
Estimating the Number of Faults using Simulator based on

Generalized Stochastic Petri-Net Model

Osamu MIZUNO†, Shinji KUSUMOTO†, Tohru KIKUNO†,
Yasunari TAKAGI‡ and Keishi SAKAMOTO‡

† Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University

‡ Development and Production H.Q., Social Systems Business Group,
OMRON Corporation, Japan

Abstract
In order to manage software projects quantitatively,

we have presented a new model for software project
based on Generalized Stochastic Petri-net model which
can take influence of human factors into account, and
we have already developed software project simulator
based on GSPN model. This paper proposes methods
for calculating model parameters in the new model and
estimating the number of faults in the design and de-
bug phases of software process. Then we present exper-
imental evaluation of proposed method using a data of
actual software development project on a certain com-
pany. As the result of case study, we confirmed its
effectiveness with respect to estimating the number of
faults in the software process.

1 Introduction
Increasing the productivity and quality of software

development has been an important research objective
in software engineering. It is reported that most com-
panies spend between 50-80% of their development
cost on test process [2]. Thus, putting more emphases
on test process (testing and debugging) has been rec-
ognized to be one of the most effective approaches.

Software Reliability Growth Model (SRGM) is one
of the most well-known models for quantitatively eval-
uating test process [8]. SRGM gives us useful infor-
mation, e.g., the number of residual faults in the soft-
ware or MTBF, for deciding the shipping date. On
the other hand, program slicing[10] has been proposed
and applied to localize faults in the program. By using
slicing, debugger can efficiently determine the faulty
statements in the program. However, the test process
is very complicated consisting of: planning the gen-
eral approach, finding resources and scheduling, de-
termining features to be tested, designing the set of
tests, implementing the plan and design, executing the

test procedures, checking for termination, and evalu-
ating the test effort and unit[11]. Thus, only using the
SRGM or slicing is not sufficient to improve the test
process.

On the other hands, there are numerous studies
and reports [1][5] regarding the improvement of soft-
ware development processes, including SEI Capabil-
ity Maturity Model (CMM) proposed by Humphrey
[5]. Based on a process maturity model, SEI Self-
Assessment builds a consensus view of an organiza-
tion’s maturity and the key issues facing the organiza-
tion. Then ultimately it presents an improvement plan
for software development process endorsed by general
management.

In order to attain the improvement of software de-
velopment process, we have proposed process improve-
ment procedure which describes the software devel-
opment process using Generalized Stochastic Petri-
net(GSPN) and estimates quality, cost and delivery
date of it using the project simulator based on GSPN
[6]. In [6], we showed that the simulator could esti-
mate the value of the development duration and de-
velopment effort.

In this paper, we show the usefulness of the sim-
ulator in estimating the quality of the product (e.g.
the number of residual faults in the final product, the
number of detected faults during reviews and debugs).
That is, by using the simulator with the actual data
of the previous or the past project A and development
plans of the target project B, we propose a method to
estimate the quality of the product developed in the
project B.

In the proposed method, at first, we determine sev-
eral parameters in the GSPN using the actual data of
the previous project A. Next, using the development
plans of the target project B, we define the param-
eters about workload. Workload is the key factor of

the proposed model and will be explained in subsec-
tion 3.1. Finally, using these parameters, we simulate
the target project B and estimate the numbers of de-
tected and residual faults in each debug activity of the
project B.

2 Preliminary

We assume that software development process con-
sists of two successive phases: design and debug phases
(See Figure 1).

As shown in Figure 1, we introduce several parame-
ters to make the discussions clear. Let ei be the num-
ber of faults introduced into the product developed in
design/coding activity i. Let dj be the number of de-
tected and removed faults in reviews/debug activity j.
Let ddesign be the total of dCDR, dFDR, dSDR, dMDR

and dPGR. Let rdesign be the number of residual faults
in design phase and is calculated by Σei-ddesign. Also,
let ddebug be the total of dUDB, dIDB, dFDB , and
dV DB . Let rdebug be the number of residual faults
in debug phase and is calculated by rdesign-ddebug.

However, as a matter of fact, we cannot collect all
values of the above parameters. Thus, in this paper,
we aim to estimate the value of ddesign, ddebug and
rdebug. In Section 5, we evaluate the usefulness of the
proposed quality estimation method by comparing the
estimated values of ddesign, ddebug and rdebug and the
actual ones.

��������	
��

���
���� ������

����

���
�����������������

�����

���
����� ������

����

���
����������� ������

�����

����
����� ������

����

����
������������������

�����

������������

����

��������������������

�����

������

����

������� ������

�����

����

����

����

����

��	�

�������	
��

���������

����

����������

��� �

!�����
����� ����

�!��

!�����
����� �����

�!� �

���
���������

����

���
����� �����

��� �

"���#�

���������

�"��

"���#�

����� �����

�"� �

��
��
������������������������	�

����

����

����

����

��
��
��������������������

��

��

��

��

�	

��
��
��
���
���
���
���
�	�����
��
� ��
��
���
��
������
��

Figure 1: Software development process

3 GSPN Model and Simulator
3.1 Workload

In [6], we define the term “workload” of an activ-
ity as the total time needed for a developer who has
the standard capability to complete the activity. Ad-
ditionally, an efficiency of the activity under such a
condition is quantified as 1. The value of efficiency
depends on the environment, such as the number of
the developers, the necessity of communication and
performance of CASE tools. Then, the development
time is calculated as the result of dividing the work-
load by the efficiency of the activity.

If we get the workload of an activity, then we can
estimate the development time appropriate for spe-
cific several activity conditions dependent on a given
environment.

In the proposed model, the workload is assigned
to each activity depending on the input products for
the activity. That is, for example, workload of design
activity (Wdesign) is defined as the following formula:

Wdesign = sdesign × Rdesign.

Here, sdesign denotes the size of input product of de-
sign activity and Rdesign denotes the workload param-
eter for design activity. Before simulation, workload
parameter must be given to each activity of the target
project.

Consuming of the workload assigned to an activ-
ity corresponds to the progress of the activity in the
development. Growth of product can be modeled by
changing values of the size or the number of faults in
the output product.
3.2 Outline of the Model

The proposed model consists of Project model and
Process model. Figure 2 shows the outline of the pro-
posed model.

Project model includes three key components: ac-
tivities, products and developers. Some attributes are
attached to each of them, as shown in Tables 1.

Process model includes a set of Activity models
which include specifications of design, coding, review,
test, debug activities, and so on. Activity model is de-
scribed by an extended GSPN, as shown in Figure 3.
3.3 Project Model

Project model focuses on three key components: ac-
tivities, products and developers, and attaches several
attributes to each of them (See Table 1).

An activity has eight kinds of attributes, which
are type, entry/exit conditions, input/output products,
workforce, deadline and workload. (1) Type shows
which the activity corresponds to and describes cur-
rently one of design, coding, review, test and debug.

attribute values
 of Ai Pi Mi

Project model

firing rates of
transitions in GSPN

Process model�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

design

coding

review

test

debug

�������������
�������������
�������������
�������������
�������������
�������������
�������������

activities

products developers
{M }i{P }i

{A }i

Figure 2: Outline of the proposed model

Table 1: Project template
Attributes of activity Ai

type
entry condition
exit condition
input products
output products
workforce
deadline
workload

Attributes of product Pi

size
number of faults
completion rate

Attribute of developer Mi

experience level

(2) Entry condition and (3) exit condition specify con-
ditions for beginning and ending the activity, respec-
tively. (4) Input products describes the products given
to the activity as the input products and the workload
parameter, that is the degree of contribution of each
input products to determine workload of the activ-
ity. (5) Output products describes the output products
that are developed in the activity and the weight as-
signed to each product. The variation of the product
size and that of the number of faults are distributed to
the products according to weights. Thus, the sum of
each weight must be one. (6) Workforce specifies tu-
ples of the developers who engage in the activity and
the ratio of time in which each developer can engage in
the activity to his or her business hours. (7) Deadline
represents the appointed date for the completion of the
activity, which is fixed on the development plan. (8)
Workload represents a tuple of the workload assigned

to the activity and consumed amount of it.
A product has three kinds of attributes, which are

size, the number of faults and completion rate. (1)
Size represents the product size in document pages or
the lines of source code. (2) Number of faults counts
faults in the product. (3) Completion rate represents
the ratio of the consumed workload to the assigned
workload.

A developer has an attribute experience level which
is determined according to his/her length of service.
We classify developers’ experience levels into the fol-
lowing three levels: novice, standard and expert levels.
They are quantified as discrete values 1, 2 and 3, re-
spectively.
3.4 Activity Model for Process

Activity model is prepared for each type of activ-
ities such as design, coding, review, test, debug and
so on. The descriptions of Activity models are given
using an extended GSPN. Figure 3 shows an example
of the description of the design activity. In the ex-
tended GSPN, a token has three attributes: product
size s, number of faults f and consumed workload w.
These attributes are used to represent the current sta-
tus of development that varies over the execution of
each Activity model.

r
th wrr

t1

t2

P1 P2

rcm

t3

t1 t2 t3

w=w+1- f=f+1 (p)in

s=s+1

attributes of token
s product size
f number of faults
w consumed workload

transition

execution
 function

Figure 3: Activity model

Transitions used here are timed transitions. The
firing delay of each transition is exponentially dis-
tributed and the average firing delay of a transition
is specified by a firing rate assigned to it. In Figure 3,
the firing rate rcm of transition t1 means that the av-
erage firing delay of transition t1 is 1/rcm.

In addition, each transition has a function (called
execution function) to be evaluated on its firing. The
execution of the function updates the attribute val-
ues of the token. Intuitively speaking, each transition
corresponds to the developers’ behavior such as think-
ing, writing and communicating or an event which oc-

curs during execution of activity. Places correspond to
waiting states for occurrences of behaviors or events.

The firing rates of the transitions are formulated
by the following ten functions fcm, fth, fwr , fpr , frd,
fdt, fmd , fps, flc and fin. These functions should be
concretely specified based on the property of the target
project.

In the following, M is the number of the develop-
ers engage in the activity, L is developer’s experience
level, ΣL is the sum of each developer’s experience, S
is the total size of the input products, R is the com-
pletion rate of the input products, F is the number of
faults of the input products and D is the number of the
days from the current date to the deadline of the activ-
ity. Activity model parameters (e.g., Kcm, Kth, Kwr,
and so on) are given to each activity and concerned
with the developers’ behavior. For example, Kcm, Kth

and Kwr correspond to communicating, thinking and
writing respectively.

(1) Communicating rate: rcm = fcm(Kcm, M, ΣL, R)

(2) Thinking rate: rth = fth(Kth, M, ΣL)

(3) Writing rate: rwr = fwr(Kwr , M, ΣL)

(4) Preparing rate: rpr = fpr(Kpr , M, ΣL, S)

(5) Reading rate: rrd = frd(Krd, M, ΣL)

(6) Fault detecting rate: rdt = fdt(Kdt, M, ΣL, S, F)

(7) Fault modifying rate: rmd = fmd(Kmd, M, ΣL)

(8) Testcase passing rate: rps = fps(Kps, M)

(9) Fault localizing rate: rlc = flc(Klc, M, ΣL, S, F)

These make it possible to dynamically determine
the frequency of communications or the difficulty in
thinking and writing according to the number of de-
velopers, experience levels of developers and/or com-
pletion rates of input products.

Moreover, the increase of product size s at every
firing of writing transition t3 and the consumption of
workload at every firing of thinking transition t2 are
described by the corresponding execution functions.
At each firing of the transition, the values of token’s
attributes can be changed by evaluating its execution
function.

Activity model handles fault injections in the design
activity as the stochastic events whose occurrences de-
pend on the fault injection rate pin. In general, pin is
formulated by the following function:

(10) Fault injection rate:
pin = fin(Kin, M, ΣL, D, R)

By using this function, it is possible to take account
of dynamic influence on the fault injection rate caused
by the stress from deadline of the activity or develop-
ers’ experience levels.

[Example 1] In the design Activity model depicted
in Figure 3, for example, transitions t1 and t2 which
represent communicating and thinking behavior, re-
spectively, are enabled to fire when a token exists in
the place P1. If the communicating transition t1 fires,
it has no effect on the attributes values, and the to-
ken returns to the place P1 and only time elapses by
the firing delay. On the other hand, if the transition
t2 fires by evaluating its execution function, then con-
sumed workload w is increased by one, and the token
moves to the place P2. When the token exists in the
place P2, only the transition t3 which represents writ-
ing behavior is enabled. If the transition t3 fires, then
product size s is increased by one, and the number of
faults f could be increased according to the fault in-
jection rate pin. After the firing of t3, the token moves
back to the place P1.
3.5 Simulator

We have designed and implemented a simulator
which supports description of the target process, ex-
ecutes the process described by Activity model and
analyses the simulation results statistically.

The system consists of five functional units: project
control unit, activity simulator, user interface unit,
display unit and editor.

Simulations proceed at the intervals of unit time1 .
At first, project control unit determines activities
to be executed, based on the current status of the
progress and entry/exit conditions of each activities.
Next, for each executable activity, project control unit
delivers the parameters to activity simulator and di-
rects it to execute activities for a day. Then, activity
simulator executes all of the activities, which are di-
rected to execute by project control unit, using given
parameters and extended GSPN. The execution of an
activity is expressed by the consumption of its work-
load. When an activity consumes all of assigned work-
load, the activity is regarded to be completed.

The execution of simulation is able to be suspended
or restarted at any time. Moreover, at every unit time
of simulation, intermediate simulation results can be
stored in the simulation database. The intermediate
simulation results are stored in the same format of
the original project description. Thus, it is possible to
restart the simulation using the intermediate simula-
tion results as the input. Also it is possible to change

1 Currently, one unit time is a day (8 hours).

the values of parameters(attributes of project) at any
time of the simulation. For example, we can modify
the number of developers at any time of the simulation
and simulate it immediately.

4 Estimation Methods
Here, we propose two estimation methods for soft-

ware faults. In the proposed methods, we consider two
similar projects: the previous or the past project A
(which has already been completed) and the target
project B.
4.1 Method M1

In M1, the input data are actual development data
of the previous project A (called DA) and the de-
velopment plan of the target project B (called PB).
Here, PB consists of the estimated period of each ac-
tivity and the assignment of developers. The output
data are the values of quality metrics (ddesign, ddebug

and rdebug) at the design and debug phases in the
project B.

M1 consists of the following four steps:

Step 1: Using DA, calculate the activity model pa-
rameters.

Step 2: Using PB, calculate the workload parameters
in design and debug phases.

Step 3: Simulate the design and debug phases.

Step 4: Output the values of quality metrics.

4.2 Method M2
In M2, the input data are actual development data

of the previous project A (called DA), actual devel-
opment data of design phase of the target project
B(called DB) and the development plan of the project
B (called PB). The output data are the values of qual-
ity metrics (ddesign, ddebug and rdebug) at the design
and debug phases in the project B.

M2 consists of the following four steps:

Step 1: Using DA, calculate the activity model pa-
rameters.

Step 2: Using DB , calculate the workload parameters
in design phase. Also, using PB, calculate the
workload parameters in debug phase.

Step 3: Simulate the design and debug phases.

Step 4: Output the values of quality metrics.

5 Experimental Evaluation
In order to evaluate the usefulness of the proposed

method, we apply the simulator to two similar soft-
ware development projects A and B in an organiza-
tion.

5.1 Characteristics of Target Projects
The main characteristics of the projects are sum-

marized as follows:

(1)Development effort of the projects A and B are
152 (man-days) and 62 (man-days), respectively.

(2)The size of the system of the projects A and B are
about 12.3 (Kstep) and 6.9 (Ksteps), respectively.

(3)Project members are almost unchanged through
all projects.

(4)Each project uses a standard waterfall model.

5.2 Assumptions
Here, we formulate each firing rate and fault injec-

tion rate in the design and coding Activity models. In
the following formulas, M is the number of the devel-
opers engaged in the activity, ΣL is the sum of each
developer’s experience level, R is the completion rate
of the input products, D is the number of the days
from the current date to the deadline of the activity.
Kcm, Kth, Kwr and Kin are parameters given to each
activity and concerned with communicating, thinking,
writing and fault injection rate, respectively. On de-
ciding these formula, we referred to past works such
as [3][4][7][9].

rcm = Kcm × M2

ΣL × R

rth = Kth × ΣL

M
× M = Kth × ΣL

rwr = Kwr × ΣL

M
× M = Kwr × ΣL

pin = Kin × M

ΣL × R × D
× M

As spaces are limited, we omit the description of
Project model, formulas of firing rates, and parame-
ters used by other activity models.
5.3 Preliminary Experiment(Step 1 of M1

and M2)
Here, we execute the Step 1 of M1 and M2. That

is, using DA, calculate the activity model param-
eters. As described in Section 2, we assume the
target process is shown in Figure 1. Actually, we
have the data shown in Table 2. Thus, in order to
determine the activity model parameters and work-
load parameters of the project A, we use all of di

(i = CDR, FDR, SDR, MDR, PGR, design).
From now on, by using the concept design activity,

we explain the way to determine the activity model

parameters. Before determining the activity model
parameter, we have to determine the workload param-
eter. For the workload parameter, we use the formula
shown in subsection 3.1. The actual value of the in-
put product size of concept design activity is 50. The
actual value of workload (the total amount of concept
design time) is 121.5. Thus, workload parameter of
concept design activity is RCD = 121.5/50 = 2.43.

For the activity model parameters of concept de-
sign, we determine the values of Kcm, Kth, Kwr and
Kin. We assign the suitable values at first and, then,
changed the values so that the simulated results of the
concept design activity at the project A become the
same as the actual data of it.

Similarly, we obtained the workload parameters
and the activity model parameters for all other ac-
tivities of the project A. The resultant values of the
activity model parameters are shown in Table 3. Con-
cerning the values of the workload parameters we omit
them, since they are nearly to secrets of the organiza-
tion.

As a matter of course, the simulated values of
ddesign(=89) and ddebug(=32.1) are quite close to the
actual ddesign(=89) and ddebug(=30) of the project A.

Table 2: Real data of detected faults

dCDR dFDR dSDR dMDR dPGR ddesign

23 21 16 12 15 89
dUDB dIDB dFDB dV DB ddebug

3 12 6 9 30

5.4 Experiment 1 (Step 2 through 4 of M1)
Next, we execute the Step 2 through 4 of M1. At

Step 2, using PB, we calculate the workload parame-
ters in design and debug phases. Basically, we use the
same way described in subsection 5.3 except using the
values of workload and the input product size in the
plan PB instead of the actual values of workload and
the input product size.

As the result, we obtained the values of the work-
load parameters, shown in Table 4, for all of the ac-
tivities of the project B.

Then, in Steps 3 and 4, we simulate the project B
and get the output values of quality metrics. The sim-
ulation results of the project B are shown in Exper-
iment 1 of Table 5. The simulated values of ddesign,
ddebug and rdebug are 23.9, 14.9 and 1.1, respectively.
Though the simulated values of ddebug and rdebug are
close to the actual ddebug(=16) and rdebug(=1) of the
project B, there is a relatively large difference between
the simulated value of ddesign and the actual one.

5.5 Experiment 2 (Step 2 through 4 of M2)
Now, we execute the Step 2 through 4 of M2 to

reduce the difference of ddesign,ddebug and rdebug. At
Step 2, using DB , we calculate the workload parame-
ters in design phases. As for the workload parameters
in debug phase, we use the same one in Step 2 in Ex-
periment 1. The updated values in Experiment 2 are
shown in Table 4.

Then, in Steps 3 and 4, we simulate the project B
and get the output values of quality metrics. The
simulation results of the project B are shown in Ex-
periment 2 of Table 5. The simulated values of
ddesign, ddebug and rdebug are 17.9, 15.8 and 0.7, re-
spectively. These values are quite close to the actual
values of ddesign(=19), ddebug(=16) and rdebug(=1) of
the project B.

Thus, with respect to the experiments, we can con-
clude that the proposed method can correctly estimate
the numbers of faults in the design and debug phases.

Table 5: Result of experiments

ddesign ddebug rdebug

Real data 19 16 1
Experiment 1 23.9 14.9 1.1
Experiment 2 17.9 15.8 0.7

6 Conclusion
In this paper, we applied the simulator to the

evaluation of the testing plan. In our proposed
method, we determined the model parameter of GSPN
model using the development data of the previous
project A. Next, we determined the workload parame-
ter of project model using the development plan of the
project B, which is the target project. Then, we sim-
ulated the project B using the above parameters and
estimated the number of detected and residual faults
in design and test phases of the project B.

Finally, we experimentally evaluated the proposed
method using the data of actual software development
project on a certain company. Though it has some
limitations, we confirmed the effectiveness of the pro-
posed method.

References
[1] V. R. Basili and H. D. Rombach: “The

TAME project: Towards improvement-oriented
software environment,” IEEE Transactions on
Software Engineering, Vol.14, No.6, pp.758-773
(1988).

[2] J. S. Collofello and S. N. Woodfield: “Evalu-
ating the effectiveness of reliability-assurance

Table 3: Values of activity model parameters

Kcm Kth Kpr Klc Krd Kps Kdt Kwr Kmd Kin

design 0.10 0.20 — — — — — 0.20 — 15.5
coding 0.10 0.20 — — — — — 0.20 — 17.0
review 0.08 — 0.10 — 3.00 — 0.35 — 0.20 —
test 0.10 — 0.20 — — 6.00 0.24 0.20 — —

debug 0.08 — — 0.12 — — — — 0.10 —

Table 4: Values of workload parameters

RCD RCDR RFD RFDR · · · RV DB

Experiment 1 1.14 0.45 4.20 0.5 · · · 2.0
Experiment 2 1.88 0.30 1.17 1.0 · · · 2.0

techniques,” Journal of Systems & Software,
Vol.9, No.3, pp.191-195 (1989).

[3] B. Curtis, H. Krasner and N. Iscoe: “A field
study of the software design process for large
systems”, Communications of the ACM, Vol.31,
No.11, pp.1268-1287 (1988).

[4] T. Furuyama, Y. Arai and K. Iio: “Fault gener-
ation model and mental stress effect analysis”,
The Journal of Systems and Software, Vol.26,
pp.31-42 (1994).

[5] W. S. Humphrey: “Characterizing the software
process: A maturity framework,” IEEE Soft-
ware, Vol.5, No.2, pp.73-79 (1988).

[6] S. Kusumoto, O. Mizuno, T. Kikuno, Y. Tak-
agi and K. Sakamoto:“A new software project
simulator based on generalized stochastic petri-
net”, Proc. of the 19th International Conference
on Software Engineering, pp.293-302 (1997).

[7] K. Matsumoto, S. Kusumoto, T. Kikuno and
K. Torii: “An experimental evaluation of team
performance in program development based
on model – Extension of programmer perfor-
mance model”, Journal of Information Pro-
cessing, Vol.15, No.3, pp.466-473 (1992) (in
Japanese).

[8] J.D. Musa, A. Iannino and K. Okumoto: Soft-
ware Reliability: Measurement, Prediction, Ap-
plication, McGraw-Hill (1987).

[9] H. Sackman, W. J. Erickson and E. E. Grant:
“Exploratory experimental studies comparing
online and offline programming performance”,
Communications of the ACM, Vol.11, No.1,
pp.3-11 (1968).

[10] M. Weiser: “Programmers use slices when de-
bugging”, Communications of the ACM, Vol.25,
No.7, pp 446-452 (1982).

[11] “IEEE Standard for Unit Testing”, IEEE. Rep.
IEEE-Std-1008-1987 (1987).

