
Does a Code Review Tool Evolve
as the Developer Intended?

Osamu Mizuno and Junwei Liang

Abstract In this study, we intend to assess the improvements of Gerrit. The central
concern is “Does Rietveld evolve into Gerrit as the developers intended?” To answer
this question, we first compare qualitative features of two code review tools. We
then conducted an interview with a developer of Gerrit and obtained the developer’s
original intention of improvements in Gerrit. By analyzing mined data from code
review logs, we try to explain the effects of improvements quantitatively. The result
of analysis showed us that the improvements of Gerrit that the developer is expected
are not observed explicitly.

Keywords Software evolution · Code review · Open source development ·
Empirical study

1 Introduction

Mining software repositories has become a current trend of software engineering.
Much research using mining technique has been done to discover various issues in
software engineering [1]. Repositories mining research often focuses on the quality
of software. For example, detection of fault-prone software modules is one of good
field of repositoriesmining [2, 3]. In fact, the number of fault-pronemodule detection
approaches using mining technique has rapidly increases in last 5years.

In order to assure the quality of software, early detection of defects is recom-
mended. The code review is one of effective ways for such early detection of defects
in software [4]. The code review activities include various useful insights for soft-
ware quality. However, especially in open source software (OSS) developments,
records of code review merely remained in a systematic way. Logs of reviews were

O. Mizuno (B) · J. Liang
Software Engineering Laboratory, Graduate School of Science and Technology,
Kyoto Institute of Technology, Kyoto, Japan
e-mail: o-mizuno@kit.ac.jp

J. Liang
e-mail: j-liang@se.is.kit.ac.jp

© Springer International Publishing Switzerland 2015
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 578, DOI 10.1007/978-3-319-11265-7_5

59



60 O. Mizuno and J. Liang

mostly on the mailing-list, and researchers needed so many efforts to obtain data
from mailing-lists or unstructured data [5].

Recently, for the effectiveness of the code review process in OSS development,
tools for code review have been developed. One common weakness of mail based
review was the lack of linking between patches and the version control system [6].
The review with tools provides this linkage. For example, a diff made against an
older version of a file can be updated by selecting the most reviewed version within
a tool, or an approved review can be immediately committed into the version control
system.

Not so many open source projects, however, adopt review with tools. Chromium
is one of them, which is a successful open source browser project used the code
review tool called Rietveld. Rietveld is an open source code review tool based on
Mondrian, the internal code review tool used by Google. Both of Rietveld and Mon-
drian was created by Guido van Rossum who is best known as the author of the
Python programming language.

Rietveld was a good tool for code review. The developers, however, appended
patches to Rietveld to improve features they want. As a result, they built a new tool
for code review from a scratch. The documents of Gerrit says the background as
follows [7]:

Gerrit Code Review started as a simple set of patches to Rietveld, and was originally built to
service AOSP. This quickly turned into a fork as we added access control features that Guido
van Rossum did not want to see complicating the Rietveld code base. As the functionality
and code were starting to become drastically different, a different name was needed. Gerrit
calls back to the original namesake of Rietveld, Gerrit Rietveld, a Dutch architect.

For this reason,Gerrit is a successor ofRietveld, and thus it is natural thatGerrit has
improved features from Rietveld. Like Rietveld and Gerrit, software is sometimes
improved and evolved into another new software. Such improvement is done by
various reasons, for example, user’s requirements, developer’s intuition, performance
issues, and so on. Although the effect of improvement should be evaluated, it is hard
to measure and thus remained not evaluated.

In this study, we aim to evaluate the improvements of Gerrit. The basic question
is “Does Rietveld evolve into Gerrit as the developers intended?” To answer this
question, we first compare qualitative features of two code review tools. We then
conducted an interview with a developer of Gerrit and obtained the developer’s
original intention of improvements in Gerrit. By analyzing mined data from code
review logs, we try to clarify the effects of improvements quantitatively.

The rest of this paper is organized as follows: Sect. 2 describes the code review
process with tools and comparison of code review tools. Section3 shows the result
of interview with a developer of Gerrit and research questions. Mined data from
code review repositories are explained in Sect. 4. Section5 investigates the research
questions. The threats to validity are discussed in Sect. 6. Finally, Sect. 7 concludes
this study.



Does a Code Review Tool Evolve as the Developer Intended? 61

Hi, I created a 
patch. Please 

review it.

Create

LGTMIt's not 
working for 

me.

LGTMMessage

Size of patch (Si)

Engineer B 
(Junior)

Engineer A
(Senior)

Discussion time (Ti)

Engineer C 
(Senior)

Check here

Inline comment

Engineer C 
(Senior)

Activity 
types

Number of reviewers (Ri) = 3

(Closed)

Engineer A
(Senior)

Fixed.

Message

(a)

+1
Hi, I created a 
patch. Please 

review it.

Create

+2It's not 
working for 

me.

LabelMessage

Size of patch (Si)

Engineer B 
(Junior)

Engineer A
(Senior)

Discussion time (Ti)

Engineer C 
(Senior)

Check here

Inline 
comment

Engineer C 
(Senior)

Activity 
types

Number of reviewers (Ri) = 3

(Closed)

Engineer A
(Senior)

Fixed.

Message Label

Engineer B 
(Junior)

(b)

Fig. 1 An example of code review process. a Review process with Rietveld. b Review process
with Gerrit

2 Code Review Tools

2.1 Code Review Process

Figure1 shows an example process of code review using code review tools.
Figure1a shows a case of Rietveld and Fig. 1b shows a case of Gerrit. In both
tools, the fundamental process is similar. First, a developer create a review issue
with his/her patch to the source code. Then some developers (reviewers) look at the
patch and write messages or inline comments to the creator if they find any problems.



62 O. Mizuno and J. Liang

Table 1 Features of Rietveld and Gerrit
Feature Rietveld Gerrit

Web-based Yes Yes

Side by side diff Yes Yes

Inline comments Yes Yes

VCS SVN Git

Implementation Python on Google App Engine Java on J2EE and SQL DB

Access control No Yes

Keyboard shortcuts Yes Yes

Code review labels No. “LGTM” in a message Yes +2, +1, −1, −2 labels

Code review messages Yes Yes

Verify labels No Yes +1 and −1

Search options Simple Powerful

Command line tools Yes Yes (more elegant)

Show commit dependencies No Yes

Multiple projects No Yes

Issue submit guideline No Yes based on labels

The creator reviews the comments, make changes if necessary, and publishes updated
patch in response to the comments. Once all comments have been addressed either
through code or discussion, the reviewers will approve the review issue and close the
review issue after merge the patch into the central code repository.

The differences between Rietveld and Gerrit are seen in “LGTM” and “Label”
in Fig. 1a and b. The guidelines of operating these tools also differ each other. The
qualitative difference between them is shown in Sect. 2.2.

2.2 Qualitative Comparison

Table1 shows features of Rietveld and Gerrit. Since Gerrit is a successor of Rietveld,
most features in Gerrit are enriched from Rietveld.

By comparing features betweenRietveld andGerrit shown inTable 1, the improve-
ment in Gerrit is summarized the following 4 features: (1) Access control, (2) Code
review labels, (3) Verify labels/messages, (4) Search options.

The main motivation of Gerrit development is integration with Git. As a result of
Git integration, the access control feature is attained to Gerrit.

Shawn Pearce, the main developer of Gerrit, said:

Access controls in Gerrit are group based. Every user account is a member of one or more
groups, and access and privileges are granted to those groups.



Does a Code Review Tool Evolve as the Developer Intended? 63

Rietveld has no explicit label feature, but has “Quick LGTM (looks good to me)”
feature. By pressing the “Quick LGTM” button, the reviewer can quickly post a
message with “LGTM”. By extending this future, a label system is implemented in
Gerrit.

The labels attached on an issue are essential information to determine to accept
or decline the code review. Such labels are called as “code review labels” in these
code review tools. Rietveld. however, does not have the label, but has the message
named “LGTM (Looks Good To Me )”. Reviewers attach this message if they find
that the code is good for commit. In the development of Chromium, there is not a
clear criterion to determine to accept or decline an issue, i.e. if most of participant
attached “LGTM”, the issue may be accepted.

On the other hand, Gerrit implemented the label systemwith labels of “+2 (Looks
good to me, approved)”, “+1 (Looks good to me, but someone else must approve)”,
“0 (No score)”, “−1 (I would prefer that you didn’t submit this)”, and “−2 (Do not
submit)”. The +1 and −1 levels are just an opinion where as the +2 and −2 levels
are approving or abandoning the review issue. Only review issues having at least
one+2 and no −2 labels can be approved. There is no meaning to accumulate these
label value. Two +1 labels do not equate to one +2 label [8].

Since Gerrit is a successor of Rietveld, the main purpose of Gerrit is the improve-
ment of code review processes in Google OSS projects. Such improvements are,
however, not evaluated quantitatively.

3 Research Questions

3.1 Interview with the Developer

For clarifying the original developer’s intentions to develop Gerrit as a successor
of Rietveld, we interviewed with Shawn Pearce, who is the main contributor of the
development of Gerrit. The questions and answers are as follows:

Q1: What is the motivation to adopt access control of developers in Gerrit? Is it for
reducing spammy or trivial commits?

A2: AOSPdetermined itwanted senior engineerswhowere conducting code reviews
to be able to tick an “approve” box on the web, but not be distracted by the
mechanics of downloading a patch, applying it to a local tree, and pushing that
to the central server.
To allow anyone to submit a change without doing the manual “download +
patch + commit + push” steps from the command line we introduced access
controls to determine who can tick the “approve” box, and who can push the
“submit” button to deliver the code to the central server automatically.
It enabled a productive boost for the senior engineers that were mostly conduct-
ing the code reviews.



64 O. Mizuno and J. Liang

Q2: What was the main purpose to adopt code review labels (+2, +1, . . .)? We
guess that it is for a criterion of patch commits (i.e. if a patch have+2 or larger
label, the patch can be committed.)What is the purpose of introducing the verify
labels and messages?

A2: Yes. It was a means to realize the access controls to tick the “approve” box.
Once we decided we needed an approve box, we built the code-review label.
We then realized we wanted maybe a junior engineer we trust to download the
patch, compile it, verify unit tests still pass, etc. and have them mark a different
box that says “yup, code compiles!”.
This become the verified box. So the code-review OK and the verified OK
needed to be done by different people (code-review: senior engineer, verified:
junior engineer), so these were different labels.
We then realized it looked bad in the community that nobody else could come
along and say “yes I also like this patch”. So we expanded code-review to be
a range of −2 through 2. Trusted +senior engineers familiar with the project
were given access to use the−2 and+2 end of the range. Everyone else (even a
random user that stumbles on the site) can use the −1 · · · + 1 range to say “yes
me too I also like this”.

3.2 Research Questions

From the interview with Shawn Pearce, we aim to clarify whether the productive
boost for senior engineers is achieved or not. To do so, we state the following research
question:

RQ Do code review activities become more productive in Gerrit-based project?

RQ aims to investigate whether the entire review activity in Gerrit-based project is
more productive or not.

4 Data Retrieval

4.1 Target Projects

In order to compare the reviewprocesses betweenRietveld andGerrit, we need to find
review repositories that adoptRietveld orGerrit. ForRietveld,we used theChromium
project,1 a development of Chromium browser by Google and Google Web Toolkit

1 http://www.chromium.org.

http://www.chromium.org


Does a Code Review Tool Evolve as the Developer Intended? 65

Table 2 Format of issue data from Rietveld
Item Type Description

i Nominal Unique ID for the issue

Ri Counting The number of reviewers who appear in the issue i

Ti Counting The discussion time for the issue i

Si Counting The size of patch code is the issue i (lines)

NLGTM
i Counting The number of “LGTM” messages in code review.

Table 3 Format of issue data from Gerrit
Item Type Description

i Nominal Unique ID for the issue

Ri Counting The number of reviewers who appear in the issue i

Ti Counting The discussion time for the issue i

Si Counting The size of patch code is the issue i (lines)

Lmaxi Counting The max value of labels in the issue i.

Table 4 Format of developer commitment data
Item Type Description

d Nominal Unique ID for the developer

i Nominal Unique ID for the issue

Ad
i Nominal The action that the developer d takes in the issue i

(GWT) project.2 For Gerrit, we used the Android project,3 a development of Android
OS projects, and Qt project.4

4.2 Data Obtained

We obtained the log of code review activities by our mining tool for code review
repositories [9]. We obtained various kind of data from the code review repositories.
Tables2 and 3 show the schema of data related to review issues. Table4 shows the
schema of data related to the developer’s activities in review. These tables include
only necessary information for later discussions.

2 https://developers.google.com/web-toolkit/.
3 http://source.android.com.
4 http://qt-project.org.

https://developers.google.com/web-toolkit/
http://source.android.com
http://qt-project.org


66 O. Mizuno and J. Liang

5 Do Code Review Activities Become More Productive
in Gerrit-based Projects?

5.1 Preliminary Questions

For investigating RQ, we define three preliminary questions as follows:

• How many engineers in review are there in Rietveld-based and Gerrit-based
projects?

• How many review issues are there in Rietveld-based and Gerrit-based projects?
• What kind of activities did engineers do in review in Rietveld-based and Gerrit-
based projects?

The first challenge is that, sometimes, a developer would like to have more than
one accounts to commit to the project, which we called developer aliases issue. If we
want to answer questions about developer, such as how many engineers involved in
project, we should resolve the aliases issue first.We implemented a similar algorithm
based on the levenshtein edit distance [10] with the approach proposed by Bird et al.
[11] to automatically extract developer aliases. We also manually review the result
from the web interface of our mining tool, and remove the alias links we thought
were questionable.

Table5 is an overview of data that we obtained for each project. It provide the
answers of the first and the second questions. In more detail, the number of reviewers
for each issue, Ri, is summarized in Table6 by projects. The median of reviewers
for each issue is one developer for both Rietveld-based projects and Gerrit-based
projects. Interestingly, the same result has been also observed in other OSS projects
using commit-then-review (CTR) patch review process [6]. Figure2 shows distribu-
tion of Ri by projects.

From Table5, we can see that the number of issues per unique reviewers varies
by projects, not by code review tools. We cannot find significant difference on the
number of review issues and the number of unique developers in this table.

Table 5 Overview of data obtained for each project
Project Chromium

(Rietveld)
GWT
(Rietveld)

Android
(Gerrit)

Qt (Gerrit)

Review issues 82,303 3,294 9,413 34,891

Number of unique reviewers 1,850 295 823 692

Number of issues per unique
reviewer

44.49 11.16 11.52 50.42

Number of commitments 444,218 21,719 49,029 359,031

Duration Sept. 2,
2008–May
24, 2011

Dec. 3,
2008–Aug.
18, 2012

Oct. 21,
2008–Oct.
26, 2012

May 17,
2011–Nov.
28, 2012



Does a Code Review Tool Evolve as the Developer Intended? 67

Table 6 Descriptive statistics for Ri for each project
Ri (count)

Project Minimum Median Mean Maximum

Chromium 0 1 1.270 19

GWT 0 1 1.249 7

Android 0 1 1.197 18

Qt 0 1 1.407 12

From Table6 and Fig. 2, we can see the distribution of the number of reviewers
for each issue, Ri. By comparing the Rietveld-based and Gerrit-based projects, there
are more issues with Ri = 1 and less issues with Ri = 0 in Rietveld than in Gerrit.
By investigating further for Ri, we found that there are many Ri = 0 issues in
the abandoned issues of Gerrit-based projects, but there is not so many issues with
Ri = 0 in Rietveld even in abandoned issues. It can be explained that many issues
are immediately abandoned after creation in Gerrit.

Figure3 shows that the ratio of action types for each project. “Create” shows an
event that an engineer creates a review issue. “LGTM/label” shows that an engineer
gives an “LGTM” message for an issue in Rietveld or a label for an issue in Gerrit.
“Message” shows that an engineer gives a message for an issue. Finally, “Inline
comment” shows that an engineer gives an inline comment for an issue.

We can see that the ratio of “LGTM/Label” is greater in Gerrit-based projects than
Rietveld-based projects, while the “inline comment” activity is smaller in Gerrit-
based projects than in Rietveld-based projects. This indicates that developers in
Gerrit-based projects prefer to contribute to reviews by voting review or verify labels
rather than add inline comments to patch code.

5.2 Main Question

For this research question, we measure how a project is productive by the discussion
time for review issues.Generally speaking, ifweneed less time for an issue to process,
we can say it is more productive. We thus translate original research question into as
follows:

• Does an issue take less discussion time to review in Gerrit-based projects?

In order to investigate this research question, we define the following metrics:

• Ti: the discussion time for an issue i (h)
• Si: the size of patch submitted for an issue i (LOC)

In order to consider the difficulty of an issue, we investigate the discussion time
normalized by the changed lines of code for an issue, which is expressed as follows:



68 O. Mizuno and J. Liang

Fig. 2 Density histogram of Ris for all projects

Ti
Si

Table7 shows the descriptive statistics for Ti for each project. The median of Ti in
Chromium is 2.199h and GWT is 15.64h, while it is 23.04h in Android and 20.98h
in Qt. It should be noted that the median of Ti in Android is close to 24h.



Does a Code Review Tool Evolve as the Developer Intended? 69

Fig. 3 Histogram of action types for each project

Table 7 Descriptive statistics for Ti for each project
Ti (h)

Project Minimum Median Mean Maximum

Chromium 0.009 2.199 53.73 8746

GWT 0.009 15.640 193.40 8240

Android 0.009 23.040 689.50 8751

Qt 0.009 20.980 136.40 8524

Table 8 Descriptive statistics for Ti/Si for each project
Ti/Si (h/line)

Project Minimum Median Mean Maximum

Chromium 0 0.098 4.067 5,211

GWT 0 0.134 12.510 2,325

Android 0 0.874 121.500 8,670

Qt 0 0.934 15.030 5,013

The descriptive statistics for Ti/Si is shown in Table8. Table8 shows that median
of Ti/Si of Rietveld-based projects are significantly smaller than that of Gerrit-based
projects.



70 O. Mizuno and J. Liang

Fig. 4 Density histogram of Ti/Sis for all projects

Figure4 shows a density histogram for Ti/Si in all projects. Note that x-axis is
shown in log scale. We can see that Gerrit-based projects require more discussion
time to review a line of code than Rietveld-based projects.



Does a Code Review Tool Evolve as the Developer Intended? 71

In Gerrit-based project, it is recommended to pend an issue for 24h to ensure any
interested parties around the world have had a chance to commit. The document of
Gerrit says as follows [7]:

Pending changes are likely to need at least 24h of time on the Gerrit site anyway in order to
ensure any interested parties around the world have had a chance to comment.

On the other hand, Rietveld has no guideline for reviewing time. This could result
the discussion time longer in Gerrit-based projects than in Rietveld-based ones.

To conclude, we can say that the answer of this research question is “no”. The
discussion time for review issues in Gerrit-based projects is longer than that of in
Rietveld-based projects.

5.3 Discussion

As Shawn Pearce told us in his interview, there is a notable improvement in Gerrit,
the label system. We investigate the effect of the label system from the viewpoint of
discussion time. To do so, we state the following question:

• Do LGTM messages in Rietveld and labels in Gerrit affect to discussion time?

Figure5 shows the distribution of discussion time by the number of LGTM mes-
sages,NLGTM

i , for Rietveld-based projects. Figure6 shows the distribution of discus-
sion time by the max value of labels, Lmaxi , for Gerrit-based projects. Since LGTMs

(Rietveld) Chromium (Rietveld) GWT

1e-01

1e+01

1e+03

0 1 2 3 >4 0 1 2 3 >4

Number of LGTM messages

D
is

cu
ss

io
n 

tim
e 

(h
ou

r)

Fig. 5 Discussion time versus the number of LGTM messages for Rietveld-based projects



72 O. Mizuno and J. Liang

(Gerrit) Android (Gerrit) Qt

1e-01

1e+01

1e+03

-2 -1 0 +1 +2 -2 -1 0 +1 +2
Max label value

D
is

cu
ss

io
n 

tim
e 

(h
ou

r)

Fig. 6 Discussion time versus the number of labels for Gerrit-based projects

and labels are similar concept, we compare these four projects using LGTM and
labels.

In Fig. 5, the discussion time increases according to the increase of LGTM mes-
sages. This indicates that if an issue got more LGTM messages, the discussion time
becomes longer because there are no clear guideline to finish discussion based on
the number of LGTM messages.

In Fig. 6, the discussion time decreases if the max label is+2 or 0.We should note
that it is what the developer of Gerrit intended that the discussion time decreases in
the case of +2. As we mentioned in Sect. 2.2, there is a guideline that an issue can
be closed when it get at least one +2 label. We can say that the label +2 can reduce
the discussion time for obviously acceptable issues. On the other hand, we need to
investigate the case of Lmaxi = 0 in which the discussion time decreases, too. For the
label “0”, the document of Gerrit says as follows [12]:

0 No score: Didn’t try to perform the code review task, or glanced over it but don’t have an
informed opinion yet.

The label “0” means that no labels were added by any developers. We then looked
at the status of reviews with Lmaxi = 0 and found that 1880 of 1950 such reviews
in Android were abandoned and 67% were abandoned by the creator, 2141 of 2190
such reviews in Qt were abandoned and 76% were abandoned by the creator. These
findings show that developers in Gerrit-based projects often abandoned reviews by
themselves even before anyone review that, which made the discussion time very
short because no discussion occurred. The similar discussion can be applied to issues
with NLGTM

i = 0 in Rietveld.



Does a Code Review Tool Evolve as the Developer Intended? 73

We can conclude that the label system in Gerrit contributes to decrease the
discussion time for issues with less problems, while the LGTMmessages in Rietveld
does not contribute to decrease the discussion time for issues.

6 Threats to Validity

Wehave several threats to validity in this study. This section discusses on such known
threats.

In order to reduce individual variation as far as possible, we tried to find more
projects using Rietveld or Gerrit. Unfortunately, we found that there are not so many
optional projects for us when we consider project size.

The definition of senior engineers is mainly based on the previous study [13].
There are various definitions of senior engineers in both quantitative and qualitative
ways. Since the definition affects the result of analysis directly, we need to refine the
definition rigidly.

7 Conclusion

Our findings and contributions are summarized as follows:

• Developers in Gerrit-based projects prefer to contribute to reviews by adding
review or verify labels rather than to add inline comments to patch code.

• The discussion time for review issues in Gerrit-based projects is longer than that
of in Rietveld-based projects.

• The label system in Gerrit contribute to decrease the discussion time for issues by
providing a clear guideline to when an issue can be closed, while the LGTM label
in Rietveld does not function to decrease the discussion time for issues.

Acknowledgments The authors would like to express great thanks to Mr. Shawn Pearce, who
willingly gave us the answer to our question related to Gerrit. The authors would like to thank Prof.
Ahmed E. Hassan and members in Software Analysis and Intelligent Laboratory. This work was
supported by JSPS KAKENHI Grant Number 24500038.

References

1. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide soft-
ware change. IEEE Trans. Softw. Eng. 31(6), 429–445 (2005)

2. Catal, C., Diri, B.: Review: a systematic review of software fault prediction studies. Expert
Syst. Appl. 36(4), 7346–7354 (2009). doi:http://dx.doi.org/10.1016/j.eswa.2008.10.027

3. Hata, H.: Fault-pronemodule prediction using version histories. Ph.D. thesis, Osaka University
(2012)

http://dx.doi.org/10.1016/j.eswa.2008.10.027


74 O. Mizuno and J. Liang

4. Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review on open source software
projects. In: Proceedings of 33rd International Conference on Software Engineering, pp. 74–83
(2011)

5. Thomas, S.W.:Mining unstructured software repositories using irmodels. Ph.D. thesis,Queen’s
University (2012)

6. Rigby, P.C.:Understanding open source software peer review: reviewprocesses, parameters and
statistical models, and underlying behaviours and mechanisms. Ph.D. thesis, BASc. Software
Engineering, University of Ottawa (2004)

7. Gerrit code review—system design. URL http://gerrit-documentation.googlecode.com/svn/
Documentation/2.5.1/dev-design.html

8. Gerrit code review—a quick introduction. URL http://gerrit-documentation.googlecode.com/
svn/Documentation/2.5.1/intro-quick.html

9. Liang, J., Mizuno, O.: Analyzing involvements of reviewers through mining a code review
repository. In: Joint Conference of the International Workshop on Software Measurement and
the International Conference on Software Process and Product Measurement, pp. 126–132
(2011). doi:http://doi.ieeecomputersociety.org/10.1109/IWSM-MENSURA.2011.33

10. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. (CSUR)
33(1), 31–88 (2001)

11. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks.
In: Proceedings of the 2006 InternationalWorkshop onMining Software Repositories, pp. 137–
143. ACM (2006)

12. Gerrit code review—access control. URL http://gerrit-documentation.googlecode.com/svn/
Documentation/2.5.1/access-control.html

13. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: The secret life of patches: a firefox
case study. In: Proceedings of 19th Working Conference on Reverse Engineering, pp. 447–455
(2012)

http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/dev-design.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/dev-design.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/intro-quick.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/intro-quick.html
http://doi.ieeecomputersociety.org/10.1109/IWSM-MENSURA.2011.33
http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/access-control.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.5.1/access-control.html

