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SUMMARY

In this paper, we consider a simple development process
consisting of design and debug phases, which is derived from ac-
tual concurrent development process for embedded software at
a certain company. Then we propose two-phase project control
that examines the initial development plan at the end of design
phase, updates it to the current status of the development process
and executes the debug phase under the new plan.

In order to show the usefulness, we de�ne three imaginary
projects based on actually executed projects in a certain com-
pany: the project that executes debug phase under initial plan,
the project that applies the proposed approach, and the project
that follows a uniform plan.

Moreover, to execute these projects, we use the project sim-
ulator, which has already been developed based on GSPN model.
Judging from the number of residual faults in all products, we
found that projectB is the best among them.
key words: software development, project management, software

fault, Petri-net model, software test and debug

1. Introduction

Generally, the actual software development process is
a concurrent process in the sense that many activities
are executed in parallel by team members[1][2]. For ex-
ample, the module design activities for subsystems are
concurrently executed, and the coding and the coding
review are concurrently executed. The former is for the
e�ciency, but the latter may be for the delay in the
schedule.

Therefore, it is not easy to manage the progress
of development for such a concurrent process[7]. Espe-
cially, using the development plan initially constructed
based on insu�cient data on the target project, it is
very di�cult to control the process of development.
Furthermore, it is also di�cult to estimate the develop-
ment cost. Many failed examples are shown in so-called
death march projects[14].

Especially, for the test phase, the following prob-
lems or di�culties are pointed out with respect to con-
trolling the progress of test phase[6][11].

{ to determine the amount of e�orts for the test
phase

{ to estimate the quality of delivered code

yThe authors are with the Graduate School of Engineer-
ing Science, Osaka University.

yyThe authors are with the OMRON Corporation.

These problems are tightly coupled with each other. If
the e�orts are too small, the quality will become very
poor. Even if the e�orts are too large, the quality may
not be improved so much.

Based on these observations, we propose a new
method for controlling the progress of software devel-
opment. The key idea is to update or modify the ini-
tial plan at an intermediate stage of the development,
and to apply the updated plan to the succeeding stage.
Then we propose to control the progress of design and
coding phases using the initial plan, and then control
the progress of test and debug phases using the updated
plan. We call this method two-phase project control.

The updating of the plan should re
ect the results
of development using the initial plan. For instance, the
number of faults introduced into the product and the
number of residual faults in design and coding phases
are the data to be considered.

In this paper, we con�rm the usefulness of the
two-phase project control using the project simulator
developed based on the Generalized Stochastic Petri-
net(GSPN) model[10]. Additionally, in the evaluation
we apply the real data, collected from the actual soft-
ware development projects in a certain company, to the
simulator.

This paper is organized as follows: Section 2 shows
the actual software development process in the cer-
tain company, and then proposes a simple process
model. Section 3 proposes the two-phase project con-
trol method, and Section 4 explains only the outline of
the project simulator. Section 5 shows the case study
and the simulation results. Finally, Section 6 summa-
rizes the main results and the future research work.

2. Software Process Model

2.1 Actual Software Process

An example of the actual software process is shown
in Fig. 1. This process is currently used for a cer-
tain company, which develops the computer control
systems with embedded software. The main products
include ATMs(Automated Teller Machine), POS(Point
Of Sales) terminals and ticket vending machines.

The following concurrent executions are observed
for this actual process in Fig. 1.
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Fig. 1 Actual development process

� Several activities are executed concurrently for cer-
tain functions.

For example, module designs with A13, A14, A15

and A16 are included in Fig. 1. This implies that
the target system consists of four subsystems and
that module designs are executed by four groups
in the team.

� Certain activity is unwillingly executed with pre-
vious activity concurrently.

This concurrency is not explicitly shown in Fig. 1,
but it is recognized by the interviews with project
manager in the certain company. Additionally, the
analysis of e�ects of this concurrency on the qual-
ity and productivity has already been reported[8].

However, this actual development process is too
complicated for further discussions in this paper. Then,
we propose a simple process model, shown in Fig. 2, in
which the fundamental 
ow structure in Fig. 1 is re-
mained. By this simpli�cation, for example four mod-
ule design activities A13, A14, A15 and A16 in Fig. 1 are
merged into one module design(MD) in Fig. 2. (But,
the simple process in Fig. 2 is used to de�ne the pro-
posed methods clearly. The actual simulation in Sect. 5
is performed using the actual process in Fig. 1.)

Additionally, we divide logically the whole process
into two phases from the viewpoint of faults: design
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Fig. 2 Simple development process

phase and debug phase. The reason is that the activ-
ities in the design phase are essentially for increasing
the size of the product and thus introducing faults, but
the activities in the debug phase are for detecting and
removing faults from the product(thus decreasing the
size of the product).

2.2 Simple Software Process Model

Then, we assume that software development process
consists of two successive phases: design and debug
phases. Design phase includes ten activities (Concept
Design (CD), Concept Design Review (CDR), Function
Design (FD), Function Design Review (FDR) Structure
Design (SD), Structure Design Review (SDR), Module
Design (MD), Module Design Review (MDR), Coding
(PG) and Code Review (PGR)). Debug phase includes
eight activities (Unit Test (UT), Unit Debug (UDB),
Integration Test (IT), Integration Debug (IDB), Func-
tion Test (FT), Function Debug (FDB), Veri�cation
Test (VT) and Veri�cation Debug (VDB)).

As shown in Fig. 2, we introduce several parame-
ters to make the discussions clear. Let ei be the number
of faults introduced into the product developed in de-
sign/coding activity i. Let dj be the number of detected
and removed faults in reviews/debug activity j. Let
ddesign be the total of dCDR, dFDR, dSDR, dMDR and
dPGR. Let rdesign be the number of residual faults in
design phase and is calculated by �ei�ddesign. Also, let
ddebug be the total of dUDB, dIDB, dFDB , and dVDB.
Let rdebug be the number of residual faults in debug
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phase and is calculated by rdesign � ddebug .
Strictly speaking, acceptance test and debug are

executed after VDB. Since these are not activities of
development team, we omit them from Fig. 1 and Fig. 2.
Let rlast be the number of residual faults in the accep-
tance test and debug. Thus we can consider that rlast is
the number of residual faults in the last product(usually
program codes).

However, as a matter of fact, we cannot collect all
values of the above parameters. Thus, in this paper,
we aim to estimate the value of ddesign, rdesign, ddebug ,
rdebug and rlast. In Sect. 5, we evaluate the usefulness
of the proposed project control method by comparing
the estimated values of ddesign, rdesign, ddebug , rdebug
and rlast with the actual ones.

2.3 Project Plan

The initial project plan consists of the assignments of
both developers and the time to each activity. The as-
signments are determined, at the beginning of project,
based on the documents such as WBS(Work Break-
down Structure) charts, Organization charts of project,
PERT charts and a list of software products to be de-
veloped. Simultaneously, the initial plan also re
ects
experience and knowledge of the project manager.

First, we perform an estimation using the initial
plan. However, some di�erence usually occurs between
the initial plan and the actual progress of the project.
If the developers follow the initial plan regardless of the
existence of the di�erence, then the fatal confusion may
be caused. On the contrary, if we can take the progress
into consideration and reconstruct a new plan, then we
might get more accurate estimation. In Section 3, we
will propose such a new project control method.

3. Project Control Methods

In this Section, we explain about proposed project con-
trol methods and project plan. The detail of project
plan will be explained in subsection 4.3.

3.1 Single-Phase Control

In single-phase control of software development process,
we construct the initial project plan p at the beginning
of project, and execute whole project under the initial
project plan p(See Fig. 3).

In the following, pdesign and pdebug denote the
project plan of design and debug phases, respectively.
Then we often use p = (pdesign; pdebug) to denote a
whole plan of project.

Let the pinitdesign and pinitdebug denote the initial plans
of design and debug phases, respectively. We assume
that both pinitdesign and pinitdebug are constructed at the be-
ginning of the project. Then, the project plan of the
single-phase controlled project is described as follows:

Design under
   the initial plan p init

design

Debug under
   the initial plan p init

debug

Design Phase Debug Phase

Fig. 3 Single-phase control

Design under
   the initial plan p init

design

Debug under
 the updated plan p upd

debug

Design Phase Debug Phase

Fig. 4 Two-phase control

p = (pinitdesign; p
init
debug)

3.2 Two-Phase Control

Next, in two-phase control of software development
process, we construct two versions of project plans
p = (pinitdesign; p

init
debug) and p0 = (pinitdesign; p

upd
debug). At

the beginning of project, we construct the project plan
p = (pinitdesign; p

init
debug) and execute the design phase under

pinitdesign. Then we stop the execution of the project at
the end of design phase, and update the plan of debug
phase pinitdebug into a new plan pupddebug taking the develop-
ment situation into account. After that we continue the
project under the updated new project plan pupddebug(See

Fig. 4).
For simplicity, we represent the project plan of the

two-phase controlled project as follows:

p = (pinitdesign; p
upd

debug)

As already mentioned, in the project plan p for
two-phase control, pinitdesign is the initial project plan for

design phase and pupddebug is the updated plan of debug
phase, which is constructed at the end of design phase.

4. Simulator based on GSPN Model[8]

4.1 Outline of the GSPN Model

The proposed model for project simulator consists of
Project model and Process model. Figure 5 shows the
outline of the proposed model.

Project model includes three key components: ac-
tivities, products and developers. Some attributes are
attached to each of them, to be shown in Table 1.

Process model includes a set of Activity models
which include speci�cations of design, coding, review,
test, debug activities, and so on. Activity model is de-
scribed by an extended GSPN, to be shown in Fig. 6.
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Fig. 5 Outline of the proposed model

4.2 Workload

In [10], we de�ne the term \workload" of an activity as
the total time needed for a developer who has the stan-
dard capability to complete the activity. Additionally,
an e�ciency of the activity under such a condition is
quanti�ed as 1. The value of e�ciency depends on the
environment, such as the number of the developers, the
necessity of communication and performance of CASE
tools. Then, the development time is calculated as the
result of dividing the workload by the e�ciency of the
activity.

If we get the workload of an activity, then we can
estimate the development time appropriate for speci�c
several activity conditions dependent on a given envi-
ronment.

In the proposed model, the workload is assigned
to each activity depending on the input products for
the activity. That is, for example, workload of design
activity (Wdesign) is de�ned as the following formula:

Wdesign = sdesign �Kdesign:

Here, sdesign denotes the size of input product of de-
sign activity and Kdesign denotes the workload param-
eter for design activity. Before simulation, workload
parameter must be given to each activity of the target
project.

Consuming of the workload assigned to an activ-
ity corresponds to the progress of the activity in the
development. Growth of product can be modeled by
changing values of the size or the number of faults in
the output product.

Table 1 Project template

Attributes of activity Ai

type

entry condition

exit condition

input products

output products

workforce

deadline

workload

Attributes of product Pi
size

number of faults

completion rate

Attribute of developer Mi

experience level

4.3 Project Model and Project Plan

Project model focuses on three key components: ac-
tivities, products and developers, and attaches several
attributes to each of them (See Table 1). The project
template with values assigned for each attribute is gen-
erally called the project plan.

An activity has eight kinds of attributes, which
are type, entry/exit conditions, input/output products,
workforce, deadline and workload.

(1) Type shows which the activity corresponds to
and describes currently one of design, coding, review,
test and debug.

(2) Entry condition and (3) exit condition specify
conditions for beginning and ending the activity, re-
spectively.

(4) Input products describes the products given to
the activity as the input products and the workload pa-
rameter, that is the degree of contribution of each input
products to determine workload of the activity.

(5) Output products describes the output products
that are developed in the activity and the weight as-
signed to each product. The variation of the product
size and that of the number of faults are distributed to
the products according to weights. Thus, the sum of
each weight must be one.

(6) Workforce speci�es tuples of the developers
who engage in the activity and the ratio of time in which
each developer can engage in the activity to his or her
business hours.

(7) Deadline represents the appointed date for the
completion of the activity, which is �xed on the devel-
opment plan.

(8) Workload represents a tuple of the workload
assigned to the activity and consumed amount of it.

Next, a product has three kinds of attributes(See
Table 1), which are size, the number of faults and com-
pletion rate. (1) Size represents the product size in doc-
ument pages or the lines of source code. (2) Number of
faults counts faults in the product. (3) Completion rate
represents the ratio of the consumed workload to the
assigned workload.

Then, a developer has an attribute experience
level(See Table 1) which is determined according to
his/her length of service. We classify developers' ex-
perience levels into the following three levels: novice,
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Fig. 6 Activity model

standard and expert levels. They are quanti�ed as dis-
crete values 1, 2 and 3, respectively.

4.4 Activity Model for Process

Activity model is prepared for each type of activities
such as design, coding, review, test, debug and so on.
The descriptions of Activity models are given using
an extended GSPN. Figure 6(a) shows an example of
the description of the design activity. In the extended
GSPN, a token has three attributes: product size s,
number of faults f and consumed workload w, as shown
in Fig. 6(b). These attributes are used to represent the
current status of development that varies over the exe-
cution of each Activity model.

Transitions used here are timed transitions. The
�ring delay of each transition is exponentially dis-
tributed and the average �ring delay of a transition is
speci�ed by a �ring rate assigned to it. In Fig. 6(a), the
�ring rate rcm of transition t1 means that the average
�ring delay of transition t1 is 1=rcm.

In addition, each transition has a function (called
execution function) to be evaluated on its �ring, as
shown in Fig. 6(c). The execution of the function up-
dates the attribute values of the token. Intuitively
speaking, each transition corresponds to the developers'
behavior such as thinking, writing and communicating
or an event which occurs during execution of activity.
Places correspond to waiting states for occurrences of
behaviors or events.

[Example] Consider transitions t1 and t2 in the design
Activity model depicted in Fig. 6. These two transi-
tions represent communicating and thinking behavior,
respectively, and are enabled to �re when a token ex-
ists in the place P1. If the communicating transition t1
�res, it has no e�ect on the attributes values, and the
token returns to the place P1 and only time elapses by
the �ring delay. On the other hand, if the transition
t2 �res by evaluating its execution function, then con-
sumed workload w is increased by one, and the token

moves to the place P2. When the token exists in the
place P2, only the transition t3 which represents writ-
ing behavior is enabled. If the transition t3 �res, then
product size s is increased by one, and the number of
faults f could be increased according to the fault injec-
tion rate pin(to be explained later). After the �ring of
t3, the token moves back to the place P1.

The �ring rates of the transitions are formulated
by the following ten functions fcm, fth, fwr , fpr, frd,
fdt, fmd, fps, flc and fin. These functions should be
concretely speci�ed based on the property of the target
project.

In the following, M is the number of the develop-
ers engage in the activity, L is developer's experience
level, �L is the sum of each developer's experience, S
is the total size of the input products, R is the com-
pletion rate of the input products, F is the number of
faults of the input products, D is the number of the
days from the current date to the deadline of the ac-
tivity. Activity model parameters (e.g., Kcm;Kth;Kwr

and Kin) are given to each activity and concerned with
the developers' behavior. For example, Kcm;Kth;Kwr

and Kin correspond to communicating, thinking, writ-
ing and fault injection, respectively.

(1) Communicating rate: rcm = fcm(Kcm;M;�L;R)

(2) Thinking rate: rth = fth(Kth;M;�L)

(3) Writing rate: rwr = fwr(Kwr;M;�L)

(4) Preparing rate: rpr = fpr(Kpr;M;�L; S)

(5) Reading rate: rrd = frd(Krd;M;�L)

(6) Fault detecting rate: rdt = fdt(Kdt;M;�L; S; F )

(7) Fault modifying rate: rmd = fmd(Kmd;M;�L)

(8) Test-case passing rate: rps = fps(Kps;M )

(9) Fault localizing rate: rlc = flc(Klc;M;�L; S; F )

These make it possible to dynamically determine
the frequency of communications or the di�culty in
thinking and writing according to the number of de-
velopers, experience levels of developers and/or com-
pletion rates of input products.

Moreover, the increase of product size s at every
�ring of writing transition t3 and the consumption of
workload at every �ring of thinking transition t2 are de-
scribed by the corresponding execution functions. At
each �ring of the transition, the values of token's at-
tributes can be changed by evaluating its execution
function.

Activity model handles fault injections in the de-
sign activity as the stochastic events whose occurrences
depend on the fault injection rate pin. In general, pin
is formulated by the following function:
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(10) Fault injection rate: pin = fin(Kin;M;�L;D;R)

By using this function, it is possible to take ac-
count of dynamic in
uence on the fault injection rate
caused by the stress from deadline of the activity or
developers' experience levels.

Though the functions (1){(3) are used in Fig. 6,
the rests (4){(9) are not included in Fig. 6. Figure 6
shows an example of design and coding activities and
thus the improvement of model should be conducted
through case studies. Besides we also modeled other
activities(review, test and debug), in which the func-
tions (4){(9) are used. The detail of activity models is
shown in [9].

4.5 Simulator

We have designed and implemented a simulator which
supports description of the target process, executes the
process described by Activity model and analyses the
simulation results statistically.

The main simulation results include ddesign,
rdesign, ddebug and rdebug . As already explained, ac-
ceptance test and debug are executed just after veri�-
cation debug in Fig. 2. From the simulation for these
activities, we also get rlast.

The system consists of �ve functional units:
project control unit, activity simulator, user interface
unit, display unit and editor.

Simulations proceed at the intervals of unit timey.
At �rst, project control unit determines activities to be
executed, based on the current status of the progress
and entry/exit conditions of each activities. Next, for
each executable activity, project control unit delivers
the parameters to activity simulator and directs it to
execute activities for a day. Then, activity simulator
executes all of the activities, which are directed to ex-
ecute by project control unit, using given parameters
and extended GSPN. The execution of an activity is
expressed by the consumption of its workload. When
an activity consumes all of assigned workload, the ac-
tivity is regarded to be completed.

The execution of simulation is able to be suspended
or restarted at any time. Moreover, at every unit time
of simulation, intermediate simulation results can be
stored in the simulation database. The intermediate
simulation results are stored in the same format of the
original project description. Thus, it is possible to
restart the simulation using the intermediate simula-
tion results as the input. Also it is possible to change
the values of parameters(attributes of project) at any
time of the simulation. For example, we can modify the
number of developers at any time of the simulation and
simulate it immediately.

yCurrently, one unit time is a day (8 hours).

Table 2 Target projects

Type of Project Project Plan

Project 0 Actual p1 = (Pactual
design

; Pactual
debug

)

Project 1 Imaginary p0 = (P init
design

; P init
debug

)

Project 2 Imaginary p2 = (Pactual
design

; P init
debug

)

Project 3 Imaginary p1 = (Pactual
design

; Pactual
debug

)

Project 4 Imaginary p3 = (Pactual
design

; P
uniform

debug
)

5. Case Study

In order to evaluate the usefulness of the proposed
project control method, we apply the simulator to
similar software development projects, which are con-
structed based on the actual project data in an organi-
zation. In the following, we call all of software develop-
ment projects thus constructed as imaginary software
development projects.

5.1 Characteristics of Target Project

The main characteristics of the project are summarized
as follows[13]:

(1)Development e�ort of the project was 62 (man-
days).

(2)The size of the system of the project was about 6.9
(Ksteps).

(3)The project uses a standard waterfall model.

5.2 Experimental Projects

Now, we consider �ve development projects: Project 0,
Project 1, Project 2, Project 3 and Project 4, based on
the development data of actual project. Table 2 sum-
marizes the characteristic attributes of these projects.
Project 1 and Project 2 correspond to the project that
executes debug phase under initial plan. Clearly,
Project 3 is the project that applies the proposed ap-
proach and Project 4 is the project that follows a uni-
form plan. The details will be explained in subsections
5.2.1, 5.2.2 and 5.2.3.

Project 0 is the only actual project and the rests
Project 1 through Project 4 are imaginary projects. All
imaginary projects are executed by the project simula-
tor mentioned in Sect. 4. Since we evaluate all imag-
inary projects by comparing with Project 0(for which
we have data collected from actual project in the com-
pany), we assume that the design phase of any imag-
inary projects(except for Project 1) is executed under
the actual plan P actual

design. From this assumption, we can
get the simulation results with high accuracy for the
debug phase, and can compare in detail the resultant
data among �ve development projects.



MIZUNO et al: EXPERIMENTAL EVALUATION OF TWO-PHASE PROJECT CONTROL FOR SOFTWARE DEVELOPMENT PROCESS

7

5.2.1 Actual development

This is the actual development executed in a certain
company.

Let P init
design and P init

debug denote initial project plans
for the design and debug phases, respectively, which
were actually constructed at the beginning of the
project in the company. On the other hand, let Pactual

design

and P actual
debug denote speci�c project plans for the design

and debug phases, which we constructed based on the
records and the data collected at the completed target
project.

In summary, the project was originally planned to
be executed under the following initial plan p0:

p0 = (P init
design; P

init
debug)

From the actual resultant data of the project, we can
interpret that the project was executed under the fol-
lowing project plan p1:

p1 = (P actual
design ; P

actual
debug )

Therefore, we call this actual project (which was exe-
cuted by the developers under the project plan p1) as
Project 0.

5.2.2 Imaginary projects(single-phase control)

Here, we de�ne two imaginary development projects
which are executed under single-phase controlled plan.

At �rst, we de�ne an imaginary project, Project 1.
In Project 1, design phase and debug phase are executed
under the initial plan P init

design and P init
debug, respectively.

That is, the whole project is executed by project simu-
lator under the initial plan p0.

Next, we consider an imaginary project, Project 2,
in which design phase is executed under the actual
plan P actual

design and debug phase is executed under the

initial plan P init
debug. By this, we want to make a case

that the plan for design phase in Project 2 was not up-
dated(which is the di�erence from Project 0).

Thus, Project 2 is executed under the following
plan p2 of single-phase control:

p2 = (P actual
design ; P

init
debug)

Note that two projects Project 1 and Project 2 have
the same project plan P init

debug for debug phase, and that
they have the di�erent plans for design phase.

5.2.3 Imaginary projects(two-phase control)

Now, we de�ne two imaginary development projects
Project 3 and Project 4 under two-phase project con-
trol method. As mentioned before, we assume that the
design phase of Project 3 and Project 4 is executed un-
der the actual plan P actual

design.

At �rst, we consider an imaginary project Project 3
in which design phase is executed under the actual plan
Pactual
design , and its debug phase is also executed under the

actual plan Pactual
debug . That is, Project 3 is executed un-

der the project plan p1.
Note that Project 3 is very close to Project 0, since

Project 3 is entirely simulated by using actual data of
Project 0. The di�erence is that Project 0 is executed
by developers, while Project 3 is executed by project
simulator.

Finally, we consider another imaginary project
Project 4, in which design phase is executed under the
actual plan Pactual

design, and its debug phase is executed un-

der the virtual uniform plan P uniform
debug . We construct

the uniform plan P uniform

debug as follows: First, we obtain
the total time to debug from the debug plan data. Next,
each debug activity in this project is assigned uniformly
the same amount of workload to be consumed. With
respect to other attributes, the value in P init

debug is also

used in Puniform
debug . Thus, Project 4 is executed under

the following uniform project plan p3.

p3 = (P actual
design; P

uniform
debug )

5.3 Assumptions on Simulation

Here, we formulate each �ring rate and fault injection
rate in the Activity models. For example, we show the
formulas used in the design activity. In the following
formulas, M is the number of the developers engaged
in the activity, �L is the sum of each developer's ex-
perience level, R is the completion rate of the input
products, D is the number of the days from the cur-
rent date to the deadline of the activity. Kcm;Kth;Kwr

and Kin are parameters given to each activity and con-
cerned with communicating, thinking, writing and fault
injection rate, respectively.

rcm = Kcm �

M2

�L�R

rth = Kth �
�L

M
�M = Kth � �L

rwr = Kwr �
�L

M
�M = Kwr � �L

pin = Kin �
M

�L� R�D
�M

Here, we explain the sources of these formulas. The
relationship between the number of developers and the
frequency of communication is discussed in [3]. Simi-
larly, it is said that incomplete input products induce
frequent inquiries about the omission of the descrip-
tion[4]. On the other hand, from the reference [12],
the individual capability of a developer has an e�ect on
both productivity and quality of software. The in
u-
ence of mental stress caused by the deadline is discussed
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Table 3 Assignment of workload

UT & IT & FT & VT &
UDB IDB FDB VDB

P init
debug

44 44 80 56

Pactual
debug

45 27 96 64

P
uniform

debug
52 52 52 52

in [5]. Based on the knowledge from these sources and
the interviews with developers in a certain company, we
determined these formulas for convenience. Although,
these formulas are not theoretically proved, we can sim-
ulated the projects appropriately using these formulas
and values of parameters(to be explained in subsection
5.4).

Next, we explain an assignment of workload to each
activity. As we mentioned before, we use �ve project
plans, P init

design, P
actual
design , P

init
debug , P

actual
debug and Puniform

debug .
Among them, Table 3 shows a part of project plans and
summarizes the assignment of workload to each activ-
ity(UT and UDB, IT and IDB, FT and FDB, and VT
and VDB)(see Fig. 2). For P init

debug, this assignment is

obtained from the plan of the project. For P actual
debug ,

the assignment is obtained from the resultant data of
project. For P uniform

debug
, the same amount of workload is

assigned uniformly to each activity.
As spaces are limited, we omit the description of

Project model, formulas of �ring rates, and parameters
used by other activity models.

5.4 Simulation Result

By using the project simulator, we iterate simula-
tions for 1000 times per each project and calculate the
average value of quality metrics.

Project 0 (actual development) has no informa-
tion about residual faults at the end of the de-
sign/debug phase. As for the residual faults in the
last product(rlast), we can �nd the value from detected
faults at the acceptance test, but as for the residual
faults in other products, we cannot obtain such data
from the company.

As for Project 1, rdebug became 7.42. It gives the
worst value among all projects. One of the reason is
that Project 1 was executed using the initial project
plan p0 with no check points. (In some sense, Project 1
is essentially the same as Project 0. However Project 0
can be interpreted that a check point was prepared at
the end of design phase.)

In Project 2, the design phase is executed under the
actual plan P actual

design , and the debug phase is executed

under the initial plan P init
debug. The result rdebug(= 6:04)

is better than that of Projects 1 and 4, but worse than
that of Project 3. From the de�nition of Project 2, the
project plan P init

debug never re
ects the situation at the
end of design phase, and thus it could not remove faults
su�ciently.

The value of rdebug(= 4:69) in Project 3 becomes
the best in this experiment. Regarding to rdebug , we
can say that the debug phase works very e�ectively un-
der the project plan P actual

debug . Since the plan of debug
phase was updated from the initial one by considering
the resultant situation of the design phase, the updated
plan might give adequate control for the succeeding de-
bug phase(as shown in Table 3), and improve the value
of rdebug compared with Project 2.

To tell the truth, we predicted that Project 4 would
not show good performance because we constructed the
debug plan without considering the situation of design
phase. The result, rdebug = 6:97, is better than that of
Project 1, but is worse than that of Projects 2 and 3.

As explained in subsection 5.2, the design phases
of Projects 2, 3 and 4 were executed under the same
actual project plan. That is, on the Table 4, the val-
ues of ddesign and rdesign are almost the same among
Projects 2, 3 and 4.

From the viewpoint of residual faults in all prod-
ucts(that is, the value of rdebug) after debug phase,
Project 3 has the least faults, and is the most supe-
rior to other Projects 1, 2 and 4. Besides, judging from
residual faults in the last product(the value of rlast) af-
ter acceptance test and debug, there are no essential
di�erences among four projects.

Here, we investigate the reason why di�erences
appear in �ve experimental projects. From the fur-
ther investigations of the actual development data of
Project 0, the time assignment in the project plan
Pactual
debug for the debug phase was rather reasonable. Es-

pecially, the data of Project 0 implies that if concept
design takes longer time compared with the estimated
time in the initial plan, then developers need to spend
longer times on veri�cation test and debug.

Of course, there are many other factors, such as de-
velopers and fault density, to a�ect the fault injection
and removal in the project. So we cannot conclude that
the time assignment (that is, workload assignment) to
each activity in debug phase is the most e�ective factor
to the number of detected/residual faults. However,
as far as we concern the simulation results, updating
the time assignment in the project plan of debug phase
will e�ect in
uentially the number of detected/residual
faults and quality of the products at the end of debug
phase.

6. Conclusion

In this paper, we have proposed the two-phase project
control method to realize the high quality of the prod-
ucts. In order to evaluate the proposed method, we
have de�ned four imaginary projects using the actual
project data from a certain company. Finally, from the
results of project simulation, we have con�rmed the ef-
fectiveness of the proposed method.

In the experimental evaluations, we have assumed
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Table 4 Values of quality metrics

Acceptance
Executor Plan Design Phase Debug Phase Test

ddesign rdesign ddebug rdebug rlast

Project 0 developmers p1 = (Pactual
design

; Pactual
debug

) 19 | 16 | 1

Project 1 simulator p0 = (P init
design

; P init
debug

) 22.80 25.39 17.97 7.42 0.82

Project 2 simulator p2 = (Pactual
design

; P init
debug

) 19.14 19.83 13.79 6.04 0.94

Project 3 simulator p1 = (Pactual
design

; Pactual
debug

) 19.23 19.71 15.02 4.69 1.16

Project 4 simulator p3 = (Pactual
design

; P
uniform

debug
) 19.58 19.87 12.90 6.97 1.13

that project plan P actual
debug was constructed by the ex-

perts with project managements. This construction of
Pactual
debug or the updating P init

debug into P
actual
debug is one of the

most important and challenging future research works.
We consider that the functions such as fcm, fth,

etc. in subsection 4.4 are basically generalized ones.
But the formulas in subsection 5.3 are considered to be
target speci�c. Now, we are applying this model and
simulator to much more projects. If we can get success-
ful simulation results from the applications also, then it
will become a good evidence for generalizing our result
of the case study.

Additionally, we have simpli�ed the actual devel-
opment process shown in Fig. 1 to make our discussions
clear. In order to show the practical e�ectiveness of the
two-phase project control method, we are now trying to
extend the process model shown in Fig. 2 to distinctly
and explicitly include such concurrent activities as de-
scribed in subsection 2.1.
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