
Customization of Software Project Simulator
for Improving Estimation Accuracy

Osamu Mizuno, Shinji Kusumoto and Tohru Kikuno
Department of Informatics and Mathematical Science,

Graduate School of Engineering Science, Osaka University, Japan
o-mizuno@ics.es.osaka-u.ac.jp

Abstract

We have developed a Petri-net based project simulator for
predicting development effort and residual fault content. The
simulator requires customization based on four parameters
to reflect project characteristics. In this paper, we propose a
new method for determining these parameters and validate
the effectiveness of the method in two industrial experiments.

1. Project Simulator

The software project simulator consists of Project model
and Process model. Project model specifies three key com-
ponents: activities, products and developers. Process model
defines a set of Activity models that are described by an
extended GSPN(Generalized Stochastic Petri-Net).

1.1. Activity Model

Figure 1(a) shows an example of the description of the
design activity. In the extended GSPN, a token has three at-
tributes: product sizes, the number of faultsf and consumed
workload1 w, as shown in Fig. 1(b).

Transitions used here are timed transitions. The firing
delay of each transition is exponentially distributed and the
average firing delay of a transition is specified by a firing rate
assigned to it. In Fig. 1(a), the firing ratercm of transitiont1
means that the average firing delay of transitiont1 is 1=rcm.

Each transition has a function (called an execution func-
tion) to be evaluated on its firing, as shown in Fig. 1(c). The
execution of the function updates the attribute values of the
token.

1.2. Customization using parameters

The firing ratesrcm, rth and rwr of the transitions are
formulated by functionsfcm, fth andfwr, respectively[2].
Additionally, fault injections are interpreted as the stochastic
events whose occurrences depend on the fault injection rate
pin. In general,pin is formulated by functionfin.

1We define the term “workload” of an activity as the total time needed
for a developer who has the standard capability to complete the activity[2].

P1 P2

t1

t2 t3

rcm

rth rwr

(a)

t1

-

transition t3t2

execution
 function w = w+1

s = s+1
f = f+1(pin)

(c)

 attributes of token

s product size
f number of faults
w consumed workload

(b)

Figure 1. Activity model

In the previous study[2], we define concrete functions for
all of these formulas. Since, we consider only design and
coding activities in this paper, we present concrete functions
for rcm, rth, rwr andpin as follows:

(1) Communicating rate:rcm = Kcm �
M

2

L�R

(2) Thinking rate:rth = Kth �
L

M
�M = Kth � L

(3) Writing rate:rwr = Kwr �
L

M
�M = Kwr � L

(4) Fault injection rate:pin = Kin �
M

L�R�D
�M

Here,M is the number of the developers engaged in the
activity, L is the sum of each developer’s experience level,
R is the completion rate of the input products,D is the
number of the days from the current date to the deadline of
the activity.

Before simulating a certain project, we must customize the
simulator by tuning up the values of parameters so that each
activity in the project can simulate actual situation. But, it is
generally very hard to determine parameters, since these are
tightly related each other. Therefore, in the previous studies,
we used heuristic values shown in Table 1.

Table 1. Old values of parameters[2]

Kcm Kth Kwr Kin

Design 0.10 0.20 0.20 15.5
Coding 0.10 0.20 0.20 17.0

/* Phase 1 */
for i := 0:02 to 0:30 step0:02 do begin

for j := 0:05 to 0:30 step0:05do begin
for k := 0:05 to 0:30step0:05 do begin

#Effort := (the amount of effort obtained
by simulation under(Kcm; Kth; Kwr) = (i; j; k));

if (#Effort is within�5% of Effortactual) then
Store(i; j; k) as a candidate;

end;
end;

end
Choose the best candidate(Kcm;Kth;Kwr)best.
/* Phase 2 */
lo := 1:0 ; hi := 100
while lo � hi do begin

Kin := (lo+ hi)=2 ;
#Fault := (the number of faults obtained

by simulation underKin and(Kcm; Kth;Kwr)best);
if #Fault is within�5% of Faultactual) then break;
if Faultactual �#Fault then hi := Kin elselo := Kin ;

end

Figure 2. Algorithm for determining parame-
ters

Table 2. New values of parameters
Kcm Kth Kwr Kin

Design 0.05 0.26 0.22 18.6
Coding 0.04 0.20 0.15 43.8

2. Proposed Algorithm

For customization of the simulator, we assume that an
actual project data, for which the data on the amount of
efforts and the number of faults are collected, is given.

Based on the lessons learned from the previous studies, we
consider the following algorithm with two phases: Phase 1 is
to determineKcm,Kth andKwr, and Phase 2 is to determine
Kin with the values ofKcm, Kth andKwr obtained at
Phase 1.

The outline of the algorithm is shown in Fig. 2 In Fig. 2,
variablesEffortactual and Faultactual are the target values
for the simulation and are obtained from the actual project
data.

3. Experimental Evaluation

In order to confirm the effectiveness of proposed method,
we have performed two experimental evaluations. In Ex-
periments 1 and 2, we use two actual project dataPR1 and
PR2 offered from a certain company. Both projects are the
development of the embedded software, and for almost the
same application. The sizes ofPR1 andPR2 are 12.3 Kstep
and 9.6 Kstep, respectively.

In Experiment 1, we determine the value of firing param-
eters from the data ofPR1. Successively, in Experiment 2,
we execute the simulation ofPR2 and evaluate the efforts
and residual faults inPR2.

3.1. Experiment 1

By applying the data of the projectPR1 to the algorithm
shown in Fig. 2, we determine the values of parameters for
the design and coding activities. The values of parameters
obtained are shown in Table 2.

Comparing the values in Table 1 and Table 2, the values of
Kcm,Kth,Kwr are almost the same. But the values ofKin

are quite different each other.

3.2. Experiment 2

In order to evaluate the validity of the proposed algorithm,
we estimate the number of faults in another projectPR2
by the project simulator using the values of parameters in
Table 2.

Table 3. Simulated result of PR2

Effort Residual faults
(person-days) (# of faults)

Actual project data 41.7 17.0
New estimation 38.6 17.9
Estimation in [2] 37.1 13.2

Table 3 shows the simulated result of the projectPR2(For
comparison, we also show the simulation result in [2]). From
Table 3, the simulated effort is 38.6 (person-days) and the
actual effort is 41.7 (person-days). The simulated value of
residual faults is 17.9 and the actual value is 17. Thus, the
new estimations of both effort and the residual faults forPR2
are very close to the actual data. Furthermore, with respect
to estimation accuracy, the new estimation by the proposed
method is superior to the one in [2].

As a result, we can say that the values of parameters ob-
tained from the projectPR1 are applicable to the estimation
of the software quality in another projectPR2. Unfortunate-
ly, we don’t have any more generalized data yet.

4. Future Work

In this study, we have discussed only the design and coding
activities. Thus, determining the values of parameters in the
test and debug activities is an important future research work.
Additionally, we should contrast our approach for simulation
and prediction with other approach[1].

References

[1] L. C. Briand, K. E. Emam, B. Freimut and O. Laiten-
berger: “Quantitative evaluation of capture-recapture
models to control software inspections,” Proc. 8th In-
ternational Symposium on Software Reliability Engi-
neering, pp.234–244, 1997.

[2] S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,
Y. Takagi and K. Sakamoto: “A new software project
simulator based on generalized stochastic petri-net,”
Proc. 19th International Conference on Software En-
gineering, pp.293–302, 1997.

