
On Estimating Testing Effort
Needed to Assure Field Quality in Software Development

Osamu Mizuno†, Eijiro Shigematsu†, Yasunari Takagi†‡, and Tohru Kikuno†
†Graduated School of Information Science and Technology, Osaka University, Japan.

E-mail: {o-mizuno,kikuno}@ist.osaka-u.ac.jp
‡OMRON Corporation, Japan.

E-mail: taka@biwa.kusatsu.omron.co.jp

Abstract

In the practical software development, software quality
is generally evaluated by the number of residual defects. To
keep the number of residual defects within a permissible
value, too much effort is often assigned to software testing.

In this paper, we try to develop a statistical model to de-
termine the amount of testing effort which is needed to as-
sure the field quality. The model explicitly includes design,
review, and test (including debug) activities.

Firstly, we construct a linear multiple regression model
that can clarify the relationship among the number of resid-
ual defects and the efforts assigned to design, review, and
test activities. We then confirm the applicability of the
model by statistical analysis using actual project data.

Next, we obtain an equation based on the model to de-
termine the test effort. As parameters in the equation, the
permissible number of residual defects, the design effort,
and the review effort are included. Then, the equation deter-
mines the test effort that is needed to assure the permissible
residual defects. Finally, we conduct an experimental eval-
uation using actual project data and show the usefulness of
the equation.

1 Introduction

The importance of the software quality has been increas-
ing for the last decade. In order to measure the software
quality, many metrics and methodologies have been pro-
posed up to now[5, 7, 14]. Among them, the number of
residual defects is frequently used since it is easily under-
standable and deeply concerned with the needs in the soft-
ware development organization [7].

On the other hand, various approaches have been pro-
posed to decrease the number of residual defects [4, 7]. The
most direct approach is to perform enough testing. How-
ever, improving the overall development process is more

desirable to achieve high software quality [2, 6, 9]. For
instance, constructing rigid specification, introducing re-
view activity, and determining feasible development plans
are such improvement activities.

In the actual industry, the software testing effort has been
usually determined by using the past experience. In order
to improve such a situation, many studies have been pro-
posed to estimate appropriate testing effort. For instance,
the software reliability growth model(SRGM) is one of the
best-known approach to determine optimal release point[8].
However, since the SRGM uses the whole activity data from
the beginning to the end of defect detection, it cannot be
used before the testing begins. On the other hand, Taka-
hashi et al. showed some metrics and a linear correlation
model to predict the number of errors[12]. Though they es-
timated the number of errors successfully, their metrics are
mainly product metrics. Moreover, their aim was not to es-
timate the testing effort, but predict the number of residual
faults in software.

We present an estimating method of the test effort to as-
sure field quality. Here, assuring the field quality means to
keep the number of residual defects below the permissible
number determined a priori.

We focus on a timing when the development goes to the
end of its coding activity. We thus assume that the efforts
needed for design and review activities have already been
known, since these activities were over. Under such a con-
dition, we construct a model to estimate the testing effort
considering the field quality. The model makes it possible
to estimate the testing effort dynamically before the test ac-
tivities begin. Additionally, the testing effort estimated by
the model is the one necessary to assure field quality. As a
result, we can expect even the improvement of productivity
for testing activities. Furthermore, since the model itself is
quite simple, the developers can understand the model eas-
ily.

In order to establish the proposed method, we firstly de-



velop a linear multiple regression model that explains the
number of residual defects by a linear function of design,
review, and test efforts. To do so, as a preliminary inves-
tigation, we statistically confirm that software development
efforts such as design, review, and test efforts have much
effect on the number of residual defects by using actual
project data.

Next, we obtain an equation, based on the linear multi-
ple regression model, to determine the test effort. Here, we
assume that the number of permissible residual defects is
given, and the design and the review efforts are specified.
We then conduct an experimental evaluation using actual
project data and showed the usefulness of the equation.

The rest of this paper is organized as follows. Section
2 describes the preliminaries of this study, such as process
model and software metrics. In Section 3, we explain an ap-
proach, which consists of three phases. Then, in Section 4,
we investigate the relationship between the effort assigned
to each activity and the number of residual defects. Next in
Section 5, we construct a model that can clarify the relation-
ship among the number of residual defects and the efforts
assignment. In Section 6, we obtain an equation to deter-
mine the test efforts that is needed to assure the permissible
residual defects and conduct an experimental evaluation us-
ing actual project data. Finally, Section 7 summarizes this
paper.

2 Preliminaries

2.1 Process model

The projects targeted in this paper are the development
of computer control systems with embedded software in
a certain company. The systems are related to retail sys-
tems. Such embedded software implements rather complex
functions dealing with many sensors, actuators, and control
signals including various kinds of interrupts. Furthermore,
since it is delivered in the form of LSI chips, modification of
defects after delivery is very expensive. Thus, high quality
is especially required for the embedded software.

We use the actual project data of 38 projects, which have
already finished their development. The characteristics of
these projects are as follows:

1. The projects started their development in 1996 and
1997.

2. The development efforts of these 38 projects range
from 7 to 35 person-months. The average effort is
about 14 person-months.

3. At least 15% of the total efforts for design and coding
activities was assigned to review activities.

These projects can be considered very similar ones, since
their objective is to produce almost the same software sys-
tems to different customers and thus their development pro-
cess is almost the same.

In the target projects, many kinds of computer systems
with embedded software are developed mainly using C lan-
guage. The products are developed under a development
process as shown in Figure 1. The development process is
an ordinal waterfall model.

Figure 1. Development process

Concept design & review

Function design & review

Structure design & review

Module design & review

Coding & review

Unit test & debug

Integration test & debug

Function test & debug

Verification test & debug

Design &
Coding phase

Test &
Debug phase

The development process consists of two successive
phases, design & coding phase and test & debug phase. The
design & coding phase is divided into five stages: Concept
design, Function design, Structure design, Module design,
and Coding. The test & debug phase is divided into four
stages: Unit test & debug, Integration test & debug, Func-
tion test & debug, and Verification test & debug.

One characteristic of the design & coding phase is that
review activity is introduced after each design activity. Re-
view activity is an approach that enables the detection and
correction of defects in software artifacts as soon as these
artifacts are created. The review activity not only improves
the quality of the artifacts but also helps software develop-
ment organizations reduce their cost of producing software
[1, 3]. In the review activity, the documents should be dis-
tributed to the persons concerned in the company, and then
review results should be returned to developers via man-
agers (this review activity is called peer review [1]). They
established several guidelines for the review activity. One
of them suggests that at least 15% of the total efforts for de-



sign & coding phase should be assigned to review activities
[11].

The test & debug phase consists of the repetition of a pair
of test activity and debug activity. Test activity is the pro-
cess of analyzing a software item to detect the differences
between existing and required conditions and to evaluate the
features of the software items. Debug activity is the process
to detect, locate, and correct faults [10]. Developers are
directed to record all defects that are detected by the test
activity and removed by the debug activity [13]. In order to
improve and assure the quality of the software product, the
product needs to be tested sufficiently.

2.2 Software metrics

In this subsection, we define some software metrics[5]
used in this paper. Five software process metrics related to
effort of development phases are defined as follows:

(1) Edesign (design effort) : the effort spent on the de-
sign and coding activities in design & coding phase
(person-day).

We define the design effort as the sum of the effort
spent on the design and coding activities.

(2) Ereview (review effort) : the effort spent on the review
activities in design & coding phase (person-day).

We define the review effort as the sum of the effort
spent on each review activity.

(3) Etest (test effort) : the effort spent on the test and debug
activities in test & debug phase (person-day).

We define the test effort as the sum of the effort spent
on test activity and the effort spent on debug activity.

(4) Rdesign/total (ratio of the design effort to the total devel-
opment effort):

Rdesign/total =
Edesign

Edesign + Ereview + Etest

This metric Rdesign/total stands for the ratio of the design
effort to the sum of the efforts assigned to the design
activity, the review activity, and the test & debug activ-
ity.

(5) Rtest/total (ratio of the test effort to the total development
effort):

Rtest/total =
Etest

Edesign + Ereview + Etest

This metric Rtest/total stands for the ratio of the test ef-
fort to the sum of the efforts assigned to the design
activity, the review activity, and the test & debug activ-
ity.

A metric related to the software product is defined as
follows:

(6) D field (number of field defects) : the number of field
defects after six months after delivery. Here, a field
defect means a failure found in the customer’s site.

We define D field as a measure of software quality. Al-
though the number of defects is not a sufficient metric
for software quality, D field has been considered to be a
quality metric in this company.

2.3 Actual project data

In each project, effort data and defect data are recorded
manually and stored in workstations by each staff mem-
ber. Then, they are collected and summed up by the project
leader, and validated by the manager. Field defect data are
reported by a quality assurance staffmember, translated into
a defect-based number by the project leader, and also vali-
dated by the manager. All the validated data are sent to the
software engineering process group (SEPG), who analyzes
it and reports back to the project team and development or-
ganization [11].

Tables 1 and 2 show the actual effort data in 1996 and
1997, respectively. Table 3 summarizes the average and
the standard deviation of Edesign, Ereview, and Etest. Note
that these projects were selected according to some criteria
(such as the product size, cost, and so on) defined in the
company.

Table 1. Actual efforts of the projects in 1996
No. Edesign Ereview Etest

Y96-1 81.0 22.9 73.1
Y96-2 122.4 28.6 190.0
...

...
...

...
Y96-19 428.0 86.0 130.0

Table 2. Actual efforts of the projects in 1997
No. Edesign Ereview Etest

Y97-1 138.5 32.5 77.9
Y97-2 81.2 22.5 128.3
...

...
...

...
Y97-19 150.0 28.0 43.0

3 An Approach to Estimation

In this paper, we suggest a timing when the design &
coding phase in Figure 1 is finished. We thus assume that



Table 3. Fundamental statistics for Edesign,
Ereview, and Etest

Variable Average Std. Dev.
Edesign 120 77.0
Ereview 28 17.5
Etest 108 58.7

the efforts needed for design and review activities have al-
ready been known. Under such a condition, we construct a
model to estimate the testing effort needed to assure the per-
missible number of field defects. Straightforwardly speak-
ing, we estimate Etest from Edesign and Ereview according to
the field quality.

In order to establish the method, we perform the follow-
ing three phases:

Phase 1: (Investigating the efforts’ effect on the number of
field defects.)

We clarify the relationship between the effort assigned
to each activity and the number of field defects. Addi-
tionally, we prove the correctness of the correlation by
the statistical tests.

Phase 2: (Construction of a regression model for the num-
ber of field defects.)

According to the result obtained in Phase 1, we con-
struct a multiple regression model. This model clar-
ifies the multivariate relationship between efforts for
activities and the number of field defects. Then, we
prove the correctness of the model by the statistical
test.

Phase 3: (Estimation of testing effort to assure field qual-
ity.)

By transforming the regression model, we construct an
equation to calculate the testing efforts when the de-
sign and review efforts, and the permissible number of
field defects are given.

For the verification of Phase 1 and 2, we use the data of
projects performed in 1996 and 1997 (that is, all projects
shown in Tables 1 and 2). But in Phase 3, we apply the data
of projects in 1996 shown in Table 1 for model construction,
and for an experimental application of the model, we apply
the data of 1997 shown in Table 2.

4 Investigating Effects of Efforts (Phase 1)

4.1 Scheme of the proposed method

Figure 2 shows a scheme for defect injection and defect
removal. In this paper, we assume that defects are injected

during the design and coding activities. On the contrary,
those defects are detected and removed by review, test, and
debug activities. The remaining defects are delivered to cus-
tomers as field defects.

Figure 2. Defects injected and removed pro-
cess

Defects removed
by test & debug activities

Design &
 Coding 

phase

Test & 
Debug 
phase

Field defects

Defects removed
by review activities

Defects injected by design and coding activities

In this scheme, we can use three kinds of effort data
Edesign, Ereview, and Etest and a field defect data D field. In
the next subsection, we analyze their relationship.

4.2 Correlation between metrics

Firstly, we analyze the effect of software development
efforts such as design, review, and test efforts on the number
of field defects. We make the following three hypotheses
with respect to the relationship between the number of field
defects and effort assignment.

H1 : An increase in the effort assigned to the design and the
coding activities increases the number of field defects.

H2 : An increase in the effort assigned to the review activity
decreases the number of field defects.

H3 : An increase in the effort assigned to the test and the
debug activities decreases the number of field defects.



4.2.1 D field and Rdesign/total

We investigate the correlation coefficient between Edesign

and D field to confirm the hypothesis H1. Since the date of
delivery is promised and the developers have to finish the
project within a given duration in the target company, the
increase in the effort assigned to the design activity can de-
crease the efforts assigned to the review activity and test &
debug activity. Therefore, we analyzed the relationship be-
tween the ratio of effort assigned to the design activity and
the number of field defects.

The value of Spearman’s rank correlation coefficient be-
tween Rdesign/total and D field is 0.535 (p < 0.01). It implies
that the correlation between Rdesign/total and D field is rather
strong. We thus confirm the hypothesis H1.

4.2.2 D field and Rreview/design

The review process improvement activity was established in
the company and the software quality changes caused by the
review improvement were evaluated [9, 11]. For the target
projects in this paper, we consider the relationship between
the ratio of effort assigned to the review activity and the
number of field defects in order to confirm the hypothesis
H2.

We analyzed the value of Spearman’s rank correlation
coefficient between Rreview/design and D field. The coefficient
is −0.385 (p < 0.05). It implies that there is a certain de-
gree of correlation between Rreview/design and D field, since
the value of correlation coefficient is not so large.

4.2.3 D field and Rtest/total

We consider the relationship between the ratio of effort as-
signed to the test activity and the number of field defects in
order to confirm the hypothesis H3.

The value of correlation coefficient between Rtest/total and
Dfield is −0.491 (p < 0.01). It implies that the negative cor-
relation between Rtest/total and D field is rather strong.

This result shows that the increase in the effort assigned
to the test activity is still related to the decrease in the num-
ber of field defects. Therefore, it is valuable to analyze
the relationship between efforts assigned and the number of
field defects, and determine the test effort needed to assure
permissible software quality.

5 Construction of Model (Phase 2)

5.1 Regression model for D field

In order to determine the amount of testing effort which
is needed to assure the field quality, we construct a lin-
ear multiple regression model, described by Equation (1).
Equation (1) can clarify the relationship, which is derived

in subsection 4.2, among the number of field defects and
the efforts assigned to design, review, and test activities.

Dfield = b0Edesign − b1Ereview − b2Etest (1)

(b0 > 0, b1 > 0, b2 > 0)

Since the design activities can be viewed as the process
in which defects are injected, the regression coefficient of
Edesign is plus. On the contrary, since the review activities
and the test & debug activities can be viewed as the process
in which defects are removed, both regression coefficients
of Ereview and Etest are minus.

5.2 Estimation of coefficients

By applying the ordinary least squares method to the 38
project data in Tables 1 and 2, we estimated the parameters
in Equation (1). The result of estimation is summarized in
Table 4.

Table 4. Estimated values of parameters
Independent Estimated Standard p-value
variable coefficient coefficient
Edesign 0.045 1.29 < 0.0001
Ereview 0.091 0.59 0.048
Etest 0.012 0.27 0.004

The estimated coefficients are as follows:

b0 = 0.045, b1 = 0.091, b2 = 0.012

It is shown that signs of b0, b1, and b2 are plus. We thus
confirm that each of these three coefficients is significant
for Equation (1).

Coefficient of determination (R2) is a measure of how
well the model explains the variance in the dependent vari-
able, and it takes a value from 0 to 1. Statistical analysis
revealed R2 of 0.722, which implies that the model explains
72.2 percent of the variation observed in D field . When R2 is
more than 0.4, we can generally consider the value as high
coefficient. Since the value of R2 is very high, we confirm
that the constructed Equation (1) explains the variance of
the number of field defects very well.

6 Estimation of Test Effort (Phase 3)

6.1 Proposed method

From Equation (1), we obtain the following Equation
(2):

Etest = (Dfield − b0Edesign + b1Ereview)/(−b2) (2)



Equation (2) expresses the test effort (Etest) as a function
of the number of field defects (D field), the design effort
(Edesign), and the review effort (Ereview).

We propose a method for determining the test effort
needed to assure permissible software quality by using
Equation (2) and past project data. It consists of the fol-
lowing four steps:

Step 1: Calculation of b0, b1, and b2 in (2).

In this step, past project data are prepared as training
data for the regression model. Then, b0, b1, and b2

are estimated using the ordinary least squares method.
The coefficients are tested statistically.

Step 2: Assignment of a given constant to D field in (2).

In this step, we determine D field based on the require-
ments for the product or the development plan so that
the quality of the product can be assured. We call the
determined D field as the permissible number of field
defects and denote it by D̂ f ield.

Step 3: Assignment of actual values to Edesgin and Ereview

in (2).

In this step, the design effort and the review effort of
the target project are set as Edesign and Ereview respec-
tively. According to the progress of a project, E design

and Ereview are changed in the following way, if neces-
sary.

• If the design & coding phase has been completed,
then the actual data of the design effort and the
review effort are Edesign and Ereview.

• If the design & coding phase has not been
completed or the actual data are not measured,
then estimated values are assigned to Edesign and
Ereview.

Step 4: Calculation of Etest by (2).

We calculate the value of Etest by Equation (2). We
represent this calculated value by Êtest and call the test
effort needed to assure the permissible software qual-
ity. Then, Êtest is defined by the following Equation
(3).

Êtest = (D̂ f ield − b0Edesign + b1Ereview)/(−b2) (3)

As mentioned before, in this paper, assuring the field
quality means to keep the number of field defects
below the permissible number determined a priori.
Therefore, if the test effort of the project is more than
Êtest, then the number of field defects is expected to be
less than D̂ f ield.

6.2 Experimental evaluation

In Step 1, we calculated the parameters b0, b1, and b2 in
model (1) by using project data in 1996. The values of E test,
Edesign, and Ereview in 1996 are shown in Table 1. Here, we
cannot publish the actual values of D field , since these values
are confidential.

The coefficients calculated were as follows:

b0 = 0.039, b1 = 0.069, b2 = 0.011

Since the coefficient of determination (R2) is 0.743, we can
say that the estimated coefficients explain the small variance
in the number of field defects very well.

In Step 2, we determined the permissible number of field
defects. As the company intends to make lower the num-
ber of field defects as much as possible, we determined the
test effort to keep the number of field defects less than 1.
Therefore, we set the permissible number of field defects
D̂ f ield = 1.

As a result, we constructed Equation (4) from Equation
(3).

Êtest = (1 − 0.039Edesign + 0.069Ereview)/(−0.011) (4)

In Step 3, we determined to assign the actual values of
the design and the review efforts of each project in 1997
(shown in Table 2) to Edesign and Ereview in Equation (4),
respectively.

Then in Step 4, we were able to calculate Êtest for the 19
projects in 1997 from Equation (4). The calculated values
of Êtest are shown in Table 5.

In this table, Êtest represents the test effort calculated by
proposed method. “Comparison” shows the comparison re-
sult of actual Etest (please note that actual Etest is given in
Table 2) and Êtest. In this column, “©” indicates that Etest is
more than Êtest, and “×” indicates that Etest is less than Êtest.
Again, please note that projects in Tables 1 and 2 were ob-
tained according to some criteria defined in the company.

By summarizing Table 5, we classified the projects ac-
cording to the following two conditions:

C1 : Etest is more than Êtest.

C2 : No field defect was found.

The projects were classified as shown in Table 6. Table
6 provides the following two observations:

• There exist eight projects in which the test effort is
more than calculated Êtest. For seven projects out of
the eight projects, no field defect is detected.

• There exists eleven projects in which the test effort is
less than calculated Êtest. For eight projects out of the
eleven projects, some field defects are detected.



Table 5. Comparison of Êtest

No. Êtest Comparison
Y97-1 196.3 ×
Y97-2 55.8 ©
Y97-3 73.1 ×
Y97-4 85.6 ×
Y97-5 29.5 ©
Y97-6 4.0 ©
Y97-7 43.5 ©
Y97-8 40.2 ©
Y97-9 79.7 ©
Y97-10 59.2 ©
Y97-11 198.4 ×
Y97-12 42.5 ©
Y97-13 190.0 ×
Y97-14 251.3 ×
Y97-15 105.7 ×
Y97-16 124.6 ×
Y97-17 145.3 ×
Y97-18 440.1 ×
Y97-19 265.3 ×

Table 6. Classification of experimental results
Field defects Df ield

not found found Total
Testing More than Êtest 7 1 8

effort Etest Less than Êtest 3 8 11
Total 10 9 19

In order to confirm the statistical significance of these ob-
servations, we analyzed the relationship between C 1 and C2

by using Fisher’s exact probability test. Fisher’s exact prob-
ability test calculates an exact probability value for the rela-
tionship between two dichotomous variables, as found in a
two by two cross table like Table 6. For Table 6, the Fisher’s
test would determine whether the two groups, E test is more
than Êtest or less than Êtest, differ significantly in the pro-
portion of “not found” and “found”. The null hypothesis is
that C1 and C2 are independent. The level of significance is
chosen as 0.05. The calculated p-value of Fisher’s exact test
for the table becomes 0.0198. Then, the null hypothesis is
rejected at the 0.05 level.

As a result, we can say that there are some correlation
between the estimated test efforts and field defects. That is,
the calculated testing efforts Êtest can be a threshold of the
testing efforts to keep the number of field defects less than
D̂ f ield = 1.

7 Conclusion

We proposed a method to determine efforts that should
be assigned to the test & debug phase to assure the permis-
sible software quality. To do so, firstly, we constructed a lin-
ear multiple regression model that explains the relationship
between the number of field defects and the development
efforts. Several statistical analyses using the actual project
data confirmed that the constructed model nicely explains
the data of target projects. Then, in order to calculate the
test effort needed to assure permissible quality, we got an
equation by transforming the constructed regression model.

As a result of experimental evaluation using actual
project data, we confirmed that the following two results:
(1) As for projects having larger test effort than calculated,
no field defect was detected, and (2) As for projects hav-
ing test effort less than calculated effort, some field defects
remained.

However, this result only shows that our proposed
method is applicable to the targeted projects in a certain
company. To generalize it, we need to apply the proposed
method to more data of other software projects. It is one of
our most important future works.

References

[1] D. B. Bisant and J. R. Lyle. A two-person inspection
method to improve programming productivity. IEEE
Trans. on Software Engineering, 15(10):1294–1304,
1989.

[2] M. Diaz and J. Sligo. How software process improve-
ment helped motorola. IEEE Software, 14(5):75–81,
1997.

[3] M. E. Fagan. Advances in software inspections.
IEEE Trans. on Software Engineering, 12(7):744–
751, 1986.

[4] N. E. Fenton and M. Neil. A critique of software de-
fect prediction models. IEEE Trans. on Software En-
gineering, 25(5):675–689, 1999.

[5] N. E. Fenton and S. L. Pfleeger. Software Metrics :
A Rigorous & Practical Approach. PWS Publishing,
1997.

[6] W. S. Humphrey. A Discipline for Software Engineer-
ing. Addison-Wesley, MA, 1995.

[7] M. S. Krishnan and M. I. Kellner. Measuring pro-
cess consistency: Implications for reducing soft-
ware defects. IEEE Trans. on Software Engineering,
25(6):800–815, 1999.



[8] J. D. Musa, A. Iannino, and K. Okumoto. Soft-
ware reliability: measurement, prediction, applica-
tion. McGraw-Hill, 1987.

[9] K. Sakamoto. A study of software process improve-
ment and quality control based on analyses of ac-
tual project data. PhD thesis, Department of Infor-
mation Systems, Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, 2000.
NAIST-IS-DT9861009.

[10] Standards Coordinating Committee of the IEEE Com-
puter Society. IEEE Std 610.12-1990. The Institute of
Electrical and Electronics Engineers, Inc., 1990.

[11] Y. Takagi, T. Tanaka, N. Niihara, K. Sakamoto,
S. Kusumoto, and T. Kikuno. Analysis of review’s
effectiveness based on software metrics. In Proc. of
5th International Symposium on Software Reliability
Engineering, pages 34–39, 1995.

[12] M. Takahashi and Y. Kamayachi. An empirical study
of a model for program error prediction. In Proc. of
8th International Conference on Software Engineer-
ing, pages 330–336, 1985.

[13] T. Tanaka, K. Sakamoto, S. Kusumoto, K. Matsumoto,
and T. Kikuno. Improvement of software process by
process description and benefit estimation. In Proc. of
17th International Conference on Software Engineer-
ing, pages 123–132, 1995.

[14] S. Yamada and M. Takahashi. Introduction to software
management model. Kyoritsu books (in Japanese),
1993.


