
Token-level SZZ: Fine-grained Identification of
Bug-inducing Commits in Java Projects

Thesis for the degree of Master of Engineering

Author:

Hiroya Watanabe

Student ID No.:

22622043

Chief Supervisor:

Professor Osamu Mizuno

Co-Supervisor:

Assistant Professor Eunjong Choi

Master’s Program of Information Science,

Graduate School of Science and Technology,

Kyoto Institute of Technology

February 8, 2024

異なる粒度を用いた不具合混入コミット特定アルゴリズムの性能評価

令和 6年 2月 8日 22622043 渡邉　紘矢

概 要

SZZメソッドは不具合混入コミットを特定する手法のデファクトスタンダードで
ある．この手法の精度は，バグ混入コミットへのソースコードの変更履歴（コミッ
ト履歴と呼ぶ）を追跡する必要があるため，Gitのようなソースコード管理システ
ムに強く依存している．しかし，これらのシステムは行単位の変更しか追跡しない
ため，コミット履歴にバイアスが生じることが報告されている．このような荒い粒
度の行単位の変更は，コミット履歴を正確に追跡することが出来ず，SZZメソッドの
性能を低下させることが知られている．この課題を解決するために，本論文では，
コミット履歴を追跡するために，行単位より細かい情報を提供するトークン単位の
変更における SZZメソッドの精度を評価する．また，トークン単位の変更を SZZメ
ソッドに利用することの潜在的な利点と注意点について議論する．68個のOSSプロ
ジェクトで実験した結果，トークン単位の変更履歴を用いた SZZでは，行単位の変
更履歴を用いた場合に見逃される 2つの新たなバグ混入コミットが発見された．さ
らに，特定されたコミットを手作業で分析した結果，ソースコードの書式や空白の
変更に起因するバグ混入コミットの誤検出が減少することがわかった．

Token-level SZZ: Fine-grained Identification of Bug-inducing Commits

in Java Projects

February 8, 2024 22622043 WATANABE Hiroya

Abstract

SZZ is the de facto standard method for identifying bug-inducing commits. The accu-

racy of this method heavily relies on source code management systems, such as Git, as it

requires tracing the history of source code changes (i.e., commit histories) to bug-inducing

commits. However, it has been reported that these systems introduce biases in commit

histories because they only store line-level changes. It is known that such coarse-grained

line-level changes can result in the failure to accurately track the commit history and

reduce the performance of SZZ. To relieve this challenge, we explore the accuracy of SZZ

in token-level changes, which provide finer-grained information to trace commit histories

compared to line-level ones, and we discuss the potential benefits and pitfalls of utilizing

token-level changes for SZZ. As a result of experiments on 68 OSS projects, we found

that SZZ, which uses token-level histories, identifies two new bug-inducing commits that

are missed when using line-level histories. Furthermore, our manual analysis of the iden-

tified commits indicates that they reduce false-positive bug-inducing commits caused by

source code formatting and whitespace changes. However, this improvement in detecting

bug-inducing commits comes with a trade-off of 0.081 decrease in overall accuracy, as

measured by the F1 score. Consequently, we summarized three potential benefits and five

pitfalls of using token-level and line-level tracking for SZZ.

Index

1. Introduction 1

2. Background 4

2.1 Related Work . 4

2.2 Motivating Example . 6

3. Dataset Preparation 10

3.1 Ground-Truth Data . 10

3.2 cregit . 11

3.3 Bug-inducing commits annotated by the SZZ method 13

4. RQ1: To what extent do token-level changes improve the overall accu-

racy of SZZ? 16

4.1 Motivation and Approach . 16

4.2 Result . 16

5. RQ2: What are the reasons for the differences in the true positive com-

mits identified using line-level and token-level tracking? 20

5.1 Motivation and Approach . 20

5.2 Result . 20

6. RQ3: What are the reasons for the differences in the false positive

commits identified using line-level and token-level tracking? 28

6.1 Motivation and Approach . 28

6.2 Result . 30

7. Lessons Learned 33

7.1 Tracking Accuracy . 35

7.2 Hybrid Approach . 35

8. Threats to Validity 37

8.1 Construct Validity . 37

i

8.2 External Validity . 37

8.3 Internal Validity . 37

9. Conclusion 38

Acknowledgment 38

References 39

ii

1. Introduction

Bugs are unintentionally introduced into software systems despite the efforts of software

developers to prevent them. These bugs result in unintended software behavior [1–3] and

have significant financial consequences for software development companies [4, 5]. As

a result, bugs have been a major area of research in software engineering. Previous

studies [6–10] have aimed to assist software developers by analyzing, evaluating, and

predicting bugs in software systems in order to minimize the occurrence of bugs.

Bug datasets are essential for promoting such studies, and there are numerous bug

datasets available. One example is the Defects4J dataset [11], which contains bugs gath-

ered from real-world Java systems. Although these datasets ensure high quality by collect-

ing bugs from real-world scenarios, their sizes are relatively small due to the cost of data

collection, which limits potential research extensions. Consequently, the SZZ method [12]

is commonly employed to construct large-scale bug datasets. It automatically identifies

changes in source code management (SCM) systems that introduce bugs (bug-inducing

changes). Furthermore, these changes enable the detection of source code revisions that

contain bugs.

While SZZ can increase the size of bug datasets, it also reduces the quality of the

dataset. This is because the accuracy of SZZ heavily relies on the change histories in SCM

systems, which can sometimes be misleading. SCM systems only store line-level changes,

which means information about changes within a line can be lost [13–15]. SZZ tracks

bug-inducing commits based on these change histories. However, misleading histories

can easily disrupt these tracks, resulting in false-positive or false-negative bug-inducing

changes. To address this challenge, it is crucial to improve the accuracy of tracking change

histories.

In this paper, we utilize token-level change histories to enhance the accuracy of tracking

change histories for SZZ (token-level tracking). It is worth noting that token-level change

histories have the potential to improve the accuracy of tracking compared to tracking

on traditional line-level change histories (line-level tracking) [13]. More specifically, we

transform line-level change histories into token-level change histories using cregit, a tool

1

developed in a previous study [13]. We empirically compare the impact of token-level

tracking and line-level tracking on the accuracy of SZZ in 68 open-source software (OSS)

projects based on the following research questions (RQs).

RQ1 To what extent do token-level changes improve the overall accuracy of SZZ?

RQ2 What are the reasons for the differences in the true positive commits identified using

line-level and token-level tracking?

RQ3 What are the reasons for the differences in the false positive commits identified using

line-level and token-level tracking?

Based on our experiments, we discovered that using token-level histories helps identify

two new bug-inducing commits that are missed when using line-level histories. However,

this improvement in detecting bug-inducing commits comes at the cost of 0.081 decrease

in overall accuracy, as measured by the F1 score.

To understand the reasons behind these differences, we conducted an in-depth analysis.

We manually inspected the true-positive and false-positive commits identified by both

token-level and line-level tracking. Our findings indicate that token-level tracking can

effectively reduce false-positive bug-inducing commits caused by source code formatting

and whitespace changes, which are identified by line-level tracking. However, token-level

tracking may overlook bug-inducing commits that were able to be modified by adding

tokens.

The contributions of this paper are as follows.

1. This paper is the first study to compare the accuracy of the SZZ method using

either line-level or token-level tracking.

2. We empirically explore the potential benefits and pitfalls of using line-level and

token-level tracking for SZZ. Consequently, we summarize three potential benefits

and five pitfalls. This knowledge will support future studies to enhance SZZ.

The organization of our paper is as follows. Section 2 introduces related works and

provides a description of the motivating example. Section 3 describes the dataset used in

our study. Section 4, 5, and 6 present the motivations, approach, and results for RQ1,

2

2, and 3. Section 7 provides a summary of the lessons learned from our study. Section 8

describes threats to validity. Section 9 presents the conclusion.

3

2. Background

2.1 Related Work

SZZ methods. The SZZ method [12] is widely used for identifying bug-inducing com-

mits. The SZZ method involves two steps: (1) identifying bug-fixing commits and (2)

identifying bug-inducing commits. In the first step, bug reports are linked to commits,

and these linked commits are considered as bug-fixing commits corresponding to the bug

reports. The second step involves tracking back to bug-inducing commits from the bug-

fixing commits in the commit history of the SCM system. If Git is used as the SCM

system, the blame command is used to trace the commit history. However, it still has

some drawbacks that need to be addressed. For example, the blame command may not

correctly track lines that have been changed multiple times [13] and may identify false-

positive bug-inducing commits.

Hence, previous studies have proposed various SZZ variants to alleviate its drawbacks [3,

16–23]. Table 2.1 provides an overview of the previous studies. Kim et al. [16] proposed

AG-SZZ, which uses annotation graphs [17] to exclude formatting and appearance changes

that are irrelevant to the actual modification. Williams et al. [18] proposed DJ-SZZ,

which ignores non-executed line changes such as whitespace, comments, and changes in

import statements using mapping of line numbers and the Java syntax-aware diff tool,

DiffJ [24]. Neto et al. [20,21] proposed RA-SZZ, which excludes refactoring changes using

the refactoring detection tools Refdiff [25] and RefactoringMiner [26]. However, there is

still room for improvement. For example, previous studies use line-level changes stored

in the SCM system, which potentially overlooks changes within a line [13–15].

Datasets. Although various SZZ variants have been proposed, the quality of the ground

truth data is a challenge to evaluate these variants [3]. Hence, previous studies have

evaluated the impact of ground truth data quality on SZZ [22, 27, 28]. Herzig et al. [28]

reported that 33.8% of all bug reports do not actually refer to bugs, but rather serve

other purposes, such as proposing a new feature. Furthermore, they found that this

mislabeling leads to a 39% rate of false-positive bug-inducing files. Tantithamthavorn et

4

Table 2.1 Overview of SZZ variants in previous studies

Name Year Key characteristics

AG-SZZ [16, 17] 2006 Exclude formatting and appearance changes

DJ-SZZ [18] 2008 Ignore non-executed line changes such as whitespace

R-SZZ [19] 2014 Return the most recent commit

L-SZZ [19] 2014 Return the commit with the highest number of changed lines

MA-SZZ [3] 2017 Exclude meta changes (e.g., branch changes)

RA-SZZ [20, 21] 2019 Exclude refactoring changes

PR-SZZ [23] 2022 Use the pull request information

Rosa et al. [22] 2023 A heuristic to handle lines in bug-fixing commits

5

al. [27] investigated the impact of mislabeling in the dataset generated by SZZ on the

performance of defect prediction models. They discovered that models trained on the

mislabeled dataset achieve only 56-68% of the recall of the models trained on a clean

dataset. Rosa et al. [22] have created a high-quality dataset for evaluating the SZZ

method, focusing only on information provided by the developer. Additionally, they have

assessed two new heuristics for SZZ using this dataset. Due to the significance of the

ground truth data, in this study, we utilized a high-quality dataset provided by Rosa et

al. [22] and manually validated the identified commits.

2.2 Motivating Example

Listing 1 demonstrates the example that served as the motivation for this study.

The bug-fixing commit (Listing 1a) corrects the 7th argument of the printDependency

function from null to classifier （*1）. The null value induces a bug. However,

the traditional SZZ method fails to identify the commit that introduced this bug.

The identified bug-inducing commit by the traditional SZZ method (Listing 1b) adds

dds[i].isTransitive() to the 9th argument of the printDependency function （*2）. As

the 7th argument of the printDependency function is already null in this commit, it

indicates that a bug has already been introduced.

The main reason for this false-positive bug-inducing commit is that the SZZ method

tracks the commit history at the line level, even though the cause of the bug is a token.

As explained in Section 2.1, the SZZ method looks for bug-inducing commits by tracing

back from bug-fixing commits in the commit history of the SCM system, which usually

records line-level changes.

Figure 2.1 illustrates a scenario where the git blame command, currently the most

popular method for tracing commit history in SZZ, fails to identify bug-inducing commits.

The red token represents the updated token for each commit. buggy arg is the cause of

the bug, and clean arg is the modified token. Commit C introduces a buggy argument

on line 10 (i.e., bug-inducing commit), and Commit B updates another argument. In

（*1）：https://github.com/apache/ant-ivy/commit/1f0c99d0e012d84863e6a818facb143c9f03fac3

（*2）：https://github.com/apache/ant-ivy/commit/e484646c60eaca1f89921db7058d8927302d7226

6

https://github.com/apache/ant-ivy/commit/1f0c99d0e012d84863e6a818facb143c9f03fac3
https://github.com/apache/ant-ivy/commit/e484646c60eaca1f89921db7058d8927302d7226

this scenario, when using the git blame command on the bug-fixing commit Commit

A, Commit B is identified as the bug-inducing commit because it updates line 10. If the

blame command could track the commit history at the token level, as shown in Figure 2.1,

the SZZ method would successfully identify the bug-inducing commit Commit C because

buggy arg is not updated by Commit B.

Indeed, token-level tracking can successfully identify the bug-inducing commit in the

motivating example (Listing 1c) （*3）. This finding suggests that using finer-grained track-

ing, specifically at the token-level, may enhance the performance of the SZZ method.

However, previous studies have overlooked this fact. Therefore, our study aims to inves-

tigate the potential benefits and pitfalls associated with token-level tracking in the SZZ

method.

（*3）：https://github.com/apache/ant-ivy/commit/9c7f6d421223e6f76e67729b01ecc7f356eb3a29

7

https://github.com/apache/ant-ivy/commit/9c7f6d421223e6f76e67729b01ecc7f356eb3a29

264 + final String classifier = dds[i].getExtraAttribute("classifier");

265 printDependency(out, indent, mrid.getOrganisation(), mrid.getName(),

265 - mrid.getRevision(), null, null , scope, optional, dds[i].isTransitive(),

266 + mrid.getRevision(), null, classifier , scope, optional,

dds[i].isTransitive(),↪→

(a) Bug-fixing commit

253 printDependency(out, indent, mrid.getOrganisation(), mrid.getName(),

254 - mrid.getRevision(), null, null, scope, optional, excludes);

265 + mrid.getRevision(), null, null, scope, optional, dds[i].isTransitive() ,

266 + excludes);

(b) False-positive bug-inducing commit

259 + printDependency(out, indent, mrid.getOrganisation(), mrid.getName(),

260 + mrid.getRevision(), null, null , scope, optional, excludes);

(c) Bug-inducing commit

Listing 1: Motivating Example

8

C
o

m
m

it
 H

is
to

ry

Feb. 18

Feb. 16

Feb. 14

(actual: bug-fixing, SZZ: bug-fixing)

(actual: non-bug-inducing, SZZ: bug-inducing)

(actual: bug-inducing, SZZ: non-bug-inducing)

Git blame tracking

Ideal tracking

Commit X

Commit Y

Commit Z

L.13

L.13

L.13

L.13

L.13

- func(arg2, buggy_arg)

+ func(arg2, clean_arg)

- func(arg1, buggy_arg)

+ func(arg2, buggy_arg)

+ func(arg1, buggy_arg)

Figure 2.1 Different scenarios in which SZZ identifies correct and

incorrect bug-inducing commits

9

3. Dataset Preparation

In this section, we introduce the studied dataset. We first describe the ground-truth

data, which includes commits that were annotated as either bug-inducing or not. Then, we

introduce cregit, a tool for implementing the token-level SZZ method. Finally, we describe

the commits that were automatically annotated using the token-level and line-level SZZ

methods.

3.1 Ground-Truth Data

We utilize the developer-informed oracle dataset [22] as the ground truth for pairs

of bug-fixing commits and bug-inducing commits. This dataset was created with the

goal of providing more accurate pairs of bug-fixing commits and bug-inducing commits

by focusing on information provided by developers. Specifically, it collects bug-fixing

commits whose commit messages include the commit hash of the commit where the bug

was introduced. We selected this dataset to relieve the concern of the bug data quality [3,

22].

The overall developer-informed oracle dataset covers eight main programming languages

and a total of 1,854 repositories. In this experiment, we specifically selected 72 repositories

that meet the criterion of being mainly developed in Java.

The reason for filtering the projects is to conduct manual analyses on the commits

identified by the token-level tracking. It is challenging to automatically assess the accuracy

of tracking because we need to interpret commits to determine if the identified commits

are the correct bug-inducing commits associated with the bug-fixing commits. To make

the manual analyses feasible, we filter the projects first. For this filtering, we select the

criterion of being mainly developed in Java. This is because previous studies have also

utilized datasets consisting of projects developed in Java to assess their SZZ variants [3,

16–18,20,21]. Additionally, many open-source SZZ implementations specifically focus on

Java [29–31].

From the selected 72 projects, we exclude four projects for the following reasons.

10

• The repository does not exist.

– Kasukoi/eisverkauf

• The bug-fixing commit was removed.

– imagej/imagej

• The cregit process entered an infinite loop and did not terminate.

– JetBrains/intellij-community

– brianchandotcom/liferay-portal

Finally, our ground truth dataset consists of 68 repositories with 997,287 commits, in-

cluding 76 bug-inducing ones.

3.2 cregit

The SZZ method for Git repositories uses the blame command to track the commit

history, allowing retrieval of various data about the latest previous changes of a given line

(such as commit hashes, authors, and dates). However, the blame command is applicable

only to entire lines. This level of granularity overlooks changes for each line, such as

individual tokens [13–15]. To address this issue, German et al. developed cregit, a tool

that tracks changes at the token level [13]. While tracking changes at the line level

identifies the commits that introduced the tokens with an accuracy ranging from 75% to

91%, token-level tracking achieves a higher accuracy of 94.5% to 99.2%.

cregit parses the source code file and generates an output file that contains all the

original tokens. Each line in the file represents a token. This operation is performed

on all source code files in every commit, creating new view commits that include the

outputted files along with the original metadata, such as the original commit message,

creation date, and author information. Each original commit corresponds to a converted

view commit on a one-to-one basis. Figure 3.1 shows an example of source code tokenized

by cregit. The code in the example displays “Hello World!!” in Java.

Except for unique tokens of cregit such as begin class and end class, which indicate

the beginning and end of a class, a single line consists of the token type and the corre-

11

Source Code
Management

System(Git)

cregit Tokenize

･･･

Commits

1 System.out.println("Hello World");

1 name|System
2 operator|.
3 name|out
4 operator|.
5 name|println
6 argument_list|(
7 literal|"Hello World!!"
8 argument_list|)
9 expr_stmt|;

Input source code(Line-level)

･･･

Commits

Source Code
Management

System(Git)

Output source code(Token-level)

Figure 3.1 Example of tokenization by cregit (the target code displays

“Hello World!!” in Java)

12

sponding token, separated by the “|” symbol. For example, in the second tokenized line,

specifier|public, specifier is the type and public is the corresponding token. The

order of each line is consistent with the order of the tokens as they appear in the original

source code file.

The advantage of using cregit in this analysis is that we can directly apply existing

SZZ methods to the view commits. cregit converts source code files and generates view

commits, which preserve all the information of the original commit except for the original

source code files. As a result, we can utilize all git commands, including the blame

command, on the view commits. When comparing line-level and token-level, all we need

to do is replace the target repository from the original repository with the repository that

includes view commits. Because of this advantage, we use cregit to compare line-level and

token-level SZZ methods. It is worth noting that cregit has already been used in mining

software repositories [32–34].

3.3 Bug-inducing commits annotated by the SZZ method

Repositories. To execute the SZZ method, we collect repositories to construct our

studied dataset. We clone 68 repositories and check out the commit that was used to create

the developer-informed oracle dataset. This ensures that the dataset avoids including bug-

inducing and bug-fixing commits that are not included in the developer-informed oracle

dataset. During this process, we discovered a repository that lacks the commit used to

create the developer-informed oracle dataset. To address this issue, we choose the closest

commit to the missing one. The following is information about the repository and the

new commit.

• UniTime/unitime

– Hash : af139822428916fb7c0efc804dacbc7c9dcdfbc1

– Commit Date : Aug 3 17:56:14 2022

Figure 3.2 presents an overview of the annotation using the line-level and token-level

SZZ methods. We describe the details of these methods below.

13

Line-level SZZ. We utilized PySZZ v2 （*4） as the tool for the base SZZ method.

PySZZ v2 is a Python-based tool developed by the researchers who created the developer-

informed oracle. It includes input/output utilities for handling data from the developer-

informed oracle, making it user-friendly. PySZZ v2 also provides various implementa-

tions of SZZ methods, which can be switched through configuration files. For this study,

we used the basic SZZ method and applied a filter that utilizes bug report dates (i.e.,

bszz issue filter.yml) as our line-level SZZ method.

Token-level SZZ. To implement the token-level SZZ method, we use cregit to extract

tokens from the source code and convert the history of the Git repository from line-level

changes to token-level changes. We then apply PySZZ v2 to these tokenized repositories.

As PySZZ v2 operates on tokenized repositories, we consider this our token-based SZZ

method.

（*4）：https://github.com/grosa1/pyszz_v2

14

https://github.com/grosa1/pyszz_v2

SCM system
(Git)

･･･

Line-level commits

developer-informed
oracle

bug-fixing commits
bug repors

SCM system
(Git)

･･･

Token-level commits

Tokenized

cregit

SZZ method

･･･

Line-level
bug-inducing commits

Line-level SZZ

･･･

Token-level
bug-inducing commits

Token-level SZZ

･･･

bug-fixing commits
bug repors

･･･

PySZZ v2

Figure 3.2 Overview of the annotation using the line-level and token-

level SZZ methods

15

4. RQ1: To what extent do token-level changes improve

the overall accuracy of SZZ?

4.1 Motivation and Approach

While various previous studies have aimed to enhance the SZZ method, there has been

no research investigating how performance is affected by token-level tracking. To gain

an initial understanding of the impact of token-level tracking on SZZ performance, we

compare the accuracy of identifying bug-inducing commits between line-level and token-

level SZZ methods in this RQ. We assess accuracy in terms of precision, recall, and

F1-score, considering true-positive and false-positive bug-inducing commits. The ground

truth data is the developer-informed oracle dataset.

Furthermore, we investigate not only the overall performance but also the overlap of

their identified commits. We thoroughly examine the unique and intersected true-positive

and false-positive commits. Figure 4.1 presents an overview of our research methodology.

4.2 Result

Performance. Table 4.1 shows a 0.065, 0.105, and 0.081 reduction in precision, recall,

and F1 score, respectively. While our motivation example demonstrates the potential

of the token-level SZZ method, the overall performance indicates that the line-level SZZ

method outperforms the token-level SZZ method. Additionally, the number of true posi-

tives (TP) decreases while the number of false positives (FP) increases.

Overlap. The overlaps of the identified bug-inducing commits are illustrated in Fig-

ure 4.2. The red and green areas indicate the proportion of commits that are only iden-

tified by either the line-level or token-level method. The center area represents the over-

lap. Figure 4.2a indicates that a majority of the identified bug-inducing commits are

intersected between both methods, but there are some differences. While the line-level

SZZ method identifies 10 unique true-positive bug-inducing commits, the token-level SZZ

method identifies 2 unique true-positive bug-inducing commits as well. We suspect that

16

･･･

Line-level
bug-inducing commits

･･･

Token-level
bug-inducing commits

developer-infomed
oracle

･･･

baseline
bug-inducing commits

･･･

True Positive commits

･･･

False Positive commits

RQ1：Accuracy analysis

Compare to
baseline

RQ2, RQ3：Feature analysis

Manual verification

Figure 4.1 Overview of our research methodology

17

Table 4.1 Comparison of the accuracy of identified bug-inducing

commits

Precision Recall F1 score TP FP

Line level 0.342 0.671 0.453 51 98

Token level 0.277 0.566 0.372 43 112

Difference -0.065 -0.105 -0.081 -8 +14

24110

Line level Token level

(a) True Positive

Line level Token level

486434

(b) False Positive

Figure 4.2 Overlap of identified bug-inducing commits

18

although the token-level SZZ method may have an overall worse performance compared

to the line-level method, it can still identify commits that are not effectively identified

by the line-level method. However, the token-level SZZ method discovers 14 additional

false-positive commits compared to the line-level SZZ method (Figure 4.2b). Therefore,

using token-level tracking may result in more false-positive identifications of bug-inducing

commits from bug-fixing commits.� �
Compared to the line-level SZZ method, unfortunately, the token-level SZZ method

results in worse overall performance, with a 0.081 decrease in F1 score. On the other

hand, the token-level method can discover additional true-positive commits that may

not be identified by the line-level SZZ method. As described in Section 2.2, this

indicates that token-level tracking has the potential to enhance the SZZ performance.� �

19

5. RQ2: What are the reasons for the differences in the

true positive commits identified using line-level and token-

level tracking?

5.1 Motivation and Approach

RQ1 shows that the token-level SZZ has the potential to enhance the SZZ performance

since it can discover unique true-positive bug-inducing commits. While this may support

the potential benefits as described in Section 2.2, we do not manually verify the iden-

tified commits. In RQ2, we investigate the characteristics of these unique true-positive

bug-inducing commits and compare them with the results obtained from the line-level

SZZ method. Specifically, we examine why these true-positive bug-inducing commits are

identified using either line-level or token-level tracking. The first two authors manually

investigate the commits and summarize their characteristics to determine the reasons

behind their identification.

5.2 Result

Line-level. We provide the reasons for the 10 true positive commits that were identified

at the line-level but not at the token-level. The numbers in parentheses indicate the count

of commits classified under each reason. All commits and their reasons are contained in

the replication package （*5）.

• Bug-fixing commits that include additions and removals at the line-level, but only

include additions at the token-level (8)

• Bug-inducing commits that can be identified by tracking cosmetic changes, such as

spaces and indentations (2)

The most common reason is that bug-fixing commits only involve additions at

the token-level. As an example, Listing 2 illustrates a bug-fixing commit from the

（*5）：https://zenodo.org/doi/10.5281/zenodo.10044842

20

https://zenodo.org/doi/10.5281/zenodo.10044842

andrewphorn/ClassiCube-Client repository （*6）. The bug-fixing commit tracked by line-

level is shown in Listing 2a, while the tokenized one is shown in Listing 2b.

This bug-fixing commit adds a condition || !isOnline() to the if statement on line

1929 (Listing 2a). This modification at the line-level corresponds to the additions from

line 11408 to 11411 at the token-level (Listing 2b). While this bug-fixing commit only adds

a condition and the token-level tracking shows additions of four tokens, it is important

to note that the line-level tracking includes one line deletion and one line addition. In

this case, the token-level SZZ method is unable to track the bug-inducing commit from

the bug-fixing commit using the blame command. This limitation arises from the fact

that the blame command can only track lines that have been deleted. In other words,

the blame command cannot track changes like the token-level commit in this case, which

only involves additions without any deletions.

This is not a specific challenge in the token-level SZZ method, but a common challenge

for all SZZ methods [22]. In fact, there are bug-fixing commits that involve only adding

lines. Therefore, this result suggests that even with a finer granularity, which we initially

believed would allow for more detailed and accurate tracking, we may still encounter the

same challenge observed in line-level tracking. The simplest approach to address this

challenge is a hybrid tracking approach. For instance, in cases where the commit after

tokenization consists only of added tokens, switching back the original line-based commits

could be an effective method.

Token-level. Next, we provide the reasons for the two true positive commits that were

identified at the token-level but not at the line-level.

• Accurate diffs in bug-fixing commits (2)

As an example, we present one of the bug-fixing commits from the adamretter/exist

project in Listing 3 （*7）. The line-level bug-fixing commit is shown in Listing 3a, and the

tokenized commit is shown in Listing 3b. Due to the length of the diff in the token-level

commit, only a portion of its distinctive part is included here.

（*6）：https://github.com/andrewphorn/ClassiCube-Client/commit/638ece305bdbd783e4c326011dd144

6c737b536f

（*7）：https://github.com/adamretter/exist/commit/78d23a3263376611d7b065944fd7a5597bec025c

21

https://github.com/andrewphorn/ClassiCube-Client/commit/638ece305bdbd783e4c326011dd1446c737b536f
https://github.com/andrewphorn/ClassiCube-Client/commit/638ece305bdbd783e4c326011dd1446c737b536f
https://github.com/adamretter/exist/commit/78d23a3263376611d7b065944fd7a5597bec025c

1928 if (Keyboard.getEventKey() == Keyboard.KEY_ESCAPE) {

1929 - if (!packetHandler.isLoadingLevel){

1929 + if (!packetHandler.isLoadingLevel || !isOnline()){

1930 pause();

(a) Changes at line-level

11405 name|packetHandler

11406 operator|.

11407 name|isLoadingLevel

11408 + operator|||

11409 + operator|!

11410 + name|isOnline

11411 + argument_list|()

11412 condition|)

11413 block|{

(b) Changes at token-level

Listing 2: Example of changes in a line-level and token-level bug-fixing

commit in andrewphorn/ClassiCube-Client

22

132 + logger.info("[eXist Home : "

133 + + System.getProperty("exist.home", "unknown") + "]");

134 logger.info("[eXist Version : "

135 + SystemProperties.getInstance().getSystemProperty("product-version",

"unknown") + "]");↪→

136 logger.info("[eXist Build : "

137 + SystemProperties.getInstance().getSystemProperty("product-build",

"unknown") + "]");↪→

137 - logger.info("[eXist Home : "

138 - + SystemProperties.getInstance().getSystemProperty("exist.home",

"unknown") + "]");↪→

138 logger.info("[Git commmit : "

139 + SystemProperties.getInstance().getSystemProperty("git-commit",

"unknown") + "]");↪→

(a) Changes at line-level tracking

23

843 operator|.

844 name|info

845 argument_list|(

846 - literal|"[eXist Version : "

846 + literal|"[eXist Home : "

847 operator|+

848 - name|SystemProperties

849 - operator|.

850 - name|getInstance

851 - argument_list|()

848 + name|System

849 operator|.

853 - name| getSystemProperty

850 + name| getProperty

851 argument_list|(

855 - literal|" product-version "

852 + literal|" exist.home "

853 argument_list|,

854 literal|"unknown"

855 argument_list|)

@@ -864,7 +861,7 @@

861 operator|.

862 name|info

863 argument_list|(

867 - literal|"[eXist Build : "

864 + literal|"[eXist Version : "

865 operator|+

866 name|SystemProperties

867 operator|.

@@ -873,7 +870,7 @@

870 operator|.

871 name|getSystemProperty

872 argument_list|(

876 - literal|"product- build "

873 + literal|"product- version "

(b) Changes at token-level tracking

Listing 3: Example of changes between bug-fixing commits in adam-

retter/exist repository
24

Table 5.1 Comparison of the accuracy of identified bug-inducing

commits when using the histogram algorithm

Precision Recall F1 score TP FP

Line level 0.342 0.671 0.453 51 98

Token level 0.268 0.553 0.361 42 115

Difference -0.074 -0.118 -0.092 -9 +17

25

This commit addresses an issue with the incorrect retrieval of the exist.home property

by changing the order of logging output. The line-level commit recognizes this modifica-

tion as a relocation of two lines from lines 137 and 138 to lines 132 and 133. In contrast,

the token-level commit interprets this modification as a change in some tokens. This

suggests that the token-level commit does not interpret this modification as a movement

of lines. This diff difference results in the two true positive commits by the token-level

SZZ method.

This result implies that the performance of the token-level SZZ method may depend

on the diff algorithms used by Git. In fact, Git provides multiple algorithms to generate

the diffs between two commits. For this experiment, we used the default algorithm: the

mayer algorithm. However, using different diff algorithms can lead to different diffs [35]

and different bug-inducing commits. Therefore, we thoroughly examine the differences

between the diff algorithms provided by Git. A previous study [35] suggests using the

histogram algorithm. In fact, applying the histogram algorithm changes the commit in

Listing 3b to the commit where a single logger is moved similar to Listing 3a. Hence, we

conduct the same experiment as RQ1 but with the histogram algorithm.

The results are presented in Table 5.1. When comparing the results with the mayer

algorithm, as shown in Table 4.1, we observed no change in the results at the line-level.

However, at the token-level, there was a decrease of one true positive commit and an

increase of three false positive commits, resulting in a decrease in all evaluation measures.

These results suggest that the choice of different diff algorithms has an impact, particularly

when tracking at the token-level. Therefore, the performance of the token-level SZZ

method could be improved by selecting a more suitable diff algorithm.

26

� �
The token-level SZZ method does not address all the challenges that the line-level

SZZ method faces. In particular, the token-level SZZ method still considers bug-fixing

commits that only involve additions as potential threats. However, our experiment

shows that the token-level SZZ method can identify two unique true-positive commits

due to its more accurate diffs. Since the choice of diff algorithms can impact this

accuracy, further research is needed to identify a suitable diff algorithm that can

enhance the performance of the token-level SZZ method.� �

27

6. RQ3: What are the reasons for the differences in

the false positive commits identified using line-level and

token-level tracking?

6.1 Motivation and Approach

In contrast to RQ2, this RQ focuses on analyzing false-positive bug-inducing commits.

Similar to RQ2, the first two authors manually investigate the commits to gain insights

into the differences between the line-level and token-level SZZ methods in terms of false-

positive commits.

Before investigating the difference, we manually inspect and remove commits that are

actually true-positive ones. This is necessary because our ground truth dataset, the

developer-informed oracle, may incorrectly label actual bug-inducing commits as non-

bug commits. To improve the validity of this RQ, we exclude these commits from the

false-positive commits. Table 6.1 presents the number of false-positive commits that are

actually true-positive commits. Among them, we identified one commit in the false-

positive commits induced by the token-level SZZ method only, none in those induced by

the line-level SZZ method only, and three commits in those induced by both the token-

level and line-level SZZ methods.

Next, we manually investigate whether the token-level and line-level SZZ methods ac-

curately track the change histories, even if the identified bug-inducing commits turn out

to be false positives. This is because, in fact, there are commits that are not theoretically

identified by the SZZ method. For example, the following missing co-changes scenarios

exist.

• While a function is modified, developers overlook to update the invocation.

• While a code fragment is modified, there are code clones that should also be updated.

The token-level SZZ method may generate false positive commits in the above scenarios.

Consequently, even if the token-level SZZ method accurately tracks commit histories, it

can potentially reduce overall performance. If the token-level SZZ method effectively

28

Table 6.1 Number of true positive commits within the false positive

commits

Type True Positive/False Positive

Line-level 0/34

Token-level 1/48

Both 3/64

29

traces commit histories in comparison to the line-level SZZ method, it offers potential

advantages for certain projects that lack these scenarios. Therefore, it is crucial for us to

investigate not only false positive commits but also tracking accuracy.

In this analysis, we consider the commits to be accurately tracked candidates if they

contain the specific code that causes the bug and are modified by the corresponding bug-

fixing commits. Based on previous studies [3,16,18,20,21], we only extract commits from

the candidates that meet the following criteria as the correctly tracked commits.

• Import changes are not tracked [18]

• Comment changes are not tracked [3, 18]

• Commits were not related to a style change (e.g., variable name changes, indentation

changes) [16, 18]

• Commits were not related to a refactoring [20, 21]

6.2 Result

Difference. Figure 4.2b shows that the line-level SZZ method induces 34 unique false-

positive commits. We hypothesize that the token-level tracking can ignore cosmetic

changes, such as source code formatting and whitespace modifications and reduce the

number of such false-positive commits. Based on our manual checking, we found seven

false-positive commits induced by source code formatting and two induced by whitespace

modifications in the 34 false-positive commits. In contrast, the false-positive commits

induced by the token-level SZZ method do not include any caused by source code for-

matting or whitespace modifications. Therefore, the token-level SZZ method provides

benefits in addressing a specific type of false-positive commits, even though it may induce

more false-positive commits overall.

Tracking accuracy. Table 6.2 displays the proportion of false-positive bug-inducing

commits that occur as a result of accurately tracking the change histories from bug-fixing

commits. The proportions are 0.265 for line-level tracking, 0.396 for token-level tracking,

and 0.688 for commits regardless of line-level and token-level tracking. This result suggests

that tracking changes by the token-level may provide more accurate tracking compared to

30

Table 6.2 Percentage of false positive commits to be accurately

tracked

Type Commits tracked accurately/FP Commits Percentage

Line level 9/34 0.265

Token level 19/48 0.396

Both 44/64 0.688

31

tracking by the line-level. In fact, we discovered commits that are only identified through

token-level tracking.

Interestingly, more than half (68%) of the false positive commits identified by both line-

level and token-level tracking were a result of accurately tracking the change histories.

This suggests that the code lines identified by both line-level and token-level tracking are

more likely to be the lines that were initially modified by bug-fixing commits. Therefore, if

the SZZ method can disregard the cases where it theoretically fails, utilizing both tracking

methods (i.e., a hybrid method) would lead to improved tracking accuracy.� �
The token-level SZZ method is capable of avoiding false-positive bug-inducing com-

mits that occur in the line-level SZZ method due to source code formatting and

whitespace modifications. Furthermore, tracking at the token level and the hybrid

approach of token-level and line-level tracking are more accurate than tracking at

the line level. In the future, if we prevent the commits in which the SZZ method

theoretically fails, the hybrid approach would improve the SZZ performance.� �

32

7. Lessons Learned

Based on our empirical analysis, we have identified the potential benefits and pitfalls

of using the token-level SZZ method. Table 7.1 summarizes the potential benefits and

pitfalls for both line-level and token-level SZZ methods. The checkmark indicates that

the benefit/pitfall has not been reported by previous studies. The references indicate the

previous studies that at least argue for that benefit/pitfall, even if they do not empirically

validate them.

Our empirical study revealed one new benefit when using line-level tracking and three

new pitfalls when using token-level tracking for the SZZ method (Please check ✓). Ad-

ditionally, we validated the two benefits and two pitfalls that were reported in previous

studies. Initially, we deduced that token-level tracking would be entirely beneficial for the

SZZ method. However, identifying these benefits and pitfalls provides valuable lessons on

how to avoid pitfalls and improve the performance of the SZZ method while maximizing

its benefits.

Below, we present lessons learned from utilizing token-level tracking in SZZ, based on

its potential benefits and pitfalls.

33

T
a
b
le

7
.1

P
o
te
n
ti
a
l
b
en

efi
ts

a
n
d
p
it
fa
lls

o
f
u
si
n
g
lin

e-
le
ve

l
a
n
d
to
ke

n
-l
ev

el
tr
a
ck

in
g
fo
r
th
e
S
Z
Z

m
et
h
o
d

(T
h
e
ch

ec
k
m
ar
k
(✓

)
in
d
ic
a
te
s
th
a
t
th
is

b
en

efi
t/
p
it
fa
ll
h
a
s
n
o
t
b
ee

n
re
p
o
rt
ed

b
y
p
re
vi
o
u
s
st
u
d
ie
s)

T
y
p
e

A
sp
ec
ts

R
ef
.
n
u
m
b
er

D
es
cr
ip
ti
on

R
el
at
ed

w
or
k

B
en
efi
ts

T
B

1
It

is
ab

le
to

ig
n
or
e
co
sm

et
ic

ch
an

ge
s
(e
.g
.,
fo
rm

at
ti
n
g
ch
an

ge
s
an

d
w
h
it
es
p
ac
e
ch
an

ge
s)

[1
3]

T
B

2
It

is
ab

le
to

tr
ac
k
ch
an

ge
s
to

a
p
ar
t
of

th
e
li
n
e
(e
.g
.,
ch
an

gi
n
g
a
to
ke
n
)

[1
3]

T
ok
en
-l
ev
el

T
P
1

It
is
u
n
ab

le
to

tr
ac
k
co
m
m
it
s
th
at

on
ly

ad
d
to
ke
n
s.

✓

P
it
fa
ll
s

T
P
2

It
p
ot
en
ti
al
ly

in
d
u
ce
s
a
la
rg
e
n
u
m
b
er

of
fa
ls
e-
p
os
it
iv
e
b
u
g-
in
d
u
ci
n
g
co
m
m
it
s.

✓

T
P
3

It
fr
eq
u
en
tl
y
le
ad

s
to

fa
ls
e
p
os
it
iv
es

b
y
tr
ac
k
in
g
p
ar
en
th
es
es

(e
.g
.,
{}

,
()
)
an

d
se
m
ic
ol
on

s.
✓

B
en
efi
ts

L
B

1
It

is
ab

le
to

tr
ac
k
ch
an

ge
s
th
at

on
ly

ad
d
to
ke
n
s.

✓

L
in
e-
le
ve
l

P
it
fa
ll
s

L
P
1

It
tr
ac
k
s
co
sm

et
ic

ch
an

ge
s
(e
.g
.,
fo
rm

at
ti
n
g
ch
an

ge
s
an

d
em

p
ty

li
n
e
ch
an

ge
s)
.

[1
6,
18
]

L
P
2

It
is
u
n
ab

le
to

tr
ac
k
co
m
m
it
s
th
at

on
ly

ad
d
li
n
es
.

[2
2]

34

7.1 Tracking Accuracy

Based on the results from Table 6.2, token-level tracking shows potential for accurately

tracking change histories. Unlike line-level tracking, the token-level SZZ method can

ignore cosmetic changes, which can improve tracking accuracy (TB1 and LP1). As a

result, researchers and practitioners aiming to improve tracking accuracy can benefit

from utilizing token-level tracking.

However, there is a pitfall in utilizing token-level tracking. Table 4.1 demonstrates that

the token-level SZZ method performs worse in comparison to the line-level SZZ method.

One reason for this is that when using token-level tracking, the blame operation in SZZ

identifies a large number of bug-inducing commits, including numerous false positive bug-

inducing commits, even if the tracking is accurate (TP2). This is because token-level

change histories consist of more targets (i.e., tokens) to track back the histories, as opposed

to line-level change histories where the targets are lines.

Hence, it is important for researchers and practitioners not only to employ token-

level tracking but also to suggest a filtering approach to mitigate the occurrence of false

positives. For instance, our manual analysis revealed that tracking specific tokens such

as parentheses (e.g., {}, ()) and semicolons often results in false-positive bug-inducing

commits (TP3). By implementing a filtering approach to exclude these tokens, the overall

performance of the token-level SZZ method can be enhanced.

Lesson 1: The token-level SZZ method can improve tracking accuracy, but

it does not enhance the overall performance. To improve the overall per-

formance, it is important to propose a filtering approach that reduces the

occurrence of false-positive bug-inducing commits.

7.2 Hybrid Approach

As explained in Section 7.1, utilizing token-level tracking with a filtering approach can

help mitigate pitfalls. However, a combination of token-level and line-level tracking is also

effective in addressing them. In fact, Table 7.1 demonstrates that a pitfall encountered

with token-level tracking (TP1) can be resolved with line-level tracking (LB1). Similarly,

35

a pitfall encountered with line-level tracking (LP1) can be addressed with token-level

tracking (TB1). For example, while token-level tracking may not capture commits that

solely involve adding tokens (e.g., Listing 2), line-level tracking can track these commits.

A potential approach is for researchers and practitioners to transition from tracking

at the token-level to tracking at the line-level when the target commits only involve

adding tokens (LB1 relieves TP1). In contrast, they can transition from tracking at

the line-level to tracking at the token-level when the target commits involve numerous

cosmetic changes (TB1 relieves LP1). This approach allows them to effectively address

the respective pitfalls.

It is worth noting that there is a pitfall that causes worse performance for both line-

level and token-level tracking: when the target commits only involve added lines (LP2).

To address this challenge, researchers and practitioners need to prepare not only a hybrid

approach but also alternative solutions to improve the accuracy of the SZZ method.

Lesson 2: A hybrid approach that combines token-level and line-level track-

ing has the potential to perform well by addressing their respective pitfalls

(TP1 and LP1). However, there is still a challenge that negatively affects the

performance of the SZZ method (LP2). Further studies are needed to propose

alternative solutions for this challenge.

36

8. Threats to Validity

8.1 Construct Validity

The main threat is the quality of the ground truth data. In this paper, we utilized the

developer-informed oracle dataset as our ground truth data. While this dataset contains

high-quality bug-inducing commits, it also includes a significant number of false-negative

commits. False-negative commits refer to commits that are actually bug-inducing, but

were not identified as such. This is because the dataset relies on developer-provided

information to prevent false-positive commits. As a result, there may be a bias in the

experimental results. However, we conducted thorough manual validation of the identified

commits to ensure their accuracy. This process minimizes the bias as much as possible.

8.2 External Validity

In this study, we specifically focus on Java projects within the developer-informed oracle

dataset. It is important to note that the findings may not be applicable to other datasets

or programming languages. However, our dataset consists of 68 Java projects, covering a

wide range of software systems, and Java is the most widely used programming language

in similar studies [3,16–18,20,21] [29–31]. For future research, we aim to include additional

datasets and programming languages to improve the applicability of our findings.

8.3 Internal Validity

In this study, there is a potential bias of our manual analysis when trying to understand

the difference between the line-based and token-based SZZ methods. To mitigate this bias,

the first two authors conduct manual checks. The validity of our experimental scripts also

exists. To ensure their validity, we make them available online （*8）.

（*8）：https://zenodo.org/doi/10.5281/zenodo.10044842

37

https://zenodo.org/doi/10.5281/zenodo.10044842

9. Conclusion

In this paper, we conducted a study to compare the performance of the token-level

SZZ method with the traditional line-level SZZ method. We aim to evaluate the impact

of token-level tracking on the identification of bug-inducing commits. We assessed the

accuracy of identifying these commits and analyzed their characteristics.

The results indicate that the token-level SZZ method identified two new bug-inducing

commits. However, it had lower accuracy compared to the line-level SZZ method. Our in-

depth analysis revealed that token-level tracking helps reduce false-positive bug-inducing

commits caused by source code formatting and whitespace modifications. Additionally,

we found that a hybrid approach combining token-level and line-level tracking has the

potential to improve the accuracy of tracking commit histories. Based on these findings,

we summarized the potential benefits and pitfalls of both token-level and line-level SZZ

methods.

Our summary has the potential to serve as the foundation for future research aimed at

enhancing the performance of the SZZ method. One suggestion we have is to explore a

hybrid approach that combines token-level and line-level tracking to effectively address

their respective pitfalls.

Acknowledgment

This research was possible to be conducted because of the continued support and en-

gagement of many grateful people. I would like to express my deep and sincere gratitude to

my research supervisor, Dr. Osamu Mizuno, for letting me do this research and providing

invaluable support throughout this journey. To Dr. Eunjong Choi, for her trust, offering

valuable advice, giving support during this whole study period, and encouraging me to

finish the thesis. To Dr.Masanari Kondo, for sharing his expertise by giving constructive

comments and suggestions upon reviewing this study. To Takaaki Tanimoto, Akihiro

Tamai, other members of the Software Engineering Laboratory, my family, friends, and

Aquatan have strongly supported me in my research life.

38

References

[1] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How do fixes

become bugs?,” Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, pp.26–36, 2011.

[2] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and O. Strollo,

“When Does a Refactoring Induce Bugs? An Empirical Study,” Proceedings of the

12th International Working Conference on Source Code Analysis and Manipulation,

pp.104–113, 2012.

[3] D. Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A.E. Hassan, “A

Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-

Introducing Changes,” IEEE Transactions on Software Engineering, vol.43, no.7,

pp.641–657, 2017.

[4] “Updated NIST Software Uses Combination Testing to Catch Bugs Fast and Easy”.

[5] M. Zhivich and R.K. Cunningham, “The Real Cost of Software Errors,” IEEE Secu-

rity and Privacy, vol.7, no.2, pp.87–90, 2009.

[6] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in open

source software,” Empirical Software Engineering, vol.19, no.6, pp.1665–1705, 2014.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of

automated program repair: Fixing 55 out of 105 bugs for $8 each,” Proceedings of

the 34th International Conference on Software Engineering, pp.3–13, 2012.

[8] M. Monperrus, “Automatic Software Repair: A Bibliography,” ACM Computing

Surveys, vol.51, no.1, pp.17:1–17:24, 2018.

[9] G. Giray, K.E. Bennin, Ö. Köksal, Ö. Babur, and B. Tekinerdogan, “On the use

of deep learning in software defect prediction,” Journal of Systems and Software,

vol.195, no.C, pp.1–26, 2023.

[10] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi,

“A large-scale empirical study of just-in-time quality assurance,” IEEE Transactions

39

on Software Engineering, vol.39, no.6, pp.757–773, 2013.

[11] R. Just, D. Jalali, and M.D. Ernst, “Defects4J: A database of existing faults to enable

controlled testing studies for Java programs,” Proceedings of the 2014 International

Symposium on Software Testing and Analysis, pp.437–440, 2014.

[12] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?,” ACM

SIGSOFT Software Engineering Notes, vol.30, no.4, pp.1–5, 2005.

[13] D.M. German, B. Adams, and K. Stewart, “Cregit: Token-level blame information

in git version control repositories,” Empirical Software Engineering, vol.24, no.4,

pp.2725–2763, 2019.

[14] X. Meng, B.P. Miller, W.R. Williams, and A.R. Bernat, “Mining Software Reposito-

ries for Accurate Authorship,” Proceedings of the 29th IEEE International Confer-

ence on Software Maintenance, pp.250–259, 2013.

[15] F. Servant and J.A. Jones, “Fuzzy Fine-Grained Code-History Analysis,” Proceedings

of the 39th International Conference on Software Engineering, pp.746–757, 2017.

[16] S. Kim, T. Zimmermann, K. Pan, and E.J.J. Whitehead, “Automatic Identification of

Bug-Introducing Changes,” Proceedings of the 21st IEEE/ACM International Con-

ference on Automated Software Engineering, pp.81–90, 2006.

[17] T. Zimmermann, S. Kim, A. Zeller, and E.J. Whitehead, “Mining version archives

for co-changed lines,” Proceedings of the 2006 International Workshop on Mining

Software Repositories, pp.72–75, 2006.

[18] C. Williams and J. Spacco, “SZZ revisited: Verifying when changes induce fixes,”

Proceedings of the 2008 Workshop on Defects in Large Software Systems, pp.32–36,

2008.

[19] S. Davies, M. Roper, and M. Wood, “Comparing text-based and dependence-based

approaches for determining the origins of bugs,” Journal of Software: Evolution and

Process, vol.26, no.1, pp.107–139, 2014.

[20] E.C. Neto, D.A. da Costa, and U. Kulesza, “The impact of refactoring changes on

the SZZ algorithm: An empirical study,” Proceedings of the 25th IEEE International

40

Conference on Software Analysis, Evolution and Reengineering, pp.380–390, 2018.

[21] E.C. Neto, D.A.D. Costa, and U. Kulesza, “Revisiting and Improving SZZ Implemen-

tations,” Proceedings of the 13th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, pp.1–12, 2019.

[22] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R.

Oliveto, “A comprehensive evaluation of SZZ Variants through a developer-informed

oracle,” Journal of Systems and Software, vol.202, no.C, pp.1–19, 2023.

[23] P. Bludau and A. Pretschner, “PR-SZZ: How pull requests can support the trac-

ing of defects in software repositories,” Proceedings of the 29th IEEE International

Conference on Software Analysis, Evolution and Reengineering, pp.1–12, 2022.

[24] jpace/diffj, (Online), Available: https://github.com/jpace/diffj, Retrieved:

2023-09-24.

[25] D. Silva and M.T. Valente, “RefDiff: Detecting refactorings in version histories,”

Proceedings of the 14th International Conference on Mining Software Repositories,

pp.269–279, 2017.

[26] N. Tsantalis, M. Mansouri, L.M. Eshkevari, D. Mazinanian, and D. Dig, “Accu-

rate and efficient refactoring detection in commit history,” Proceedings of the 40th

International Conference on Software Engineering, pp.483–494, 2018.

[27] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, A. Ihara, and K. Matsumoto, “The

Impact of Mislabelling on the Performance and Interpretation of Defect Prediction

Models,” Proceedings of the 37th International Conference on Software Engineering,

vol.1, pp.812–823, 2015.

[28] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How misclassifica-

tion impacts bug prediction,” Proceedings of the 35th International Conference on

Software Engineering, pp.392–401, 2013.

[29] V. Lenarduzzi, F. Palomba, D. Taibi, and D.A. Tamburri, “OpenSZZ: A Free, Open-

Source, Web-Accessible Implementation of the SZZ Algorithm,” Proceedings of the

28th International Conference on Program Comprehension, pp.446–450, 2020.

41

https://github.com/jpace/diffj

[30] M. Borg, O. Svensson, K. Berg, and D. Hansson, “SZZ unleashed: An open imple-

mentation of the SZZ algorithm - featuring example usage in a study of just-in-time

bug prediction for the Jenkins project,” Proceedings of the 3rd ACM SIGSOFT Inter-

national Workshop on Machine Learning Techniques for Software Quality Evaluation,

pp.7–12, 2019.

[31] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework for mining

software repositories,” Proceedings of the 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pp.908–911, 2018.

[32] M. Kondo, Y. Kashiwa, Y. Kamei, and O. Mizuno, “An empirical study of issue-

link algorithms: Which issue-link algorithms should we use?,” Empirical Software

Engineering, vol.27, no.6, pp.1–50, 2022.

[33] S. Qiu, D.M. German, and K. Inoue, “An Exploratory Study of Copyright Incon-

sistency in the Linux Kernel,” IEICE Transactions on Information and Systems,

vol.E104.D, no.2, pp.254–263, 2021.

[34] B. Aloraini, M. Nagappan, D.M. German, S. Hayashi, and Y. Higo, “An empirical

study of security warnings from static application security testing tools,” Journal of

Systems and Software, vol.158, no.C, pp.1–25, 2019.

[35] Y.S. Nugroho, H. Hata, and K. Matsumoto, “How Different Are Different diff Algo-

rithms in Git?,” Empirical Software Engineering, vol.25, no.1, pp.790–823, 2020.

42

	Introduction
	Background
	Related Work
	Motivating Example

	Dataset Preparation
	Ground-Truth Data
	cregit
	Bug-inducing commits annotated by the SZZ method

	RQ1: To what extent do token-level changes improve the overall accuracy of SZZ?
	Motivation and Approach
	Result

	RQ2: What are the reasons for the differences in the true positive commits identified using line-level and token-level tracking?
	Motivation and Approach
	Result

	RQ3: What are the reasons for the differences in the false positive commits identified using line-level and token-level tracking?
	Motivation and Approach
	Result

	Lessons Learned
	Tracking Accuracy
	Hybrid Approach

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusion
	Acknowledgment
	References

