
Analysis of Software Test Item Generation
— Comparison between High Skilled and Low Skilled Engineers —

Masayuki HIRAYAMA†, Tetsuya YAMAMOTO†, Osamu MIZUNO‡, and Tohru KIKUNO‡
† TOSHIBA Corporation, Japan. (E-mail: masayuki.hirayama@toshiba.co.jp)

‡ Graduate School of Information Science and Technology, Osaka University, Japan
(E-mail: {o-mizuno,kikuno}@ist.osaka-u.ac.jp)

Abstract

Recent software system contains a lot of functions to pro-
vide various services. According to this tendency, it is dif-
ficult to ensure software quality and to eliminate crucial
faults by conventional software testing method. Especially,
in the conventional method, detail level of test items are
widely deflected according with the engineers’ skill, and
this causes an immature software quality. In this paper, we
discuss the effects of test engineer’s skill on test item gener-
ation, and propose a new test item generation method, that
enables the generation of test items for illegal behavior of
the system. The proposed method can generate test items
based on Use-case analysis, deviation analysis for legal be-
havior, and faults tree analysis for system fault situations.
From the result of the experimental applications, we con-
firmed that test items for illegal behavior of the system were
effectively generated, and also the proposed method could
effectively assist test item generation of poor skill engineer.

Keywords: software testing, deviation analysis, engi-
neer’s skill

1 Introduction

Software testing is generally divided into three phases:
unit testing, integrate testing, and system testing. Among
them, the system testing checks functional behavior of the
target software system [1, 7], and thus it is directly related
to the users’ satisfaction. The growing complexity of soft-
ware structure coupled with users’ desire for high quality
has greatly increased demand for efficient system testing.

In order to execute the system testing, test cases or test
items are required. Conventionally, test items are gener-
ated from software specification documents [5]. A test en-
gineers checks the functions described in the specification
documents, and derives test items. Test items enable de-
tailed confirmation of each functional behavior specified in
the specification document, and so a large number of test
items are required.

Granularity of test items depends on the granularity of
functional specifications. Also, though test items are exe-
cuted in the order of the test specification, test details for

each function are largely dependent on the skill or experi-
ence of the test engineer.

In order to establish highly effective testing, we have de-
veloped a new testing method, which reduces the effects of
each test engineer’s skill on generating test items. In this pa-
per, we address the characteristics of software testing in in-
dustries. Then, we introduce a new method to generate test
items based on the deviation analysis. In the experimental
evaluation, we firstly show the analysis results of the differ-
ences between the test items generated by the engineer with
high skill and the test items generated by the engineer with
low skill. We then present the difference of two test items,
generated by the proposed method and generated by above
mentioned engineers.

2 Characteristics of Software Testing in In-
dustries

Here, let us consider control software of electrical appli-
ance as a typical example. If a software fault remains in an
electrical appliance, and as a result, the appliance suddenly
fails to work correctly, the impact may be grave. Therefore,
it is becoming essential to ensure the reliability of embed-
ded software in electrical appliances [8].

In the past, since software embedded in an electrical
appliance tended to be relatively small in size, the formal
method based on the finite state machine was used effec-
tively in the development [8], and the test items were gener-
ated using transition sequences on the finite state machine.

Due to the growing sophistication of electrical appli-
ances, the size of the software they contain has become
large. So, applying the formal method for this large soft-
ware requires large effort and much time. As a result, the
formal approach is not effective in the development of many
recent products, since it is applicable only to the core por-
tion of the software in those products.

So, currently, in the software development field, most
software in products is tested by the conventional method.
In the conventional method, a test engineer checks the re-
quirements for each function described in the specification
document, and manually derives each functional require-
ment description as a test item. Then in the test phase, the
test engineer executes generated test items in the order of
the test specification documents. However, the conventional

method has a few problems as follows:

(1) Software specification documents (without using the
formal method), the origin of the test specification,
may contain ambiguities. These ambiguities of speci-
fication may cause granularity gaps in test items.

(2) Generally, a software specification document mainly
describes legal behaviors. So, it is difficult to generate
the test items for illegal behaviors.

(3) Many companies do not prepare methods for generat-
ing test items. This causes the difference in test item
generation between a skilled engineer and a less skilled
engineer. That is, generation of test items is highly
dependent on the skill of the test engineer. A highly
skilled engineer can generate various test items includ-
ing the test items for illegal behaviors. On the contrary,
a less skilled engineer tends to only generate test items
for legal behaviors.

3 A New Method for Test Item Generation

3.1 Overview

As indicated above, software testing in current software
development is subject to several problems which need to
be resolved. From a detailed consideration of these prob-
lems, it is concluded that one of the most important require-
ments for software testing is to establish an effective testing
method capable of detecting software faults effectively. In
the software industry, there is a great demand for an effec-
tive testing method for embedded software.

In order to detect important faults effectively, it is impor-
tant to check the test items for illegal behavior. In general,
though legal behaviors tend to be checked sufficiently, ille-
gal behaviors tend to be checked less thoroughly. Illegal be-
haviors tend to be the origins of many serious or important
faults. So, in order to detect important faults, the present
work focuses on the illegal behaviors of software. There-
fore, the proposed method focuses on those functions that
are of great importance from the viewpoint of reliability,
and designs more detailed test items for them. The pro-
posed method has two key elements: the user’s viewpoint
and a systematic approach. Concerning the testing from the
user’s viewpoint, the software specification from the user’s
viewpoint, which corresponds to illegal behaviors, is an-
alyzed, and important reliability factors are related to the
results of illegal behavior analysis. Reflecting this map-
ping information and illegal behavior analysis results, the
use case description respecting illegal behaviors is summa-
rized. Concerning the systematic approach, the test items
are generated systematically by applying deviation analysis
and fault tree analysis for software.

3.2 Procedure

The proposed method consists of five steps (Figure 1),
and the function of each step is defined as follows:

Products
Specification.

Step-1
System behavior understanding

Step-3
Deviation analysis

Step-4
Software fault tree construction

Step-2
Behavior analysis

Test items

Software/hardware
block diagrams

Step-5
Test item generation

Software fault tree

Use-case description
- Free format
- Extended activity charts

Figure 1. Overall steps of the proposed
method

Step-1 (System behavior understanding) The software
block diagram and hardware block diagram are described.
By doing this, an outline of the functional behavior of the
target software system can be understood.

Step-2 (Behavior analysis) Typical behavior of the target
software is described using an activity chart and important
reliability factors are clarified by use case analysis. Use
case description and analysis are those used in the object-
oriented development methodology.

Step-3 (Deviation analysis) According to guide words,
unusual situations in the use case description are extracted
and operations that deviate from the basic behavior and
cause abnormalities are found.

Step-4 (Software fault tree construction) Situations that
bring about undesirable illegal behaviors are analyzed by
referring to analysis results and use case description. Then,
the processing of software is successively considered and
finally a fault tree is constructed.

Step-5 (Test item generation) By extracting the factor on
the leaf of the software fault tree, test items that check this
factor are generated.

3.3 Detailed procedure of the method

Here, we present the detail procedure of the method us-
ing the refrigerator control software as a typical target sys-
tem.

Behavior analysis (Step-2) At first, we describe typical
behaviors of target system in free format using natural lan-
guage with referring to the block diagram described in Step-
1. We then, based on a free format description, construct an
extended activity chart [2]. The activity chart is a typical
diagram in UML. Generally, an activity chart is suitable for
expressing the specification from the user’s viewpoint. That
is, at this step, an analysis for user’s operation is most im-
portant. So, user’s operation should be clearly described
by the activity chart. However, usually, only the legal be-
haviors or activities are described in a conventional activity

Check condition
for defrosting

Defrost the freezing
compartment

Defrost the refrigerating
compartment

<Checking | Failure>

<Defrosting | Failure>

Check elapsed time of
freezing compartment

Count elapsed time of
freezing compartment

<Checking | Failure>

<F-Timer | Expire (5.0h)>

<Defrosting history | Exist>

(a) Top Layer

(b) 2nd Layer

<Defrosting | Failure>

<Checking | Failure>

<R-Timer
| Expire (5.0h)>

Check history of
R/F defrosting

Check elapsed time of
refrigerating compartment

<Checking | Failure>

<Defrosting history | Not exist>

Defrost the refrigerating compartment Defrost the freezing compartment

<Counting
| Failure>

Jump according to the result of 2nd layer.

<F-Timer | Not Expire (5.0h)>

<R-Timer
| Not Expire (5.0h)>

Figure 2. Use case description with extended
activity chart (defroster function)

chart. In order to derive the test items for illegal behaviors,
we pay equal attention to both illegal and legal behaviors.
To do so, we extended the original activity charts defined by
UML so that the illegal behaviors can be represented explic-
itly. The following procedure shows an outline to describe
an activity chart.

In this procedure, we firstly describe an activity chart
without any illegal behaviors in (1)–(2). We then append
illegal behaviors explicitly using the extended notation in
(3).

(1) The activities are represented by rectangles. The con-
tents of an activity is defined by natural language. A
circle shows an initial state of the activity flow.

(2) Transitions between activities are represented by an ar-
row: −→. The arrow −→ shows a usual or legal be-
havior.

(3) In addition, transitions that represent unusual or illegal
behaviors are described as arrows =⇒. These arrows
are added on all activities in an activity chart. Fur-
thermore, a black circle shows an illegal state of the
activity flow.

(4) For each transition, the corresponding condition is de-
fined and is attached as a label with the form “<activity
| condition>”. Typically, “activity” is user’s operation
or hardware.

Figure 2 shows an example of a use case description. The
example partially describes a defrosting operation of refrig-
erator control software.

In Figure 2(a), major functions such as “Check con-
dition for defrosting”, “Defrost the refrigerating compart-
ment” and so on, are executed successively according to
the trigger of conditions. Each major function or activity is
evolved or defined in detail at the lower layer of the activity
chart. As in Figure 2(b), “Check condition for defrosting” is
defined in detail in the second layer. The “Check condition
for defrosting” is evolved into four functions. Moreover, the

trigger for execution of an activity is declared in the form
of “<F-Timer | Expire (5.0h)>”, “<F-Timer | Not Expire
(5.0h)>”, and so on.

Deviation analysis (Step-3) Next, a deviation analysis is
performed for the use case description using guide words,
and several unusual behaviors or operations, that is, devia-
tions from legal situation are found [4, 6]. The candidates
of system deviations are derived from each illegal behavior
in the use case description (they are described as =⇒). Any
deviation thus can be extracted to be a key factor for soft-
ware failures. Here, guide words are prepared for failure of
software, hardware and environment. The guide word in-
cludes words to represent illegal behaviors related to the
system failure. For example, they are “be lost,” “be too
fast(slow),” “be incorrect,” etc.

For example, concerning “Check elapsed time of freez-
ing compartment” in Figure 2(b), the illegal behavior is con-
sidered as “<Checking | Failure>”. The candidates of de-
tailed errors for this illegal behavior are “Timer data is lost,”
“Timer speed was too fast,” “Timer data is incorrect,” and
so on.

Construction of software fault tree (Step-4) A software
fault tree is constructed for software failure which is related
to the extracted software deviation [3,8,9]. The System and
Software Fault Tree Analysis (SS-FTA) is divided into the
following three phases:

(1) Define the root node: In the first phase, the fatal fail-
ure for target software is taken as a root of the software
fault tree. Considering the troubles in the past and also
imaging the troubles in the future, the most undesir-
able event for the target system is selected as the root
node of the fault tree.

(2) Extract software function failure: In the construction
of fault tree, each node is expanded into its son nodes
based on the use case analysis. The second phase fo-
cuses on functional failures, which cause the failure
specified at the root of the software fault tree. In order
to obtain cause and result relations, we trace functional
behavior flow in the use case description, and extract
illegal behaviors at function level. Based on this anal-
ysis, we decompose a functional failure F into such
functional failures F ′

1, F
′
2, · · · that each F ′

i can be a
cause of F .

(3) Evaluate software error: The third phase successively
expands the software function failure into software er-
rors in the implement of the target system. The analy-
sis result by use case deviation and the detailed struc-
ture of software are reflected in this expansion. As a
result, we get the software errors, which may be in-
cluded in implemented software module, at the leaves
of the fault trees.

Figure 3 shows an example of the software fault tree for
the fatal failure: “refrigerator cannot defrost.” As shown in
Figure 3, the failure pattern “Failure in checking elapsed

Timer speed was
too slow.

Timer speed was
too fast.

Timer data is
incorrect.

Timer data is
lost.

F-compartment
timer is not
activated.

Refrigerator
cannot defrost

Failure in checking
elapsed time of F-
compartment

Failure in checking
history of R/F defrosting

Failure in checking
condition for defrosting

Failure in
checking elapsed time of
R-compartment

Timer is not
set as 5
hours.

Software function failure
Software error

Failure in defrosting
the freezing compartment

Failure in defrosting
refrigerating compartment

Figure 3. Software fault tree (defroster)

time of F-compartment” is evolved to 6 detailed factors.
These factors include candidates of detailed errors extracted
in Step-3.

Generation of software test items (Step-5) Test items
are generated according to the software fault tree. For any
software error specified in the leaf of the software fault tree,
we list up the corresponding test items that check the er-
rors [3, 8, 9]. For example, at the bottom of Figure 3, we
can find two leaves, namely “F-compartment timer is not
activated” and “Timer data is lost”. These two leaves cor-
responds to two test items t3.1

A and t3.2
A shown in Figure 5,

respectively. The enumerated test items thus constitute the
most fundamental test items. Then if necessary, test items
are generated for the interior node in the software fault tree.
Finally, some of related test items, which are usually gener-
ated for a certain subtree, are grouped into one category.

4 Experimental Application

4.1 Purpose of the experiment

In order to evaluate the effectiveness of the proposed
method, an experimental application was performed. The
experimental application was divided into two experiments.
First one is a preliminary experiment, and second one is a
main experiment.

(a) Preliminary experiment At first, we set up a hypoth-
esis that there are some differences in test item generation
according to the engineer’s skill level. In order to confirm
this hypothesis, we perform a preliminary experiment. In
the experiment, two engineers with different skill level were
prepared. They generated test items for the target software
by the conventional method. We compared the differences
of generated test items’ features.

(b) Main experiment We performed the main experi-
ment in order to confirm the effectiveness of the proposed

Expected behavior Legal /
Illegal

t 1 When the power is on and the time elapses 5 hrs. RF-defrosting starts. L

t 2 Whenever the time elapses 8 hrs 30 min. First F-defrosting starts, then RF-defrosting starts. L

tB
3 During F-refrigerating or during compressor inactivation and

ice is not removed or R-defrosting sensor senses 3.0
degrees centigrade.

Next cycle of RF-defrosting is activated.
L

Expected behavior Legal /
Illegal

tC
1 From the timing of power on to 4hrs 30min. Defroster shall not activate. IL

tC
2 After 4 hrs 30 min elapsed from power-on. After waiting 20 min, RF-defrosting starts. L

tC
3 From the timing of F-defrosting starting to 8 hrs 10 min,

and the strong cooling is not continued for 6 hrs.
Defroster shall not activate. IL

...
tC

12 During the strong cooling mode, in case of no defroster is
activated for 5 hrs.

After waiting 5 hrs from 2nd defrosting, then
defrosting will start. L

Condition

TB

Condition

TC

B

B

Figure 4. Overview of test items TB and TC

method. An engineer with low skill was prepared. He gen-
erated test items for the target software by the proposed
method. We confirmed the differences between the test
items generated by the proposed method and the test items
generated by the conventional method.

4.2 Experimental conditions

(a) Target system In the experiment, test items for refrig-
erator control software was generated using the new method
based on the use case description. The target software is ac-
tual control software for refrigerator which developed in a
certain company. It has about 32K bytes in ROM size, and
we especially focused on the ice making function of the sys-
tem. In the experiment, the specification for the defrosting
function in the refrigerator control described in natural lan-
guage was given to the engineers.

(b) Participants of the experiments Three engineers,
EngA, EngB, and EngC , participated in the experiment
and generated test items for sample target refrigerator con-
trol software.

EngA and EngB are considered to have roughly the
same skill level. Although they have little experience of
developing refrigerator software, they have developed other
software systems, and developed test items for those sys-
tems. The skill level of EngC is higher than that of the
other engineers.

As for the preliminary experiment, EngB and EngC

participated in the experiment, and we confirm the differ-
ences of the generated test items according to the skill lev-
els. In the main experiment, EngA generated test items
with the proposed method, and then we evaluate the effects
of the proposed method.

5 Evaluation of Experiments

5.1 Preliminary experiment

Preliminary experiment is an experiment that confirms
the effects of the engineer’s skill level on the test item gen-
eration. In the preliminary experiment, sets of test items
TB and TC are generated by engineers EngB and EngC ,
respectively, using the conventional method (See Figure 4).
TB and TC include 3 and 12 test items, respectively.

As Figure 4 shows, all of test items in TB are related
to the legal behavior of the target system. These test items
are prepared to confirm functions’ behaviors that are clearly

described in the specification document. That is, the de-
scriptions of test items are almost the same as those in the
specification.

For example, consider the first item of TB (t1B), the spec-
ification for defroster activating condition is “If the power
is on at the condition of elapsed timer count is 5 hours, F/R-
defrosting should start.” in the specification document. In
Figure 4, the description of the test item t1

B is almost the
same description of this specification document. In an ac-
tual behavior of the system, some tolerance for activation
timing inevitably occurs and many faults in the embedded
system are caused by timing error depended on these toler-
ance. But the test item t1B only pointed out the legal behav-
ior clearly described in the specification and did not touch
with these tolerance for activation timing of defroster, so it
is difficult to detect the illegal behavior depended on these
timing error. As is easy to assume from this example, it was
not possible to generate test items concerning illegal behav-
iors not described in the specification with the conventional
method.

On the other hand, as shown in Figure 4, EngC assumed
the software architecture or user’s illegal operations, and
then generated the detailed test items relating to illegal be-
havior. For example, consider the first item of TC (t1C) in
Figure 4, this test item corresponds to t1

B that related to the
defrosting start behavior. In the specification document, the
defrosting start timing is only instructed at elapsed timer
count is 5 hours. However, EngC noticed that it is unde-
sired to activate the defroster before the timer count elaspes
5 hours. Thus, he generates the item t1C in which such un-
desired (that is, illegal) behavior is included 1.

From this experiment, we can conclude that there are
some effects of engineer’s skill on the test item generation.

5.2 Main experiment

(a) Generated test items In the main experiment, engi-
neers EngA received detailed explanation of the proposed
method. Then, a set of test items TA is generated by EngA

using the proposed method (See Figure 5). Since TA is gen-
erated by the systematic method, the style of test items is
slightly different from that of in Figure 4. After generating
test items, we extract test items for the defrosting function
of the refrigerator and compare the obtained test items, and
also analyze the coverage of test items.

As a result, the engineer EngA generated 55 test items.
From the detail investigations of the test items, we confirm
that TA includes 9 legal test items (e.g. t1.1

A) and 4 illegal
test items (e.g. t3.13

A), and the other test items can be consid-
ered as conditions to check general defects. Table 1 shows
the number of test items for legal and illegal behaviors.

Here we analyze the feature of the generated test items.
For example, consider the category “3: First defrosting af-
ter power-on defrosting”, which is generated by EngA. Six

1Moreover, EngC considered the tolerance of activating timing and
referred the timer data table which was described in another part of the
specification document by his own judgment. Then, he understood that the
defroster shall not be activated before 4 hours 30 minutes in elapsed timer
by considering the error margin of timer. Thus, the threshold of the timer
count in TC is slightly different from that of TB and TA.

(L)egal / (IL)legal
/ (P)re-condition

TA 1 Initial defrosting tA
1.1 Is history checking activated? L

2 tA
2.1 Does defrosting history exist? L

tA
2.2 Is defrosting history correct? L

3 tA
3.1 Is F-timer activated? P

tA
3.2 Are elapsed time data for F-timer lost? P

tA
3.3 Are elapsed time data for F-timer correct? P

tA
3.4 Is F-timer set for 5 hrs? P

tA
3.5 Does F-timer count correctly? P

tA
3.6 Is R-timer activated ? P

tA
3.7 Are elapsed time data for R-timer lost? P

tA
3.8 Are elapsed time data for R-timer correct? P

tA
3.9 Is R-timer set for 5 hrs? P

tA
3.10 Does R-timer count correctly? P

tA
3.11 In case of F-timer > 5 hrs, is F-defroster activated? L

tA
3.12 In case of R-timer > 5 hrs, is R-defroster activated? L

tA
3.13 In case of either F- or R-timer < 5 hrs, is either F-

or R- defroster not activated, respectively? IL

4 Regular defrosting tA
4.1 Is F-timer activated? P

tA
4.2 Does F-timer count correctly? P

tA
4.3 Is F-timer set for 8.5 hours? P

tA
4.10

5 R/F-Timer > 8.5 h tA
5.1 Is Defrosting-counter activated? L

tA
5.6

6 R/F-Timer < 8.5 h tA
6.1 Is Moist/Defrost mode activated? L

tA
6.2

tA
6.3

7 Moist/Defrost mode tA
7.1 Is compressor checking mode activated? L

tA
7.15

8 R-timer > 6.0 h tA
8.1 Is elapsed time set as half mode? L

tA
8.5

Condition and Expected behaviorCategory

Checking history of
R/F defrosting

First defrosting after
power on defrosting

Figure 5. Overview of test items TA

Table 1. Number of test items for defrosting
function

TA

Test items for legal be-
haviors

9 (t1.1
A , t2.1

A , t2.2
A , t3.11

A ,
t3.12
A t5.1

A , t6.1
A , t7.1

A , t8.1
A)

Test items for illegal
behaviors 4 (t3.13

A , t4.9
A , t5.5

A , t8.4
A)

Pre-condition test items 42 (t3.1
A , t3.2

A , · · ·)
Total 55

test items are included; t3.2
A , t3.5

A , t3.7
A , t3.10

A , t3.11
A , and t3.12

A .
In those test items, test items t3.2

A , t3.5
A , t3.7

A , and t3.10
A should

be considered pre-conditions2 for checking t3.11
A and t3.12

A .
These test items related to the pre-condition checking are
said to be useful for performing the test in concretely. This
can be said that test items by the proposed method are more
concretely extracted, and that all necessary items are explic-
itly enumerated.

(b) Checking illegal behaviors In this paper, we define
conditions which deal with transitions with =⇒ in the use
case description as test items for illegal behaviors. On the
other hand, conditions for −→ are called test items for legal
behaviors.

For example, consider test items related to the third cate-
gory; “Initial defrosting after switch on,” again. Then engi-
neer EngA generated the test item “t3.13

A : In case of either
F- or R-timer < 5 hours, is either F- or R-defroster not ac-
tivated, respectively?”, as well as “t3.11

A : In case of F-timer

2Pre-condition means a condition that should be checked to ensure that
other test items work correctly.

Table 2. Number of test items for defrosting
start function

TA TB TC

Test items for legal behavior 6 3 8
Test items for illegal behavior 4 0 4

> 5 hours, is F-defroster activated?” and “t3.12
A : In case of

R-timer > 5 hours, is R-defroster activated?” (These items
correspond to the test items t1C and t2C generated by the ex-
perienced engineer.)

Specifications for software in general are likely to con-
tain normal or legal behaviors, so test items from these spec-
ifications are inevitably focusing on the legal behaviors. In
this case,it is normal behavior that the defroster activates af-
ter 5 hours in the timer count. On the other hand, in many
cases, there is no description of defroster behavior before 5
hours in the timer count, because the experienced engineer
will easily assume this behavior from above legal behavior.
For example, in case that the defroster is activated before
5 hours in the timer count, this behavior is considered an
illegal behavior.

Generally, conventional method gave test items for le-
gal functions only. But the proposed method can generate
test items for illegal behaviors such as t3.13

A . The result of
this experiment shows that the test items for checking both
legal and illegal system behaviors were generated by the
proposed method.

5.3 Comparison with conventional method

Here, we discuss the following two viewpoints — (1)
Comparison between TA and TB , and (2) Comparison be-
tween TA and TC . EngA, who is a low skill engineer gener-
ated the test set TA using the proposed method. EngB, who
is a low skill engineer, and EngC , who is a high skill engi-
neer generated the test sets TB and TC , respectively, using
the conventional method.

(a) Comparison between TA and TB Table 2 shows the
number of test items concerning the defrosting start func-
tion, which can be treated as a comparison domain in com-
mon. From this table, we can confirm that the number of
test items in TA (that is, 6) is more than that of TB (that
is, 3)3. Especially, TA includes 4 test items for illegal be-
haviors. On the contrary, TB did not include any test items
for illegal behaviors. Since it was confirmed that EngB

has roughly the same skill level as EngA, it is reasonable
to think that the proposed method has some advantages for
generating test items for illegal behaviors.

(b) Comparison between TA and TC From the result of
comparison in Table 2, we confirm that the numbers of test
items in TA and in TC are almost the same. As mentioned

3The number of legal test items are smaller than that of Table 1, since
we focus on the “defrosting start” function.

before, EngC is an engineer with considerable experience
of development and testing, and it is found that using the
conventional method he can generate test items which are
as detailed as those generated by the proposed method.

(c) Discussion The proposed method enables engineers
with low skills to generate detailed test items for illegal be-
haviors comparable to those generated by highly skilled en-
gineers.

6 Conclusion

This paper discussed a difference of test item generation
between an engineer with high skill and an engineer with
low skill. From the experimental application, we confirmed
that there are some differences in the way of generating il-
legal test items. Moreover, we propose a new generation
method of test items, which mitigates the effects of skills
on generating the test items. From the experimental evalua-
tion, we also confirmed that the proposed method can gen-
erate almost the same test items without depending on the
skill of the test engineers. As a future work, we will investi-
gate what test coverage for illegal behaviors can be obtained
by this method.

References

[1] B. Beizer. Black-Box Testing. John Wiley & Sons, New
York, 1995.

[2] H. E. Eriksson and M. Penker. UML toolkit. John-Wiley
& Sons, 1997.

[3] T. Fukaya, M. Hirayama, and Y. Mihara. Software spec-
ification verification using fta. In Proc. of FTCS-24,
pages 131–133, 1994.

[4] N. G. Leveson. Safeware: System safety and computers.
Addison-Wesley, MA, 1995.

[5] J. D. Musa. Software Reliability Engineering: Faster
Development and Testing. McGraw-Hill, 1998.

[6] J. D. Reese and N. G. Leveson. Software deviation anal-
ysis. In Proc. of 19th International Conference on Soft-
ware Engineering, pages 250–260, 1997.

[7] I. Sommerville. Software Engineering. Addison-
Wesley, MA, 4 edition, 1992.

[8] K. Tamura, J. Okayasu, and M. Hirayama. A software
testing method based on hazard analysis and planning.
In Proc. of 9th International Symposium on Software
Reliability Engineering, pages 103–110, 1998.

[9] T. Tsuchiya, H. Terada, E. M. Kim, and T. Kikuno.
Deviation of safety requirements for safety analysis of
object-oriented design specification. In Proc. of 21st
Annual International Computer Software & Applica-
tions Conference, pages 252–255, 1997.

