oo bobooboobodgbogogd
Jodgobgoogd

OO0 O0tbO0D0 OO0{000 0bi00b0 0O0i00o0D Of

10000 000000oOoo0o ooooood
0560-8531 D00 00OO0O0OOO 1-3
Phone: 06-850-6567  Fax: 06-850-6569
e-mail: o-mizuno@ics.es.osaka-u.ac.jp
i0oooooog

gboo: obooocboooboobboooboooboboobobobOoooboboooooooobooboooon
00199%00000000000000000 (SEPG)0000OO0OO0OOOOO0OOO0UUOOODOOUOOOOO
gboo0o2300oooooobooooooobooocoooboooooobooobooboobOoooOooooan
000000 0o0oOoU0UooOU0U0ooOoUOUoOoOo SEpGLOUOOOODOODOODOOOOOOOOOOOODOOO
gooooooooooooooobooooobooooobooooooooboooobob0boooooogo
0000000000000 0000000000000000000000000000S% 00000000
gooooobooooboobooboooobooooobooooboooobDobDooobOooooOoDOoOoOOoo
gboobb:000oboooo0o0obooooboboobooobOoobbooboobooboOoDboon

Effectiveness Analysis of Review Process Improvement for Embedded
Software System Development at Certain Company

Osamu Mizunot, Toshiki Niki{, Naoki Niihara}, Yasunari Takagitand Tohru Kikunot

tDepartment of Informatics and Mathematical Sciences,
Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Phone: +81-6-850-6567  Fax: +81-6-850-6569
e-mail : o-mizuno@ics.es.osaka-u.ac.jp

TOMRON Corporation

Abstract: In this paper, we analyze the effectiveness of actual review process improvement activities conduct-
ed by the software engineering process group(SEPG) in a certain company that develops embedded software
systems.

The analysis consists of two steps: investigating the ratio v of the efforts for review on the total efforts for
design and coding(Step 1), and clarifying the effects caused by the review process improvement(Step 2). The
Step 1 classifies projects into two categories: faithful and unfaithful projects, where v > 15% holds for faithful
projects. Then Step 2 proves statistically that the number of faults detected during the review process in faithful
projects is significantly greater than that of unfaithful projects. Additionally, it also shows that the number of
serious failures in faithful projects is slightly smaller compared with unfaithful projects.

Keywords: software process, review process improvement, quality of product, statistical analysis



1 Introduction per with a brief summary and some future research works
in Section 6.

In order to achieve high quality and productivity of

the software development, a lot of general knowledge .

or experiences such as “no silver bullet[3]” and “death 2 DeVGIOpment at Certain Company

march project[18]” have been presented. The process )

improvement[7] is well known as one of the most at- 2-1 Target projects

tractive and practical methodologies. Concerning the pro- | orqer to derive as general results as possible, we select

cess improvement, theoretical investigations on the formal 54 projects such that development effort of each project
framework[4, 15] as well as applications to actual organi- g |arger than 15 person-months. These selected projects
zations [8, 17] have been performed. Especially, the pro- 4r¢ cjassified into three kinds of categories based on their

cess improvement of software review has been consideredproducts: Vending System, Checking System, and Retail
as a cost-effective way to improve quality of software[5]. gy srem as follows: ’ ’

Actually, several quantitative evaluations of software re-
view process have proved its validity using simulation Vending System: The developments of user-friendly

results[2, 9]. vending machines, that accept cash or prepaid card-

In this paper, we analyze the effectiveness of review pro- s, for the railroad system. All of the selected five
cess improvement activities during six years in a certain projects began in the period from 1992 to 1994. Typ-
company that develops embedded software systems. In ically, it takes from 15.3 to 37.2 person-months for
the company, software engineering process group(SEPG)  developing the vending machine with 9.4 to 38.8 K-
was established in 1992, then the activities for construct- step.

ing well-formed project plans were introduced in 1993,
and finally the activities for improving review process
have been conducted since 1995. Concerning the case

Checking System: The developments of checking ma-
chines for the fare in the train stations and airports.
All of the selected twelve projects began in the period

studies of software process improvement using general- from 1992 to 1996. Typically, it takes 16.3 to 62.3
|zfet(:] stoclh?sucrlietg—r:et mo?ﬁl and”tr;e stagsncgl a?ally5|s person-months for developing the checking machine
of the relationship between the well-formed project plan with 7.2 to 123.1 Kstep.

and the final product quality, we have already summarized
some reports[11, 16, 17]. But the discussions on review Retail System: The developments of retail systems al-

process improvement are not yet done, and so we try to lowing consumers to use credit and prepaid cards.
analyze empirically the effectiveness of review process All of the projects began in the period from 1995 to
improvement using actual twenty three project data from 1996. Typically, it takes 15.0 to 29.2 person-months
1992 to 1996. In this study, we assume review includes for developing retail system with 3.5 to 20.5 Kstep.

both the document review in the design activity and the
code review in the coding activity.

The objective of this study is to investigate carefully the
long-term changes in the software development process
which are introduced by the review process improvement
in the company. In this paper, we try to investigate the
following two changes on the projects: changes in review
effort and changes in software quality. At first, we trace
direct effects on the development process caused by the
review process improvement, such as the change of review

The one important point for later analysis is that the
Vending System and Checking System are developed by
the same organization in the company. On the other hand,
the Retail System is developed by another organization.

Figure 1 summarizes the categories of 23 projects and
period of their developments. Please note that activities
of the SEPG for improving review process have been con-
ducted since 1995, to be described in Section 3.

efforts actually spent for each project, and checks if the Vending System
process improvement is truly incorporate into the actual (5 projects)
development. Next, we trace indirect effects caused by Checking System
the review process improvement, such as the changes in (12 projects)
the number of faults detected in the review and test phases, .
e . . . . Retail System
and verify if the quality of software products is essentially (6 projects)
improved. : : : : : : :
The rest of the paper is organized as follows: In Sec- 92 93 94 '95 96 o7 '98
tion 2, we present target projects and process model. In Figure 1: Target projects

Section 3 we explain the process improvement performed

from 1992 to 1998 at a certain company. In Section 4, we

show the outline of coIIe_cted dataand cl_arifythe obje(_:tive 2.2 Process model

of our study by presenting three assertions. In Section5,

we show the result of evaluations with respect to review Figure 2 shows the software development process model
effort and software quality. Finally, we conclude this pa- adopted in the company. The process model shown in



(—— (——

Concept Design Unit Test
& its Review & Debug
(CD & CDR) (UT & UDB)
Function Design Integration Test
& its Review & Debug
(FD & FDR) Coding (IT & IDB)
—» Y & its Review Y Acceptance Test
Structure Design (PG& PGR) Function Test (AD
& its Review & Debug
(SD & SDR) (FT & FDB)
Module Design Verification Test
& its Review & Debug
(MD & MDR) (VT & VDB)
——————— ——————
- > - >
Design Phase Debug & Test Phase

Figure 2: Process model

Figure 2 is a standard waterfall model. Strictly speaking,
some irregular control flows (such as backwards flow to
previous activity or concurrent executions between previ-
ous and current activities) do rarely happen. But these are

SEPG was esablished in 1992.

not explicitly described in Figure 2. Activities for constructing project plan

In our discussion, we classify the development process started in 1993.
into two successive phases: design phase and debug &
test phase, as shown in Figure 2. One important charac- Activities for improving
teristic of the design phase is that the review activity is review process have been
introduced after each design activity and coding activity. conducted since 1995.
The design phase is divided into five stages: Concept De- — ' ' ' ' ' '
sign, Function Design, Structure Design, Module Design, '92 93 94 '95 '96 97 98
Coding and their corresponding Reviews. On the other Figure 3: Process improvement activities

hand, the debug & test phase consists of the repetition of
a pair of test and debug activities and is divided into four

stages: Unit Test, Integration Test, Function Test, Verifi- any proof) in the company that the well-formed plan will
cation Testand their corresponding Debugs. Atthe end of gerive the accurate estimation for the project cost. Further-
the debug & test phase, there is Acceptance Test, wheremore it is also believed that the accurate cost estimation
final test before code release is performed. will lead the project to the high quality of the product and
high productivity of development team. We have already
applied the statistical analysis to this improvement activ-
ity and shown the correctness of these facts by the test of
statistical hypothesis with level of significance 5% in [11].

Next, the SEPG has extensively engaged in the im-

In the certain company to be investigated in this paper, provement of review process. Generally, the cost of re-
the software engineering process group(SEPG) was es-moving faults in the later development phases, such as
tablished in 1992. Since then the SEPG conducted two debug or test phase becomes higher than that in the earlier
main process improvement activities as follows: establish- phase such as design review or coding review phase. So
ment and introduction of the standards for managing the it is strongly recommended to remove faults in the earlier
software process, and improvement of the review process phase. Concerning this fact, it is believed that the number
using the software metrics toward high quality. Figure 3 of faults detected in the review activity become greater by
shows a brief summary of the process improvement activ- increasing the amount of review activity. Based on the
ities at the company. similar experience and knowledge as mentioned above,

Atfirst, the SEPG tried to establish several standards for the SEPG started the improvement of review process in
managing software project, and to putitinto practice from 1995. The key point of the improvement is implement-
1993. The main purposes of the standards include guid- ing effective review process by increasing the amount of
ing developers in each project to create the well-formed efforts for review(especially, code review) and by intro-
plan and managers to conduct the project successfully ac-ducing good guidelines. We will discuss only the second
cording to the well-formed plan. It is believed (without review process improvement in this paper.

3 Process Improvement

3.1 Overview



3.2 Review process improvement

As mentioned before, reviews include the document re-
view in the design activity and the code review in the
coding activity. Generally, it is difficult to derive con-
crete guideline or numerical target value for the document
review[5, 7]. On the other hands, it is relatively easy to
derive them for the code review. The situation is also true
for the SEPG's activities, as shown in the past analysis
result of the review's effect[16].

4 Objective of Our Study

4.1 Software metrics

Here, we explain software metricsy, p and x to be
measured in each project. Figure 4 shows a simplified
process model and a part of fundamental data set collected
at each phase of development.

From the design phase, the SEPG collects data of
six fundamental metrics: Eqesign, Ereview: Eeoding

Based on the analysis result of the past project data, the Ec.rcvicw fOr the efforts spent anfl’.c,icw, Fe.review fOr

SEPG has derived the following guidelin€si—G6 for
the review activities:

G1 At least the 15% of the total efforts for design and
coding activities should be assigned to reviews(the
document review and the coding review).

Reviewers must report the progress using the stan-
dard review form at regular intervals.

G3 In the design review, the documents should be dis-
tributed to all the experts in the company, and
then review results should be returned to develop-
ers via manager(This design review is called peer
review[13]).

G4 The coding review should be performed by two or

three persons, including one person who develops
the code.

G5 The review coverage rate for the code review should
be about 200 lines of code per hour.

G6 All of new codes and changed codes should be re-
viewed. (Concerning reuse of old codes, reviews are
not necessary required.)

Among them,G1 and G2 are general requirements for
reviews(including both the document review and the code
review),G g is specific for the design review, agy, G’
andG6 are only for the code review.

Before the review improvement began, the same activi-
ties as the guidelin&’2, Gg andG4 were required to be
performed in the review. However, since the guidelines
were not yet established, the review was not work effec-
tively in the practical developments. Actually the average
review effort was less than 10% of the total design efforts.
This value 10% is not sufficient from the experience in the
company.

Then, the SEPG started the improvement of review pro-
cess in 1995 according to these guidelines. Intuitively
speaking, recently these guidelines are truly followed in
the company and no serious failure reports reach to the
SEPG. However any formal or statistical discussions on
the efforts by the review process improvement are not yet
done. So, we try to analyze empirically its effectiveness
using actual 23 project data.

the number of detected faults. The metri€g.;;,, and
Eevicw represent the total efforts spent for all activities
in design phase and all review activities in design phase,
respectively. Similarly, the metrids.,4ing aNAE. ;evicw
represent the effort spent for coding and coding review,
respectively. Next the metriE,....;.., represents the total
number of faults detected by all review activities in design
phase, and the metri€. ,..,;.., represents the number of
faults detected by coding review activity.

From the debug & test phase, the SEPG collects data
of two fundamental metricst;.,; andFy..;. The metric
Eq.s: represents the total efforts spent for all activities in
the debug & test phase. Next, the meffic,, represents
the total number of faults detected in the debug & test
phase.

During six months after the code shipping, the SEPG
provides the monitoring phase and collects all data con-
cerning the failure detected by customers, as shown in
Figure4. We call these failures post-released failures,
and use the metrié¢’, oo 10 represent the number of
post-released failures.

Using these data collected from the projects, we define
three kinds of software metrieg p andy to analyze and
evaluate the software development process.

(1) Ratio of review effort{’s: %)

In order to evaluate the amount of efforts, we define
two metrics as follows:

Erem'ew
Vreview design — x 100
/ Edesign + E'review
Ec.review % 100

Ye.review/coding =

Ecoding + Ec.review

The metricy, cyicw/design €Valuates the ratio of al-

| review effort to design and coding efforts, and
Ye.review/coding €VAlUAtES the ratio of code review
effort to coding effort.

(2) Ratio of detected fault: %)

In order to evaluate the ratio of detected faults in a
specific phase to all the faults detected, we define
three metrics as follows:

Freview

review/total — x 100
P /total o

review T Ftest + Fmonitor



-P[ Design Phase HDebug & Test Phase HMonitoring Phase }P

- Efforts needed for
debug & test phase

- No. of faults detected
after shipping

- Efforts needed
for design phase
- Seriousness

- No. of faults detected - No. of faults detected

by review by debug & test of failures detected
Figure 4: Fundamental data set

other words, we investigate the direct changes in the
o software development process. In more detail, we
Pe.review total = creview %100 analyze the changes in the amounts of the effort for
Freview + Frest + Frnonitor review activity. As mentioned in subsection 3.2, the

guidelineG1 requires at least 15% of the total efforts
r on design and coding activities should be spent on

_ test . .
Ptest/total = x 100 review. Thus, we can expect that the effort of review
Freview + Ftest + Fnlonitor N e H H H
activity is increased in the projects guided by the

SEPG as the direct affect by the guidel@e. Based
on these considerations, we try to prove the following
assertiond 1 by statistical analysis:

The Metricp, cvicw/totar €Valuates the ratio of fault-

s detected in the review to all faults detected, and
Pe.review/totar €VAlUAtES the ratio of faults detected

in the code review to all faults detected. Finally,

Presttotal €VAlUate the ratio of faults detected in the

debug & test phase to all faults detected.

A1 The ratio of effort for review on the total efforts
for design and coding activities increases in the
projects guided by the SEPG.

(3) Seriousness of the failurg  level)

For each post-release failure, the maintenance op-
erator and the SEPG jointly decide the seriousness
x. The values of seriousnessis classified as fol-
lows: destructive confusingand mild. The level

x =destructivedenotes that the failure can lead to
the system down. Thus the failure must be removed
immediately. Then the level =confusingdenotes
that only a part of system may be down by the failure
and other part may keep working. Thus it should be
removed immediately if possible. Finally the level
x =mild denotes that the failure never affects the es-
sential part of system, and thus it may be negligible
for a while. Here we try to evaluate the effectiveness of review
process improvement quantitatively. Thus, we inves-
tigate the changes in the number of detected faults and
the changes in the quality of the final product. They
The objective of our study is to investigate the effective- are the indirect affect, but are the most essentially
ness of review process improvement conducted by the expected affect of the review process improvement.
SEPG. We try to apply statistical analysis to the data col-
lected in the actual projects to clarify the changes in the
review effort and the changes in the software quality. The
analysis consists of two step: investigating the review ef-
fort ratio (Step 1) and investigating the software quality

Intuitively speaking, the assertioh1 means that the
effort for review activity increases as the result of the
SEPG's guidance. We call a project that satisfies the
guidelineG1 (that is, the 15% of the total efforts on
design and coding activities is assigned to the review
activity) afaithful project group. In the evaluation
of process improvement we should discuss the prop-
erties of organization rather than that of individual
projects. Then intuitively speaking, we define a set
of faithful project as a faithful project group.

(2) Software quality (Step 2 of analysis)

4.2 Assertions

In Step 2 of analysis, we try to prove the following
assertionsA2 and A g by statistical analysis:

A2 The number of faults detected by the review

(Step2). increases in each project of the faithful project
group. Similarly, the number of faults detected

(1) Review efforts (Step 1 of analysis) in the debug and test phase decreases.
Here we try to confirm that the review improvement Ag Astheresult of the review process improvemen-

activities are accepted in the development team. In t, the quality of the final code is also improved.



Table 1: Comparison of ratio of faithful projects

Vending System

Checking System

Retail System

(1992-1994)

(1992-1994)

(1995-1996)

(1995-1996)

No. of projects 5 7 5 6

No. of faithful

projects 0 2 2 6

Table 2: Comparison of ratio of review effort
Vending System | Checking System Retail System
(1992-1994) (1992-1996) (1995-1996)

yreview/design 8.9% 11.8% 20.6%

Y c.review/coding 6.6% 10.5% 21.6%

Intuitively speaking, the assertiofiz means that by cess improvement. (Please note that the review process
increasing the ratio of review effort to the total efforts  improvement activities started in 1995, and thus Vend-
on design and coding activities, we can change the ing System is out of scope.) Next, Tables 2 and 3 show
software process essentially. Thatis, we canincrease the mean values of software metrigs. ,icw/design and

the number of faults detected in the review, and at 7. ,cvicw/coding (the ratio of code review effort to coding
the same time we can reduce the number of faults effort) for three project groups.

detected in the debug and test activities. From Tables 1 and 2, the project group Retail System
seems to succeed to follow the guideliGa faithfully.
quality of the final product will be partly attained by ~ However, the project group Checking System seems to
the review process improvement. In the analysis in fail to follow the guidelineG1. Thus, we execute the test
Section 5, we apply data on the post-release failure of statistical hypothesis with 5% level of significance to

that are collected during six months after shipping, Yreview/design's Of Retail System and Checking System.
to evaluate the quality of the final product. As the result, we can prove that there exists a significant

difference between them. Similarly, for ,.cvicw/coding:
we can also prove that there exists a significant difference
between that of Retail System and Checking System.

We discuss the characteristics of organizations to show
the reason why there exists a big difference between Retail
System and Checking System. The project group Check-
At first, concerning the assertiof1, we try to investigate ing System started in 1992 and the members of the organi-
how the review improvement activities by the SEPG are zation for Checking System had already established their
accepted by the organizations. Here in order to evaluate own ways for software development when the SEPG start-
the process improvement activities, we consider project ed the review process improvement. Thus it is generally
group rather than an individual project. As explained hard for them to change the process instantly according
already in subsection 2.1, there exist three project groups: to the guidelines specified by the SEPG group. On the
Vending System, Checking System and Retail System.  contrary, the project group Retail System started after the

As mentioned already in subsection 3.2, the guideline SEPG had determined the guidelines. Thus the members
G1 recommends that,.c,icwdesign(the ratio of review of the organization for Retail System tend to accept the
effort to effort in design phase) should be greater than guideline beyond all question.

15%. According to this guideline, we define a project with Next, from Table3 we can see the mean values of
Yreview/design > 15% t0 be daithful project. Then Ta- Vreview/design ANMVe review/coding IN 1995-1996 become
ble 1 shows the number of faithful projects in each project greater than thatin 1992—-1994. Thus, the review improve-
group. In Table 1, in order to investigate Checking System ment seems to be accepted by the organization little by
(1992-1996) in detail, we divide it into Checking System little. However, from the test of statistical hypothesis with
(1992-1994) and Checking System (1995-1996) based 5% level of significance, we cannot see a significant d-
on the year 1995 when the SEPG started the review pro- ifference fory,.,icw/design @N0Ye.review/coding DEIWEEN

The assertiomd 3 means that even the improving the

5 Effectiveness Analysis

5.1 Ratio of review efforty



Table 3: Comparison of review effort in Checking System

Table 4: Comparison of ratio of detected fayits

Checking System
(1992-1994)

Checking System
(1995-1996)

Y review! design

Yc.review coding

11.0%
9.6%

12.9%
11.8%

Faithful Unfaithful
project group project group
Previewttotal 78.4% 38.8%
Pe.review/total 21.7% 12.7%
Pestltoral 21.1% 60.7%

1992-1994 and 1995-1996.

As already mentioned, we should discuss the properties
of organizations rather than that of individual projects.
Thus for convenience we define a set of faithful projects
as a faithful project group. According to this definition,
we refer

Retail System (1995-1996): faithful project group
Checking System (1992-1996): unfaithful project group

in the following. Clearly by this definition, Checking
System includes four faithful projects. But, itis also clear
the organization that developed Checking System failed
to follow the guidelineG1. Thus we interpret that the
organization happened to have the result> 15% for
four projects in Checking System, and take a view point
that Checking System is an unfaithful project group. For
convenience, we also refer

Vending System (1992-1994): unfaithful project group

since this project group contains only unfaithful projects.

5.2 Ratio of detected faultsp

Now we investigate the effect of review process improve-
ment concerning the assertiohz. Table4 shows the
mean values of software Metrigs.,c. /1ot (the ratio

of faults detected in review phase to all the faults de-
tected) . revicw /total (the ratio of faults detected in code
review to all the faults detected) apgl..; /;.¢a: (the ratio

of faults detected in debug & test phase to all the faults
detected). In Table 4, we classify the projects into faith-
ful project group (that is, Retail System) and unfaithful
project (Vending System and Checking System).

By the test of statistical hypothesis with 5% level of sig-
niﬁcance! all of the Value?review/total! pc.review/total
and p.s: /10t CONfirmed the significant difference be-
tween faithful project group and unfaithful project group.
Thus, we can say the correctness of the assedieris
proved by statistical analysis.

5.3 Post-release failure

As mentioned before, for each post-release failure the

the values of these metrics are confidential, we cannot
publish the values themselves in this paper. Thus Table 5
shows only the relative values by assuming all the values
for unfaithful project group to be one, and the symbol
denotes its representation.

Since the original value of these metrics are so small,
we cannot apply the statistical analysis. But from Table
5 we can observe some interesting properties. The total
number of post-release failuréy,,,::../# of projects) of
faithful project group is smaller than that of unfaithful
project group. Especially, the number of the failures with
x =destructivas smaller drastically. Thus we can guess
the correctness of the assertidr.

Table 5: Comparison of post-release failures

Faithful Unfaithful
project group | project group
Fmom»mr/ # of projects 0.55% 1*
destructive 0.44% 1%
X confusing 0.50* 1%
mild 0* 1*

6 Conclusion

We have analyzed the effectiveness of the review process
improvement activities by the SEPG during these six years
in a certain company. According to the guidelines deter-
mined by the SEPG, we have investigated the ratibthe
review effort to the total effort for design and coding ac-
tivities. As a result we found that a newly started project
group followed the guidelines faithfully. Similarly, we
have investigated the ratjp of faults detected in review

to the total number of detected faults. The result showed

SEPG or the maintenance operator decide the seriousnesshat the ratiq is improved drastically in a faithful project

x and assign its value to the failure. Table5 summarizes
the total number of post-release failures and the distribu-
tions of x's assigned to post-release failures. However,

group. Finally, we have confirmed the number of post-
release failure during six months after code release is also
decreased by the SEPG’s process improvement activities.



References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

L.C. Briand, K.E. Emam, B. Freimut and O.
Laitenberger: “Quantitative evaluation of capture-
recapture models to control software inspections,”
Proc. 8th International Symposium on Software
Reliability Engineering, pp.234-244, 1997.

L.C. Briand, K.E. Emam, O. Laitenberger and T.
Fussbroich: “Using simulation to build inspection
efficiency benchmarks for development projects,”
Proc. 20th International Conference on Software
Engineering(ICSE’98), pp.340-349, 1998.

F.P. Brooks Jr.: “The Mythical Man-Month,” Ad-
dison Wesley, 1975.

A. Cimitile and G. Visaggio : “A formalism for

structured planning of a software project,” Interna-
tional Journal of Software Engineering and Knowl-
edge Engineering, Vol.4, No.2, pp.277-300, 1994.

R.G. Ebenau and S.H. Strauss: “Software inspec-
tion process,” McGraw-Hill, 1993.

N.E. Fenton and S.L. Pfleeger: “Software Metrics
. A Rigorous & Practical Approach,” PWS Pub-
lishing, 1997.

W.S. Humphrey: “Managing the Software Pro-
cess,” Addison Wesley, Reading, MA, 1989.

W.S. Humphrey, T. Snyder and R. Willis: “Soft-
ware process improvement at Hughes Aircraft,”
IEEE Software, Vol.8, No.4, pp.11-23, 1991.

S. Kusumoto: “Quantitative evaluation of software
reviews and testing process,” PhD. Dissertation,
Osaka University, 1993.

S. Kusumoto, O. Mizuno, Y. Hirayama, T. Kikuno,
Y. Takagi and K. Sakamoto: “A new project sim-
ulator based on generalized stochastic Petri-Net,”
Proc. 19th International Conference on Software
Engineering(ICSE’97), pp.293-303, 1997.

O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi and
K. Sakamoto: “Analyzing effects of cost estima-
tion accuracy on quality and productivity,” Proc.
20th International Conference on Software Engi-
neering(ICSE’98), pp.410-419, 1998.

K.H. Moller and D.J. Paulish: “Software Metrics
. A Practitioner’s Guide to Improved Product De-
velopment,” IEEE Press (Chapman & Hall Com-
puting), 1993.

M.C. Paulk, C.V. Weber, S.M. Garcia, M.B. Chris-
sis and M. Bush: “Key practice of the capabili-
ty maturity model, version 1.1,” Technical Report
CMU/SEI-93-TR-25, Software Engineering Insti-
tute, 1993.

[14]

[15]

[16]

[17]

[18]

A.A. Porter, H.P. Siy, C.A. Toman and L.G. Votta:
“An experiment to assess the cost-benefits of code
inspections in large scale software development,”
IEEE Transactions on Software Engineering, Vol.
23, No. 6, pp.329-346, 1997

R.M. Podorozhny and L.J. Osterweil: “The crit-
icality of modeling formalisms in software de-
sigh method comparison,” Proc. 19th Internation-
al Conference on Software Engineering(ICSE’97),
pp.303-313, 1997.

Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto, S.
Kusumoto and T. Kikuno: “Analysis of review’s
effectiveness based on software metrics,” Proc. 6th
International Symposium on Software Reliability
Engineering(ISSRE’95), pp.34-39, 1995.

T. Tanaka, K. Sakamoto, S. Kusumoto and T.
Kikuno: “Improvement of software process by pro-
cess visualization and benefit estimation,” Proc.
17th International Conference on Software Engi-
neering(ICSE’95), pp.123-132, 1995.

E. Yourdon: “Death March : The Complete Soft-
ware Developer’s Guide to Surviving ‘Mission Im-
possible’ Projects,” Prentice Hall Computer Books,
1997.



