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Abstract: Combinatorial testing is a widely-used testing technique to detect system failures caused by parameter in-
teractions. This paper introduces our ongoing work to develop a systematic intelligent testing framework, which aims
at improving and evaluating combinatorial testing by mining and analyzing software repository data.
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1. Introduction
Combinatorial testing is a well-known black-box testing tech-

nique [18]. The process of combinatorial testing consists of (1)
modeling of the system under test (SUT), (2) constructing a com-
binatorial test suite from given the SUT, and (3) executing the
test suite and analyzing the result. Although a lot of approaches
have been proposed so far especially for test generation, there are
still important problems remained for constructing a systematic
and intelligent testing framework, which includes automatic SUT
modeling, generation of test suites with higher quality, and thor-
ough test analysis for real software systems.

Our goal is developing a fully automated testing framework
illustrated in Fig. 1, which addresses the problems mentioned
above, by mining and analyzing data in the software repository
such as programs, tests, and bug reports. In this paper, we intro-
duce our ongoing work on test modeling, design, and analysis in
Sections 2, 3, and 4, respectively.

2. Combinatorial Test Modeling
The System Under Test (SUT) for combinatorial testing (CT) is

generally modeled from parameters, their associated values from
finite sets, and constraints between parameter-values. For exam-
ple, the SUT model in Tab. 1 has three parameters; the first two
parameters have two possible values and the other has three pos-
sibilities. Constraints among parameter-values exist in the SUT
model when some parameter-value combinations cannot occur.
The example SUT has a constraint such that (Mac, IE) is not
allowed. Prioritized combinatorial testing (e. g., [2], [7], [9]),
which aims at increasing the quality of combinatorial testing,
takes SUT models with priority weights assigned to parameter-
values. In the example SUT, the weight for Win is higher than
that for Mac. Such a weight represents a relative importance in
testing, e. g., occurrence probability, error probability, or risk.
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Fig. 1 Our testing framework.

Table 1 An SUT model.
Parameter Value; Weight
OS Win;2, Mac;1
Net Wifi;1, LAN;1
Browser IE;1, Firefox;1, Chrome;4
Constraint
OS=Mac→ Browser,IE

Table 2 A pairwise test suite.

test O N B
1 W W C
2 W L C
3 W W I
4 W L F
5 M W F
6 M L I

To design combinatorial testing, we first need to construct the
SUT model. However, in most cases, SUT modeling is manually
performed and thus is burdensome for modern complicated sys-
tems. To support systematic modeling of SUTs, previous work
[14], [15] proposed tree-structured modeling tools. There is an-
other work [17], which presents an automatic elicitation of poten-
tial SUT constraints from documents.

Towards automatic SUT modeling, we are developing an auto-
matic extraction of SUT priority weights from bug detection his-
tory [12] and code coverage of programs. Automatic extraction
of SUT parameters, values, and constraints from previous test in-
formation and programs in software repository is included in our
further work.

3. Combinatorial Test Design
A combinatorial t-way test suite (e. g., pairwise, when t = 2)

for an SUT model is a test sequence to cover all possible t-way
combinations of parameter-values that satisfies the constraint in



the SUT model at least once. Table 2 shows an example pairwise
test suite for the SUT model in Table 1; it covers all possible 15
value pairs between two parameters.

Many algorithms and tools to efficiently construct small com-
binatorial test suites have been proposed so far [13]. Approaches
to generate t-way test suites for SUT models with constraints in-
clude greedy algorithms (e. g., PICT [7] and ACTS [1]), heuristic
search (e. g., CASA [10] and TCA [16]), BDD-based (e. g., Fo-
Cus [20]), and SAT-based approaches (e. g., Calot [21]). For pri-
oritized t-way testing, several algorithms have been proposed,
which generate a test suite where highly weighted parameter-
values appear earlier [2], [15] or more frequently [9], [20].

To improve the quality of t-way testing under the limited test-
ing resource, we are developing prioritized t-way generation al-
gorithms. In [5], we proposed a priority-integrated combinato-
rial testing (called pricot), which generates small-sized test suites
providing high-priority test cases early and frequently in a good
balance. In [3], we presented a distance-integrated combina-
torial testing (called dicot), which generates t-way test suites
that achieve higher interaction coverage for higher interaction
strengths t with low computational overhead by increasing not
only the number of new combinations but also the distance (e. g.,
Hamming distance or a modified chi-square distance) between
test cases.

4. Combinatorial Test Analysis
Fault detection abilities of t-way testing have been reported

by several empirical studies so far [11], [22]. The results have
shown that t-way testing with relatively small t (≤ 6) can detect
most failures while reducing the number of test cases significantly
compared to exhaustive (i. e., all combination) testing.

In [6], we further investigated the effectiveness of t-way test-
ing on code coverage, which is one of the most important cov-
erage criteria widely used for software testing. Our results using
a collection of open source utility programs from the Software-
artifact Infrastructure Repository (SIR) [8] showed that t-way
testing with small t (1 ≤ t ≤ 4) efficiently covers more than 95%
of code coverage achieved by exhaustive testing.

In [4], we investigated the fault detection effectiveness of pri-
oritized combinatorial testing on the collection of open source
utilities. Prioritized combinatorial test generation algorithms are
classified into order-focused ([2], [15]) and frequency-focused
([7], [9]) approaches and their integration which we proposed
in [5]. The algorithms have been evaluated using metrics called
weight coverage and KL divergence but not sufficiently with the
fault detection effectiveness. We presented a case study that eval-
uates the fault detection effectiveness with weight coverage and
KL divergence and analyzes the correlation between them.

In addition, we are developing a method to locate faulty in-
teractions from combinatorial test suites and testing results using
machine learning [19].

5. Conclusion
Towards the quality improvement and evaluation of combina-

torial testing, we are developing a testing framework aiming at
fully automated combinatorial testing and analysis. In this paper,

we introduced our work for this purpose. For SUT modeling, we
are developing an automatic priority extraction. For test design,
we are developing prioritized test generation algorithms that pro-
vide higher quality. For test analysis, we are evaluating multiple
metrics for (prioritized) combinatorial testing. We are also devel-
oping a bug localization from the combinatorial tests and results.
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