graphical and/or textual output
to the portion of the bitmapped display that is allocated to its
application. Finally, the Controller interprets the mouse and
keyboard inputs from the user, commanding the model and/or
the view to change appropriately.

Since it is said that the MVC paradigm is suitable to the
development of the GUI application, we apply it to our pro-
gram and classify all the classes into three types. We expect
that the properties of the classes are emphasized to extract the
correlations between the OO metricsM(Ci) and the efforts
E(Ci).

5.2 Empirically calculated efforts

From the result of the first analysis, we have to investigate
the other efforts metric butLOC . Thus we introduce a new
metric to measure the amount of efforts needed to update the
programs. We consider two cases of updating the program:
modification of the existing classes and creation of the new
classes.

5.2.1 Formulas for efforts (modify)

In the case of modifying the existing classCi, we calculate
the efforts of modification as follows:

E(Cijmodify) = w1 �mbc + w2 �mtm + w3 �mtc

wherembc is the number of member variables which are newly
created onCi, mtm is the number of methods which are
modified,mtc is the number of methods which are newly
created, andw1, w2 andw3 are the weighting constants. In
this study, we determine these constants as(w1; w2; w3) =
(5;1; 2). The weighting is currently based on the experience
of developers. The developers in the target OO development
consider that modifying a method is an easy work because it
may not affect other parts of program. On the other hand,
creating a method seems to be more difficult, since they have
to refer the class definition or the other class. Additionally,

creating a member variable could be the most difficult work,
because if the type of new member variable is the other class,
it is inevitable to refer the definition, structure and how to use.

5.2.2 Formulas for efforts (create)

In the case of creating a new class, we can measure the amount
of creating efforts from the programP 0, but we cannot com-
pare it with any metrics on the programP because a new class
did not exist onP . However, it must not be ignored since the
creation of the class is important factor of the OO develop-
ment. Thus we try to introduce the substitute measure which
can be compared with created new class.

DeveloperDeveloper

TestTest

Change in
requirements d

Design &
Implementation

CC22 and C and C33 are modified classes. are modified classes.
CC44 is newly created class. is newly created class.

CC11

CC33

CC22

Program P

C1

C3

C2

C4

Program P'

Figure 5. Related modified classes

In Fig. 5, consider a certain requirement change� on the
programP . In order to reflect the requirement change intoP ,
we have to create a new classC4 and modify two classesC2

andC3 at the same time. Here we define a set ofC2 andC3 as
the related classes withC4 with respect to the change�, and
denote them as a setrel-C4.

Then we define theM(rel-Ci), which denotes the OO met-
rics measured from the related classes inP .

M(rel-Ci) =
X

Cj belong to rel-Ci

M (Cj)

Then we calculate the efforts of creating the classCi as
follows:

E(Cijcreate) = w1 �mbc + w3 �mtc

+w1 � rel-mbc + w2 � rel-mtm + w3 � rel-mtc

whererel-mbc denotes the number of member variables which
are newly created in the related classesrel-Ci, rel-mtm de-
notes the number of methods which are modified inrel-Ci,
andrel-mtc denotes the number of methods which are created
in rel-Ci.

R2 = 0.5693

0

100

200

300

400

500

600

700

0 20 40 60 80

M(Contoroller)

- WMC(C- WMC(Cii))

- DIT(C- DIT(Cii))

- NOC(C- NOC(Cii))

- CBO(C- CBO(Cii))

- LCOM(C- LCOM(Cii))

DeveloperDeveloper

Program PProgram P11

Change inChange in
requirements requirements dd

Program PProgram P33

D
ev

el
opm

en
t

D
ev

el
opm

en
t

(U
pdat

in
g)

(U
pdat

in
g)

Second AnalysisSecond Analysis

E(Controller)E(Controller)

- E(C- E(Cii|modify)|modify)

- E(C- E(Cii|create)|create)

Development ProcessDevelopment Process

Figure 6. Outline of second analysis

5.2.3 Validation of formulas

In order to verify the validity of the formulas above, we ana-
lyze the correlation between the difficulty of the classes and
the value of the proposed metric by the Spearman’s rank cor-
relation. Here we only show the validation of the formula for
efforts of modification.

Table 4. Heuristic ranking of difficulty
ClassClass

CC11

CC44

CC55

CC77

CC99

CC1515

CC2828

CC2929

CC3030

CC3131

ClassClass

CC3232

CC3333

CC3434

CC3535

CC3636

CC3737

CC3939

CC4141

CC4242

CC4343

RankRank

12.512.5
5.55.5
22
1919

12.512.5
1515
99
1616
1111
88

RankRank
1818
33
77
1010
1414
5.55.5
1717
2020
44
11

First, we interviewed the developers of target project, and
asked them to rank all the classes in programP by the difficulty
to modify. Table 4 shows the ranking of difficulty for each
modified class. Table 5, to be given in subsection 6.2, shows
the caluculated efforts by the proposed weighting formula.

Then we perform the rank correlation analysis for the data in
Table 4 and Table 5. As the result of analysis, the Spearman’s
rank correlation coefficient was 0.86. Thus, we can say that
the proposed weighting formulae have a certain degree of
validation.

6 Second Analysis

Based on the key idea shown in Section 5, we perform the
second analysis.

6.1 Outline

Here, we explain the outline of the second analysis. In the
analysis, we introduce two key factors. At first, we classify all
the classes into three types: Model, View and Controller. In
Table 1, the classesC1 toC13 are Model classes,C14 toC27 and
C28 toC43 are classified as View and Controller, respectively.
Next, for each class, i.e. Controller, we investigate the corre-
lation between the OO metricsM(Controller) and the efforts
E(Controller). Figure 6 shows an example of the analysis
for the Controller class, where we chooseE(Cijmodify) for
X axis andLCOM (Ci) for Y axis. The correlation coefficient
was calculated as 0.75.

6.2 Experimental Result

Now we show the experimental results for two cases: modifi-
cation of classes and creation of classes.

First, Table 5 shows the values ofmbc, mtm, mtc and
calculated effortsE(Cijmodify) for each modified class.

Table 6 shows correlation coefficients between OO metrics
M(Ci)(WMC , DIT , NOC, CBO andLCOM ,) and the efforts
for modificationE(Cijmodify). It is shown that the Controller
class has high correlation withWMC andLCOM (the values
of coefficients are 0.64 and 0.75, respectively). Figure 7 shows
some typical scattered graphs of Controller class.

Table 5. Calculated efforts (Case of modifica-
tion)

ClassClass

CC11

CC44

CC55

CC77

CC99

CC1515

CC2828

CC2929

CC3030

CC3131

CC3232

CC3333

CC3434

CC3535

CC3636

CC3737

CC3939

CC4141

CC4242

CC4343

mbmbcc mtm mtc EE((CCi i ||modifymodify))

11
00
33
00
11
00
11
00
00
00
00
33
00
00
00
00
00
00
1212
66

11
00
66
00
11
00
22
11
11
11
00
44
44
11
22
00
11
11
00
1414

33
66
1515
11
22
11
11
00
22
22
11
55
00
22
11
33
11
00
44
66

1212
1212
5151
22
1010
22
99
11
55
55
22
2929
44
55
44
66
33
11
6868
5656

Table 6. Correlation coefficient for E(Cijmodify)

ModelModel
ViewView

ControllerController

WMC DIT NOC CBO LCOM

-0.14-0.14

0.640.64

AllAll

-0.36-0.36

0.040.04

0.000.00

-0.16-0.16

0.750.75

0.530.53 -0.23-0.23 -0.15-0.15 0.000.00 0.640.64

Next, we investigate the case of class creation. Table 7
shows the values ofrel-mbc, rel-mtm, rel-mtc and calculated
effortsE(Cijcreate) for each created class.

Table 8 shows the correlation coefficients between the ef-
forts of class creationE(Cijcreate) and the OO metrics of
related modified classesM(rel-Ci). It can be seen that rel-
atively high correlations exist between them, especially for
View and Controller classes. Figure 8 shows some typical
scattered graphs for View class.

6.3 Discussions

From the result of the analyses, we can say that there are a
certain extent of correlations between the OO metricsM(Ci)
and the newly defined efforts of modificationE(Ci). Espe-
cially, in case of creating classes, we can see relatively high
correlations between them. For the classification of the class-
es, it can be seen that the Controller class has high tendency to
correlate with the OO metrics, especiallyWMC andLCOM .

7 Conclusion

In this paper, we investigated the relationship between the OO
metricsM(P) and the effortsE(P 0) for updating the program

R2 = 0.5693

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70E(Ci|modify)

LC
O

M
(C

i)

R2 = 0.4091

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70
E(Ci|modify)

W
M

C
(C

i)

Figure 7. Scattered graph for the Controller
(case of modification)

in the prototyping development. For the analysis, we made
two approaches, and we can show some successful results in
the second approach.

However, the result of the analysis might be a little bit
limited. Especially, we must investigate the generalization
of the weighting constant(currently determined heuristically)
and the OO metrics itselves.

Considering the problems above, we summarize our future
work as follows:

� We have to apply the analysis to other projects.

� The weighting formula shown in Section 5 have to be
investigated its validity much more.

� For the choice of OO metrics, we have to examine the
other metrics.

� Finally, we should establish the estimating method from
M(P) to E(P 0).

References

[1] V. R. Basili, L. C. Briand and W. L. Melo: “A Vali-
dation of Object-Oriented Design Metrics as Quality

Table 7. Calculated efforts (Case of creation)
mtcrelrel--mbmbcc relrel--mtmtmm relrel--mtmtcc EE((CCi i ||createcreate))mbcClassClass

44
11
11
11
44
00
00
66
11
33
66
66
44
11
11

1313
44
33
44
33
11
00
77
44
66
77
77
33
33
00

88
88
77
88
88
00
22
55
55
22
55
55
88
77
55

5252
3838
3535
3636
5050
1313
1515
119119
5353
7777
9090
109109
8888
6767
4646

11
11
11
11
11
00
11
1010
44
66
55
88
33
33
11

CC4444

CC4545

CC4646

CC4747

CC4848

CC4949

CC5050

CC5151

CC5252

CC5353

CC5454

CC5555

CC5656

CC5757

CC5858

44
44
44
33
33
66
33
1111
77
1111
99
1111
1717
1515
1313

Table 8. Correlation coefficient for E(Cijcreate)

0.780.820.82 -0.37-0.37 0.780.78AllAll 0.900.90

Model
View

Controller

WMCWMC DIT NOC CBO LCOM

0.910.91
-0.87-0.87

-0.35-0.35
0.940.94
0.870.87

-0.45-0.45
-0.87-0.87

0.350.35
0.970.97
0.870.87

-0.35
0.90
0.87

Indicators,” IEEE Transactions of Software Engineer-
ing, Vol.22, No.10, pp.751–761, 1996.

[2] G. Booch: Object Oriented Analysis and Design With
Applications, The Benjamin/Cummings, 1994.

[3] L. C. Briand, J. Daly, V. Porter and J. Ẅust: “Predicting
Fault-Prone Classes with Design Measures in Object-
Oriented Systems,” Proc. 9th International Sympo-
sium on Software Reliability Engineering(ISSRE’98),
pp.334–343, 1998.

[4] S. Burbeck: “Applications Programming in Smalltalk-
80(TM): How to use Model-View-Controller (MVC),”
http://st-www.cs.uiuc.edu/users/smarch/st-
docs/mvc.html , 1992.

[5] S. R. Chidamber and C. F. Kemerer: “A Metrics Suit-
e for Object Oriented Design”, IEEE Transactions
on Software Engineering, Vol.20, No.6, pp.476–493,
1994.

[6] J. Martin: Rapid Application Development, Macmillan
Publishing Company, 1991

[7] E. M. Kim: “Program Complexity Metric and safe-
ty Verification Method for Object-oriented Software
Development,” PhD. Dissertation, Osaka University,
January, 1997.

R2 = 0.8279

0

200

400

600

800

1000

1200

1400

0 50 100 150E(Ci|create)

LC
O

M
(r

el
-C

i)

R2 = 0.8847

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
E(Ci|create)

W
M

C
(r

el
-C

i)

Figure 8. Scattered graph for the View (case of
creation)

[8] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,
Y. Takagi and K. Sakamoto: “A New Project Simula-
tor Based on Generalized Stochastic Petri-Net,” Proc.
19th International Conference on Software Engineer-
ing(ICSE’97), pp.293–303, 1997.

[9] W. Li and S. Henry: “Object-oriented Metrics That
Predict Maintainability,” Journal of Systems and Soft-
ware, Vol.23, pp.111–122, 1993.

[10] M. Lorenz and J. Kidd:Object Oriented Software Met-
rics, Prentice Hall, 1994.

[11] K. H. Möller and D. J. Paulish:Software Metrics,
Chapman & Hall, 1993.

[12] L. J. Pinson and W. S. Wiener:An Introduction to
Object-Oriented Programming and Smalltalk, Addison
Wesley, 1988.

[13] J. Rumbaugh:Object-Oriented Modeling and Design,
Prentice Hall, 1991.

