
Eliminaton of Crucial Faults by a New Selective Testing Method

Masayuki Hirayama†,‡, Tetsuya Yamamoto†, Jiro Okayasu†, Osamu Mizuno‡, and Tohru Kikuno‡
† R&D Center, System Engineering Lab., TOSHIBA Corporation, Japan.

E-mail: masayuki.hirayama@toshiba.co.jp
‡ Graduate School of Information Science and Technology, Osaka University, Japan.

Phone: +81-6-6850-6566 E-mail: {o-mizuno, kikuno}@ist.osaka-u.ac.jp

Abstract

Recent software systems contain a lot of functions to pro-
vide various services. According to this tendency, software
testing becomes more difficult than before and cost of test-
ing increases so much, since many test items are required.
In this paper, we propose and discuss such a new selective
software testing method that is constructed from previous
testing method by simplifying testing specification.

We have presented, in the previous work, a selective test-
ing method to perform highly efficient software testing. The
selective testing method has introduced an idea of functional
priority testing and generated test items according to their
functional priorities. Important functions with high priori-
ties are tested in detail, and functions with low priorities are
tested less intensively. As a result, additional cost for gener-
ating testing instructions becomes relatively high. In this pa-
per, in order to reduce its cost, we change the way of giving
information with respect to priorities. The new method gives
the priority only rather than generating testing instructions
to each test item, which makes the testing method quite sim-
ple and results in cost reduction. Except for this change, the
new method is essentially the same as the previous method.
We applied this new method to actual development of soft-
ware tool and evaluated its effectiveness. From the result of
the application experiment, we confirmed that many crucial
faults can be detected by using the proposed method.

Keywords: Selective testing, test case prioritization,
functional testing.

1 Introduction

Along with the expansion of the application field for soft-
ware, the size and complexity of software have been expand-
ing. Software with large size or high complexity provides
various functions. These functions are basically black box
functions for ordinary users [1], and the main concern of

users is whether the behaviors and functions, which the tar-
get system provides, satisfy their purpose.

On the other hand, confirmation of functions’ behavior
from the user’s viewpoint is performed in the system test-
ing. Thus, in the software quality assurance, system testing
has played an important role. However, the growing size
of software exerts serious influence on software system test-
ing [10]. That is, the amount of testing required also in-
creases since large software contains many functions, oper-
ations and behaviors, all of which should be tested [1,9,14].

Generally, faults do not exist uniformly in software.
Moreover, the influence on the user or the system varies
among faults. From the viewpoint of efficiency in testing,
focusing the portions which contain many crucial faults, and
then testing these portions with high priorities, and finally
eliminating these crucial faults are more effective. These
portions with many crucial faults can be said the dangerous
portions with respect to software quality [11].

Regarding the prioritizing test, various studies have been
reported [2–6,12,13,15].

Much research on test item reduction concerns regression
test item reduction. Rothermel et al. proposed a test selec-
tion method using the information on differences in several
versions’ of the software and the information on testing cov-
erage in the first version, and confirmed the effectiveness
of their method [12, 13]. Related with this research, Har-
rold et al. proposed a cost effectiveness evaluation method
in the regression testing using the Rothermel’s method [6].
Elbaum et al. also proposed test item reduction in the re-
gression testing and performed empirical evaluation of their
method [3, 4]. They can control regression test items suc-
cessfully by evaluating the statement coverage and func-
tional coverage. On the other hand, Binkley et al. used the
semantic difference of source codes and proposed a selection
method of test items [2]. Wong et al. proposed a test item
reduction technique based on the path coverage evaluation
in the system execution [15].

Thus, test item reduction techniques in regression test-
ing proposed so far are mainly based on the idea of using

1

difference information among the various software versions
or the idea of using testing coverage information and faults
information. However, these ideas are only available in the
regression testing, and it is difficult to apply them to newly
developing software. Moreover, even if the target software is
the updated software, these techniques are not always effec-
tive for software which has a very complicated structure and
high dependency between newly developing portions and
existed portions. In addition, it is difficult to apply the tech-
nique based on the source code difference information, be-
cause functions to which a user assigns great importance, do
not always coincidence with functions in source code mod-
ules.

In the previous work [7], we have presented a basic idea
of the selective testing method to grasp dangerous portions
in the target software in advance. The selective testing
method has introduced the evaluation models (viewpoints)
and metrics, which characterize each function in target soft-
ware from probabilistic safety viewpoints. By using these
models and metrics, dangerous portions in the target soft-
ware are identified and are assigned high priorities in test-
ing.

However, giving testing instructions for each test item
was a little troublesome. In other words, additional cost
needed for generating test instructions become relatively
high. In order to reduce such additional effort, we reconsider
the way of giving detail instruction for each test item, and re-
vise our selective testing method. In this paper, we present
a revised selective testing method, which gives a priority in-
formation only rather than generating testing instructions for
each test item. Then, we also report an application example
of the revised method, in which we discuss the effectiveness
of the revised selective testing method.

In this paper, we will propose a simple procedure to pri-
oritize the functions to be tested, while rather rigorous data
is requested to use the conventional prioritizing method in
[2–6, 12, 13, 15]. During the case study of application, we
will confirm that the proposed method can be applied in the
actual software testing.

2 Selective Testing Using Function Prioritiz-
ing

2.1 Outline of the proposed method

Generally speaking, the selective testing method tries to
achieve the reliable detection of crucial faults that should be
removed before shipment. The method enables the extrac-
tion of test items directly relating to these crucial faults for
various functions that the software provides. Here, the “cru-
cial faults” that should be removed are classified into the
following two types:

Type 1: Fatal faults, which are related to important func-
tions for users or systems, or

Type 2: Critical faults having severe influence on the sys-
tem reliability or system safety.

In order to detect these crucial faults, we introduced the
functional priority and fault severity to perform test item se-
lection.

The proposed selective testing method consists of three
phases: functional priority assignment, test specification de-
signing, and test planning. Figure 1 shows the outline of the
proposed method.

Step 1 (Function priority assignment): The functions that
the target system provides are first prioritized from var-
ious viewpoints. (Here we consider these kinds of
viewpoints: system’s viewpoint, user’s viewpoint, and
developer’s viewpoint, which will be described in the
next subsection.)

Step 2 (Test specification construction for each function):
The specifications for testing are constructed taking
into account the functional priority. More detailed test
items are constructed for the functions with higher test-
ing priority. On the contrary, for functions with low
priority, less severe test specifications are constructed.
The priority of test items inherits the priority of the
function. By changing the detailed level of test spec-
ifications, the quality and quantity of software testing
can be controlled.

Step 3 (Test planning): The sequential order of testing is
also determined by taking into account the priority of
each test item. Thus, we can effectively utilize the time
for the testing and obtain the maximum reliability in a
limited time.

In this paper, we try to simplify Step 2 only (that is, Step
1 and Step 3 are the same as in [7]). The difference will be
described in subsection 3.2.

2.2 Viewpoints and metrics

In order to extract important functions, our method pays
attention to three viewpoints: the system’s viewpoint, user’s
viewpoint and developer’s viewpoint.

V1: System’s viewpoint Attention should be paid to func-
tions which play important roles in the target system.
These functions are likely to play various roles with
their complex structure and large code size, or they are
often developed by using existing codes having a sim-
ilar function. For these reasons, this viewpoint can be
evaluated by measuring the size or complexity and the
reuse ratio of the software.

2

Function list

Function list
with priorities

Evaluation
viewpoint

Test specification

Test plan

(Step 1)
Function priority
assignment

(Step 2)
Test specification construction
for each function

(Step 3)
Test planning
(Resource assignment, etc.)

Figure 1. Outline of selective testing method

Table 1. Metrics for evaluation
Viewpoints Metrics

V1: System’s view M1,1: Size of function
M1,2: Complexity of function
M1,3: Ratio of newly developed
M1,4: Ratio of reuse
M1,5: Quality of reused code

V2: User’s view M2,1: Frequency of use
M2,2: Complexity of use scenario
M2,3: Impact of a function

V3: Developer’s view M3,1: Developer’s skill
M3,2: Experience of similar projects

V2: User’s viewpoint This is the viewpoint of those who
use the target system. For this viewpoint, the complex-
ity of the use scenario, the use frequency, and the fault
impact of these functions are considered. In the case of
software for cellular phones, for example, the functions
of importance to young users are quite different from
those important to elderly users. The user’s viewpoint
is a factor that is closely related to the faults which oc-
cur after the system is released, and to the impact of the
faults.

V3: Developer’s viewpoint Generally, engineers who de-
veloped the target system have good knowledge re-
garding its functional structure or functional relations.
From their point of view, target functions playing core
roles in the system are selected to be remarkable.

In the testing priority assignment, the test priority for
each function is quantitatively evaluated, referring to the

viewpoints mentioned above. Metrics (Mi, j) are prepared
for each viewpoint (Vi) as shown in Table 1. Determining
the metrics to be used is an important issue. In this study,
we use the metrics that have been determined and used in
the company, since it is the most familiar way to introduce
the proposed testing method into the development field. For
example, regarding a system viewpoint (V1), five metrics
are prepared: M1,1 for functional size, M1,2 for complexity
of functions, M1,3 for the ratio of newly developed portion,
M1,4 for reuse ratio, and M1,5 for quality of reused code.
Each metric has three levels of a value. This value is deter-
mined subjectively by the testing coordinator. For example,
as for the functional size, the values 1, 2, and 3 are assigned
according to the amount of functional specifications such as
small, medium, and large, respectively.

When we consider the priority for function K, for exam-
ple, the value of an evaluation metric Mi, j is expressed by
Xi, j, and the weight for this metrics is by Wi, j. The test pri-
ority for function K (P(K)) is calculated by the following
formula, where the weight for the metrics Wi, j takes a value
from 0 to 1.0.

P(K) =
∑

Wi, j × Xi, j

At this point, the function P(K) is a simple summation of
weighted metrics, since all metrics used in this study have
linear values. Thus, some other function would be appropri-
ate for different metrics. Investigating the most appropriate
function is remained as a future research.

In the case study to be described later, we assign 0
weights to the metrics in System’s and Developer’s view-
points, since the testing in this case study is in the final ac-
ceptance test phase and thus the User’s viewpoint is consid-
ered to be the most important.

3 Detailed Procedure for Steps 1, 2, and 3

As already pointed out, the current version of the selec-
tive testing method tries to reduce the testing cost by simpli-
fying the procedure for Step 2.

In this section, we show objectives and operations of
each step. To make each step more understandable, we will
present concrete example in Section 4.

3.1 Priority assignment for functions (Step 1)

The priority of functions is determined by three steps as
follows:

Sub-step 1-1 Determination of the priority evaluating
framework

In order to assign the priority of functions, viewpoints
for the evaluation are determined in advance. Each

3

evaluating viewpoint has several metrics for the eval-
uation. In addition, the testing strategy that adjusts the
weighting of the metrics is determined.

Sub-step 1-2 Extraction of functions to be tested.

Based on the specification document of the software,
the functions to be tested are extracted.

Sub-step 1-3 Assignment of the priorities for functions.

The test priority of each function is determined, refer-
ring to the evaluated features by the weighted metrics.
In this method, we consider three kinds of priorities:
high, medium, and low. The evaluation is made from
the viewpoints of use case information and features of
the product.

Thus the sub-steps 1-2 and 1-3 of the proposed method
extract functions to be tested and prioritized them.

3.2 Construction of test specifications (Step 2)

The step of test specification construction consists of two
sub-steps as follows:

Sub-step 2-1 Generation of test items.

In order to test each prioritized function, test items are
specifically generated. For the functions with high pri-
ority, detailed test items are generated by using devi-
ation analysis, taking into account operation patterns
deviating from typical ones [8]. For the functions with
low priority, only the test items for basic operation pat-
terns are generated. Note that the priority of the test
items inherits the priority of the function.

Sub-step 2-2 Construction of testing specification.

For the test items generated at sub-step 2-1, the as-
signed priority is clearly described. In this method, we
consider three kinds of priorities: high, medium, and
low, again. Moreover, the test operators are proposed
to test more carefully for the test items with “high” pri-
ority. On the other hand, for the test items with “low”
priority, it is described that less efforts should be payed
for the testing.

In Sub-step 2-2 of the current version, we assign the priority
only for each test item. On the contrary, in the original ver-
sion [7], we generated testing instructions for the test items.
Additionally, depending on the priorities, we changed the
levels of descriptions. That is, detailed instructions are as-
signed for high priority, and basic instructions are assigned
for low priority.

3.3 Test planning (Step 3)

The sequential order of the testing and the testing oper-
ators are determined based on a consideration of the avail-
able time and resources. In order to assure high reliability in
a limited time, crucial faults should be detected as early as
possible.

In the test planning, we should determine the sequential
order of testing by taking into account the priority of test
items and the easiness of testing. For the test items with
high priority, skilled operators are assigned. These results
are summarized in the test plan document, and used for the
testing operation.

4 Case Study: Construction of Test Specifica-
tion

We applied our selective testing method to actual devel-
opment of a software functional testing support tool(FTST)
in a certain company. In this application, we generated test
specifications by prioritizing the target functions. In this sec-
tion, we show construction of test specification. As for eval-
uation of the resultant test specification, we will present case
study in Section 5.

The FTST is a software tool that has a test priority as-
signment function, an automatic test priority score calculat-
ing function, a testing strategy setting function, and so on.
The main specifications of this software are summarized as
follows:

Language: C language.

Size of software: About 30000 LOC.

Degree of reuse: All newly developed.

4.1 Result of Step 1

As an application example, test items for the functions
in the FTST are prioritized by using the above-mentioned
selective testing method. For the priority assignment, we
adopted the user’s viewpoint (V2) and evaluated three met-
rics: M2,1, the frequency of use, M2,2, the complexity of the
use scenario, and M2,3, the impact of a function. For exam-
ple, as for the metric M2,1, the frequency of use is measured
by the questionnaire to the users by selecting the following
three degrees, 1 day, 1 week, or 1 month. Moreover, we
adopted an even-weight test strategy, i.e. the same weight is
assigned for each metric. Then, the priority score is calcu-
lated by the following formula.

P(K) = 1.0 × M2,1 + 1.0 × M2,2 + 1.0 × M2,3

4

Table 2. An example of function prioritizing (at Sub-step 1-3)

,

,

,

,

,

]

]

]

]

]

Test strategy
window

Score
calculation

Evaluation
view setting
window

Evaluation
view setting
window

Main
window

Save the test
strategy in the DB

Show the
calculated score

Cancel

Explain the
meanings of each
evaluation

Select an item file,
or a metrics DB

Function
ID

...

High

Low

Low

Medium

High

PriorityScore

7[3, 3, 1][52

4[1, 2, 1][44

............

4[1, 1, 2][30

5[1, 2, 2][28

7[3, 2, 2][4

Metrics

[M2,1, M2,2, M2,3]

Functions

[Category, Operation]

In the target software, we can consider that three prop-
erties, the frequency of use, the complexity of the use sce-
nario, and the impact of a function have almost the equal
affects for the testing. That is why we assigned the equal
weights (= 1.0) in the above formula.

Table 2 shows main functions to be tested, their expected
behaviors or operations and an example of the calculated
priority for each function. For each function, the values of
corresponding metrics are first presented. Then, the score is
calculated by the formula P(K). For this application experi-
ment, functions having a calculated score of 6 or higher are
regarded as high priority functions. Similarly, those having
a score ranging from 4 to 6 are regarded as medium prior-
ity functions, and those having 4 or smaller as low priority
functions. Since we performed the experiment in the actual
software development, we have to choose the practical way
for the selection of test items. That is, we have to increase
the number of test items to be tested to prevent missing crit-
ical faults. That’s why we expand the range of high priority
functions twice as large as that of medium priority functions.

For example, the function ID-4 is a function that displays
a main window of FTST. Concerning with this function, the
frequency of use is 3, the complexity of use scenario is 2,
and the impact of faults is 2. The score of this function is
determined to be 7. From this score, this function is regarded
as a high priority function.

4.2 Result of Step 2

In this case study, we focus on Sub-step 2-2 of the pro-
posed testing method and investigate the effects of priority
information to be assigned for each test item. We therefore
did not control the way in which the test items were gener-
ated at Sub-step 2-1.

At Sub-step 2-1, the required operation for checking the

behavior and expected results are described. Figure 2 shows
an example of test specifications which is extracted from the
analysis results for the behavior of the FTST. For this ex-
ample, concerning the “Evaluation view setting window” of
ID-28 function, a detailed test item “Select the target evalua-
tion window” is generated. Concerning the function ID-52,
3 detailed test items “Press ‘Save’ button (ID-52-1),”, “At
reconfirm mode, press ‘Save’ button (ID-52-2),” and “At re-
confirm mode, press ‘Cancel’ button (ID-52-3),” are gener-
ated.

At Sub-step 2-2, we describe the priority for each test
item. The test item’s priority is inherited from the function
to be tested. For example, the test items ID-52-1, ID-52-2,
and ID-52-3 have high priority since the function ID-52 has
high priority. Similarly, the test item 28 has medium priority
inherited from the function ID-28.

5 Case Study: Application to Software Test-
ing

5.1 Purpose of experimental application

An example of test specification generation, taking into
account functional priority based on the selective testing
method, was shown in the previous section. In this section, a
case study is conducted to apply this test specification doc-
ument to actual development of the FTST. To be precise,
the case study is to test the code for the FTST. For the case
study, two independent testing teams, Team-A and Team-
B, were organized in order to verify the effectiveness of the
proposed method. Team-A used a test specification docu-
ment prepared by the selective testing method described in
Section 4 and Team-B used an ordinary test specification
document prepared in a conventional manner.

5

HighAfter showing the confirmation, test
strategy is saved in the DB.

At the reconfirm mode,
press "Save" button.

52-2

Back to "Test strategy setting
window."

Test strategy is saved in the DB.

Displays an explanation of the
selected evaluation viewpoint.

Expected results

High

High

Medium

Priority

Press "Save" button.52-1

At the reconfirm mode,
press "Cancel" button.

52-3

Test itemsID

Select the target
evaluation viewpoint.

28

Functions with the priority

Generated test items for functions

,

,

]

]
Test strategy
window

Evaluation
view setting
window

Save the test
strategy in the DB

Explain the
meanings of each
evaluation

Function
ID

High

Medium

PriorityScore

7[3, 3, 1][52

5[1, 2, 2][28

Metrics

[M2,1, M2,2, M2,3]

Functions

[Category, Operation]

Figure 2. Generation of test items (at Sub-step 2-1)

Our main objective of this case study is to gain the appli-
cation example of the proposed method. In this experimental
application, the evaluation was focused on the following two
questions:

• By determining priority, are a larger number of fatal
faults detected for the function with a higher priority?

• By determining priority, does any difference arise in
the detection of critical faults related to reliability and
safety?

5.2 Outline of the case study

As Figure 3 shows, two independent test teams were pre-
pared. One team (Team-A) performed the proposed testing
method and the other team (Team-B) performed the conven-
tional test method. In the conventional test, all test items
were tested in the order of the test specifications. Since
the objective of this experiment is to evaluate prioritizing
for functions, we control the experiment with the following
conditions:

1. At first, we construct test specifications by the conven-
tional method (we call it PB.), and Team-B uses this
specification PB in the experiment.

2. On the other hand, the test specification PA is con-
structed by assigning priorities for functions that are

calculated according to the metrics. Team-A uses the
test specification PA in the experiment.

3. In order to avoid the deviation due to the engineers
skill, engineers who have almost the same technical ex-
perience and skill were assigned to both teams.

Here, we have to explain how to construct the test speci-
fication by the conventional method. In this method, firstly,
the functional specification is carefully read and understood
by the constructor of test specification. Next, the constrac-
tor generates the test specification so that the test items in
the test specification can trace all possible operations de-
scribed in the functional specification. As a result, the size
of test specification becomes rather large. Furthermore, in
the conventional method, test items are listed up in the order
of functional specification document without any priority in-
formation.

The number of test items generated by the conventional
method in the PB was 155. We should notice that no priority
information is given to test items in the P B. Thus, the test
engineers in Team-B cannot use any priority information for
test items.

By applying the proposed method, PA includes 155 test
items with priority information: 53 items were classified as
high priority, 72 items as medium priority, and 30 items as
low priority. Concerning to the test execution, the test engi-
neers on Team-A are only instructed the priority information
(that is, the priority itself) for each test item.

6

Proposed method

Next step

Test team A Test team BCoordinator

Specification Test item generation
by conventional method

Function prioritizing

Test specification generation

Test planning

Test specification for
Team-B (PB)

Testing with PA
Testing with PB

Debugging

Test specification for
Team-A (PA)

Detected faults (nA) Detected faults (nB)

Figure 3. Outline of experiment

The period of time for each cycle was about one week,
and the total duration of testing for these two teams were
almost the same.

5.3 Results of experimental application

Table 3. Result of experiment

Priority of
test items/
functions

39534Total

211Low

14212Medium

23221High

TotalMinorCritical

Seriousness of faultsProposed method
(Team-A)

Priority of
test items/
functions

381721Total

963Low

16511Medium

1367High

TotalMinorCritical

Seriousness of faultsConventional method
(Team-B)

(a) Fault detection

The results obtained from the experimental application are
shown in Table 3. The number of faults detected in the ex-
perimental application is shown in a matrix form expressed
in terms of test priority and the seriousness of the faults.
The “Priority of test items/functions” in the table means the
priority for test items that is determined from the evaluated
results of viewpoints and metrics. As explained in subsec-
tion 4.2, based on the calculated score, the priority is classi-
fied into three levels: high, medium, and low. The priority
High is assigned for the score of 6.0 or higher, the priority
Medium is for the score ranging from 4.0 to 6.0, and the
priority Low is for the score of 4.0 or smaller. The “serious-
ness of faults” means the seriousness if the fault occurs. The
seriousness is also classified into the following two levels:

Critical: Faults that seriously deteriorate the system reli-
ability or product safety (For instance, a critical fault
makes the system run out of control or halt).

Minor: Faults whose impacts are relatively small and many
users can continue the operation without any trou-
bleshooting (For instance, a simple indicator error is
a minor fault).

In this case study, it is required for the testing to find as many
critical faults as possible since it is in the final acceptance

7

testing phase. Under such a requirement, the seriousness of
detected faults are classified into above two levels.

The numbers of faults detected by teams A and B, were
39 and 38, respectively, which are close to each other. How-
ever, by investigating in more detail, we can find advantages
of the proposed method from the viewpoints of functions’
priorities and seriousness of faults.

(b) Detection of fatal faults

Here, we consider the number of detected fatal faults, which
are related to high priority functions. As shown in Table 3,
13 faults in total were detected by using the conventional
method including all seriousness levels. On the other hand,
23 faults were detected in total by the selective method. For
this experimental application, a function with high priority
means that the frequency of its use is very high, faults related
to the function cause critical damage if they occur, or the use
scenario is complicated and numerous faults may easily be
incorporated.

(c) Detection of critical faults

Regarding the detection of critical faults, the conventional
method detected 21 critical faults, and the proposed method
detected 34 critical faults. Focusing the functions with high
priority, 21 critical faults were detected by using the pro-
posed method, while the conventional method could detect
only 7 critical faults in the functions with high priority. This
fact shows that the proposed method has higher ability to
detect “critical” faults in comparison with the conventional
method. Furthermore, from the detailed investigations on
the faults detected by both teams, it was shown that the most
of the critical faults detected in the conventional method
were also detected by the proposed method in this experi-
ment. In other words, some critical faults may not be de-
tected in the conventional method. We can say that the pro-
posed method can perform more effective testing than the
conventional method.

However, in this experiment, we cannot collect actual re-
liability data such as the number of faults detected after the
shipment. The investigation using actual reliability data on
the field is one of the most important future research.

With summarizing the results (a), (b), and (c) of the ex-
perimental application, we can confirm the followings:

1. The proposed testing method can effectively detect crit-
ical faults for the target software (as described in part
(c) of subsection 5.3).

2. Fatal faults related to high priority functions are de-
tected more intensively than in the case of conventional
method (as described in part (b) of subsection 5.3).

Comparing between these two experiments’ results, the
new method in this experiment can detect the same or more
faults than the original method [7].

6 Conclusion

In this paper, we have proposed a new testing method
based on the priorities of functions in software. The priori-
ties are calculated from the system’s viewpoint, the user’s
viewpoint, and the developer’s viewpoint. The proposed
method consists of three successive phases: priority assign-
ment, test specification construction, and test planning. Pre-
cisely speaking, the proposed method is designed from the
previous testing method by adopting a simplified test speci-
fication.

In order to show the effectiveness of the proposed
method, we performed an experimental application. In this
application, functions were prioritized from the users’ view-
point, and for test items the priorities are calculated by test
specification construction. It was shown that by adopting
the proposed method, both critical and fatal faults were suc-
cessfully detected.

In the future, we would like to further investigate the pri-
oritizing method for functions or test items from other view-
points, and try to confirm the effectiveness of the method
by applying to the software testing of actual developments.
Moreover, we must continue the study on the assigning the
test resources and scheduling the test phase.

Acknowledgment

Authors would like to thank anonymous reviewers who
suggested many useful comments to brush up this paper.

References

[1] B. Beizer. Black-Box Testing. John Wiley & Sons,
New York, 1995.

[2] D. Binkley. Semantics guided regression test cost
reduction. IEEE Trans. on Software Engineering,
23(8):498–516, Aug. 1997.

[3] S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Test case prioritization: A family of empirical studies.
IEEE Trans. on Software Engineering, 28(2):159–182,
Feb. 2002.

[4] S. Elbaum and G. Rothermel. Incorporating varying
test costs and fault severities into test case prioritiza-
tion. In Proc. of 23rd InternationalConference on Soft-
ware Engineering, pages 329–338, 2001.

8

[5] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach
to regression testing using slicing. In Proc. of Inter-
national Conference on Software Mentenance, pages
299–308, 1992.

[6] M. J. Harrold, D. Rosenblum, G. Rothermel, and
E. Weyuker. Empirical studies of a prediction model
for regression test selection. IEEE Trans. on Software
Engineering, 27(3):248–263, Mar. 2001.

[7] M. Hirayama, T. Kishimoto, O. Mizuno, and
T. Kikuno. A selective software testing method based
on priorities assigned to function modules. In Proc.
of 2nd Asia-Pacific Conference on Quality Software,
pages 259–267, 2001.

[8] M. Hirayama, O. Mizuno, and T. Kikuno. Generat-
ing test items for checking illegal behavior in software
testing. In Proc. of 9th Asian Test Symposium, pages
235–240, 2000.

[9] B. Marick. The craft of software testing: subsys-
tem testing including object-based and object-oriented
testing. Prentice-Hall, NJ, 1995.

[10] D. M. Marks. Testing very big systems. McGraw-Hill,
1992.

[11] K. Onoma, W. T. Tsai, M. Poonwala, and H. Sug-
anuma. Regression testing in an industrial environ-
ment. Communications of the ACM, 41(5):81–86,
1988.

[12] G. Rothermel and M. J. Harrold. Empirical studies of
a safe regression test selection technique. IEEE Trans.
on Software Engineering, 24(6):401–419, June 1998.

[13] G. Rothermel, R. H. Untch, C. Chu, and M. J. Har-
rold. Prioritizing test cases for regression testing. IEEE
Trans. on Software Engineering, 27(10):929–948, Oct.
2001.

[14] I. Sommerville. Software Engineering. Addison-
Wesley, MA, 4 edition, 1992.

[15] W. Wong, J. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In
Proc. of 8th International Symposium on Software Re-
liability, pages 230–238, 1997.

9

