
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2012, Article ID 924923, 8 pages
doi:10.1155/2012/924923

Research Article

Can Faulty Modules Be Predicted by Warning Messages of
Static Code Analyzer?

Osamu Mizuno and Michi Nakai

Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan

Correspondence should be addressed to Osamu Mizuno, o-mizuno@kit.ac.jp

Received 5 January 2012; Accepted 24 February 2012

Academic Editor: Chin-Yu Huang

Copyright © 2012 O. Mizuno and M. Nakai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We have proposed a detection method of fault-prone modules based on the spam filtering technique, “Fault-prone filtering.” Fault-
prone filtering is a method which uses the text classifier (spam filter) to classify source code modules in software. In this study, we
propose an extension to use warning messages of a static code analyzer instead of raw source code. Since such warnings include
useful information to detect faults, it is expected to improve the accuracy of fault-prone module prediction. From the result of
experiment, it is found that warning messages of a static code analyzer are a good source of fault-prone filtering as the original
source code. Moreover, it is discovered that it is more effective than the conventional method (that is, without static code analyzer)
to raise the coverage rate of actual faulty modules.

1. Introduction

Recently, machine learning approaches have been widely
used for fault-proneness detection [1]. We have introduced
a text feature-based approach to detect fault-prone modules
[2]. In this approach, we extract text features from the freq-
uency information of words in source code modules. In other
words, we construct a large metrics set representing the freq-
uency of words in source code modules. Once the text fea-
tures are obtained, the Bayesian classifier is constructed from
text features. In the fault-prone module detection of new
modules, we also extract text features from source code mod-
ules, and Bayesian model classifies modules into either fault-
prone or nonfault-prone. Since less effort or cost needed to
collect text feature metrics than other software metrics, it
may be applied to software development projects easily.

On the other hand, since this approach accepts any input
with text files, the accuracy of prediction could be improved
by selecting appropriate input other than raw source code.
We then try to find another input but source code. In this
study, we use warning messages of a static code analyzer.
Among many static code analyzers, we used PMD in this
study. By replacing the input of fault-prone filtering from raw

source code to warning messages of PMD, we can get the re-
sults of prediction by PMD and fault-prone filtering.

The rest of this paper is organized as follows. Section 2
describes the objective of this research. Section 3 shows a
brief summary of the fault-prone filtering technique with
PMD. In Section 4, the experiments conducted in this study
are described. Section 5 discusses the result of the experi-
ments. Finally, Section 6 concludes this study.

2. Objective

2.1. Fault-Prone Module Filtering. The basic idea of fault-
prone filtering is inspired by the spam mail filtering. In the
spam e-mail filtering, a spam filter first trains both spam and
ham e-mail messages from the training data set. Then, an
incoming e-mail is classified into either ham or spam by the
spam filter.

This framework is based on the fact that spam e-mail
usually includes particular patterns of words or sentences.
From the viewpoint of source code, a similar situation
usually occurs in faulty software modules. That is similar
faults may occur in similar contexts. We thus guessed that
similar to spam e-mail messages, faulty software modules

2 Advances in Software Engineering

have similar patterns of words or sentences. To obtain such
features, we adopted a spam filter in fault-prone module
prediction.

In other words, we try to introduce a new metric as a
fault-prone predictor. The metric is “frequency of particular
words.” In detail, we do not treat a single word, but use com-
binations of words for the prediction. Thus, the frequency
of a certain length of words is the only metric used in our
approach.

From a viewpoint of effort, conventional fault-prone de-
tection techniques require relatively much effort for applica-
tion because they have to measure various metrics. Of course,
metrics are useful for understanding the property of source
code quantitatively. However, measuring metrics usually
needs extra effort and translating the values of metrics into
meaningful result also needs additional effort. Thus, easy-to-
use technique that does not require much effort will be useful
in software development.

We then try to apply a spam filter to identification of
fault-prone modules. We named this approach as “fault-
prone filtering.” That is, a learner first trains both faulty and
nonfaulty modules. Then, a new module can be classified
into fault-prone or notfault-prone using a classifier. In this
study, we define a software module as a Java class file.

Essentially, the fault-prone filtering does the text classifi-
cation on the source codes. Of course, the text classification
can be applied to the text information other than the source
codes. We guessed that there is the other input for the text
classification to achieve higher prediction accuracy. We then
started seeking such information.

2.2. Static Code Analysis. The static code analysis is a method
of analyzing without actually running software and finding
the problem and faults in a software. By analyzing a source
code structurally, we can find potential faults, violation of
coding conventions, and so on. The static code analysis thus
can assure the safety of software, reliability, and quality. It
also reduces the cost of maintenance. In recent years, the
importance of static code analysis has been emerging since
finding potential faults or security hole is required at an early
stage of the development. There are many kinds of tools for
the static code analysis available [3]. Among them, we used
the PMD (the meaning of PMD is not determined. “We have
been trying to find the meaning of the letters PMD—because
frankly, we do not really know. We just think the letters sound
good together” [4]), since it can be applicable to the source
code directly.

The PMD is one of static code analysis tools [5]. It is an
open-source software and written in Java, and it is used for
analyzing programs written in Java. PMD can find the code
pieces that may cause the potential faults such as an unused
variable and an empty catch block by analyzing the source
code of Java. To do so, PMD has a variety of rule sets. Accord-
ing to the rule sets to be used, a broad range of purposes from
the inspection of coding conventions to find potential faults
can be used.

2.3. Characteristics of the Warning Messages of the Static Code
Analyzer. Warning messages of a static code analyzer include

rich information about potential faults in source codes.
Figure 1 shows an example of warning messages. Usually, the
number of warning messages generated by the static code
analyzer becomes large in proportion to the length of source
code. Since most of the messages are not harmful or trivial,
warning messages are often ignored. It can be considered that
these warning messages are quality aspects of the source
code. Thus, we consider that the warning messages have less
noise for fault-prone module prediction.

As mentioned in Section 2.1, applying the text informa-
tion to the text classifier is an easy task. We thus implement
the fault-prone filtering technique to use the warning mes-
sages of the static code analyzer. We then conduct experi-
ments to confirm the effects of the warning messages to the
performance of the fault-prone filtering approach.

2.4. Research Questions. In this study, we aim at answering
the following research questions:

RQ1: “can fault-prone modules be predicted by ap-
plying a text filter to the warning messages of a static
code analyzer?”

RQ2: “if RQ1 is true, is the performance of the fault-
prone filtering becomes better with the warning mes-
sages of a static code analyzer?”

RQ1 tries to find a possibility to apply the warning mes-
sages to the fault-prone filtering technique. RQ2 investigates
the prediction performance.

3. Fault-Prone Filtering with PMD

3.1. Applying PMD to Source Code. We used 10 rule sets of
PMD in a standard rule sets: Basic, Braces, Code Size, Coupl-
ing, Design, Naming, Optimizations, Strict Exception,
Strings, and Unused Code. These rule sets are frequently used
for investigation of the quality of software. We apply PMD
with 10 rule sets to all source code modules and get warning
messages of PMD.

3.2. Classification Techniques. In this study, we used CRM114
(the controllable regex mutilator) spam filtering software [6]
for its versatility and accuracy. Since CRM114 is implement-
ed as a language to classify text files for general purpose, ap-
plying source code modules is easy. Furthermore, the classi-
fication techniques implemented in CRM114 are based
mainly on Markov random field model instead of the naive
Bayesian classifier.

In this experiment, we used the orthogonal sparse bi-
grams Markov model built in CRM114.

Orthogonal Sparse Bigrams Markov model (OSB)

Basically, CRM114 uses sparse binary polynomial
Hash Markov model (SBPH). It is an extension of the
Bayesian classification, and it maps features in the
input text into a markov random field [7]. In this
model, tokens are constructed from combinations of
n words (n-grams) in a text file. Tokens are then

Advances in Software Engineering 3

The class “ISynchronizerTest” has a Cyclomatic Complexity of 8 (Highest = 32).
This class has too many methods, consider refactoring it.
Avoid excessively long variable names like NUMBER OF PARTNERS
The field name indicates a constant but its modifiers do not
Variables should start with a lowercase character
Variables that are not final should not contain underscores (except for
underscores in standard prefix/suffix).
Document empty constructor
Parameter “name” is not assigned and could be declared final
Avoid variables with short names like b1
Avoid variables with short names like b2
Parameter “b1” is not assigned and could be declared final
Parameter “b2” is not assigned and could be declared final
Parameter “message” is not assigned and could be declared final
Avoid using for statements without curly braces
Local variable “body” could be declared final
Parameter “monitor” is not assigned and could be declared final
Parameter “resource” is not assigned and could be declared final
Avoid using for statements without curly braces
. . .

Figure 1: A part of warning messages by PMD from a source code module of Eclipse.

mapped into a Markov random field to calculate the
probability.

OSB is a simplified version of SBPH. It considers to-
kens as combinations of exactly 2 words created in
the SBPH model. This simplification decreases both
memory consumption of learning and time of classi-
fication. Furthermore, it is reported that OSB usually
achieves higher accuracy than a simple word tok-
enization [8].

3.3. Tokenization of Inputs. In order to perform fault-prone
filtering approach, inputs of fault-prone filter must be token-
ized. In this study, in order to use the warning messages of
PMD as input of filtering, the messages need to be tokenized.
Warning messages of PMD contains English text in natural
language and a part of Java code. In order to separate them,
we classified them into the following kind of strings:

(i) strings that consist of alphabets and numbers;

(ii) all kinds of brackets, semicolons, commas;

(iii) operators of Java and dot;

(iv) other strings (natural language message).

Furthermore, warning messages of PMD have file names
and line numbers on the top of each line. In usual, they pro-
vide useful information for debug, but for learning and clas-
sification, they may mislead the learning of faulty modules.
For example, once we learn a line number of a faulty module,
the same line number of the other file is wrongly considered
as faulty token.

3.4. Example of Filtering. Here, we explain briefly how these
classifiers work. We will show how to tokenize and classify
the faulty modules in our filtering approach.

1: if x
2: if ==
3: if 1
4: if return

Figure 2: Example of tokens for OSB using the source code.

1: underscores in
2: underscores standard
3: underscores prefix/suffix)

Figure 3: Example of tokens for OSB using the warning messages.

3.4.1. Tokenization. In OSB, tokens are generated so that
these tokens include exactly 2 words. For example, a sentence
“if (x == 1) return;” is tokenized as shown in Figure 2 By
definition, the number of tokens drastically decreases com-
pared to SBPH. As for the warning messages, an example of
a sentence “underscores in standard prefix/suffix).” is shown
in Figure 3

3.4.2. Classification. Let TFP and TNFP be sets of tokens in-
cluded in the fault-prone (FP) and the nonfault-prone (NFP)
corpuses, respectively. The probability of fault-proneness is
equivalent to the probability that a given set of tokens Tx is
included in either TFP or TNFP. In OSB, the probability that
a new module mnew is faulty, P(TFP|Tmnew), with a given
set of token Tmnew from a new source code module mnew is
calculated by the following Bayesian formula:

P
(
TmnewTFP

)
P(TFP)

P
(
TmnewTFP

)
P(TFP) + P

(
TmnewTNFP

)
P(TNFP)

. (1)

4 Advances in Software Engineering

Table 1: Target project: Eclipse BIRT plugin.

Name Eclipse BIRT plugin

Language Java

Revision control cvs

Type of faults Bugs

Status of faults
Resolved;
Verified;
closed

Resolution of faults Fixed

Severity
Blocker; critical;
major; normal

Priority of faults All

Total number of faults 4708

Table 2: The number of modules in Eclipse BIRT.

Number of modules (files)

Nonfaulty 42,503

Faulty 27,641

Total 70,144

Intuitively speaking, this probability denotes that the new
code is classified into FP. According to P(TFP | Tmnew) and
predefined threshold tFP, classification is performed.

4. Experiment

4.1. The Outline of the Experiment. In this experiment, warn-
ing messages of PMD are used for fault-prone filtering as an
input instead of a source code module, and Fault-prone
module is predicted. And it is the purpose to evaluate the
predictive accuracy of the proposed method. Therefore, two
experiments using raw source code modules and the warning
messages by the PMD as inputs are conducted. We then com-
pare these results to each other.

4.2. Target Project. In this experiment, we use the source code
module of an open source project, Eclipse BIRT (business
intelligence and reporting tools). The source code module is
obtained from this project by the SZZ (Śliwerski et al.) algo-
rithm [9]. The summary of Eclipse BIRT project is shown in
Table 1. All software modules in this project are used for both
learning and classification by the procedure called training
only errors (TOE). The number of modules is shown in
Table 2.

4.3. Procedure of Filtering (Training on Errors). Experiment 1
performs the original fault-prone module prediction using
the raw source code and OSB classifier by the following
procedures:

(1) apply the FP classifier to a newly created software
module (say, method in Java, function in C, and so
on), Mi, and obtain the probability to be fault-prone;

Modules sorted by date

Get next
moduleFP classifier

Prediction
(FP/NFP)

Corpus of
FP
Corpus of

NFP Yes

No

FP trainer
Training

Correct
prediction?

Figure 4: Outline of fault-prone filtering by training on errors.

(2) by the predetermined threshold tFP (0 < tFP < 1),
classify the module Mi into FP or NFP;

(3) when the actual fault-proneness of Mi is revealed by
fault report, investigate whether the predicted result
for Mi was correct or not;

(4) if the predicted result was correct, go to step 1;
otherwise, apply FP trainer toMi to learn actual fault-
proneness and go to step 1.

This procedure is called “training on errors (TOE)”
procedure because training process is invoked only when
classification errors happen. The TOE procedure is quite
similar to actual classification procedure in practice. For
example, in actual e-mail filtering, e-mail messages are classi-
fied when they arrive. If some of them are misclassified,
actual results (spam or nonspam) should be trained.

Figure 4 shows an outline of this approach. At this point,
we consider that the fault-prone filtering can be applied to
the sets of software modules which are developed in the same
(or similar) project.

Experiment 2 is an extension of Experiment 1 by append-
ing additional steps as the first step as follows:

(1) obtain warning messages Wi of PMD by applying
PMD to a newly created software module Mi;

(2) apply the FP classifier to the warning messages, Wi,
and obtain the probability to be fault-prone;

(3) by the predetermined threshold tFP (0 < tFP < 1),
classify the warning messages Wi into FP or NFP;

(4) when the actual fault-proneness of Mi is revealed by
fault report, investigate whether the predicted result
for Wi was correct or not;

(5) if the predicted result was correct, go to step (1); oth-
erwise, apply FP trainer to Wi to learn actual fault-
proneness and go to step (1).

Advances in Software Engineering 5

Table 3: Classification result matrix.

Prediction

Nonfault-prone Fault-prone

Actual Nonfaulty True negative (tn) False positive (f p)

Faulty False negative (fn) True positive (tp)

4.4. Procedure of TOE Experiment. In the experiment, we
have to simulate actual TOE procedure in the experimental
environment. To do so, we first prepare a list of all modules
found in Section 4.2. The list is sorted by the last modified
date (di) of each module so that the first element of the list
is the oldest module. We then start simulated experiment in
the procedure shown in Algorithm 1. During the simulation,
modules are classified by the order of date. If the predicted
result s

p
i differs from actual status sai , the training procedure

is invoked.

4.5. Evaluation Measures. Table 3 shows a classification result
matrix. True negative (tn) shows the number of modules that
are classified as nonfault-prone, and are actually nonfaulty.
False positive (f p) shows the number of modules that are
classified as fault-prone, but are actually nonfaulty. On the
contrary, false negative shows the number of modules that
are classified as nonfault-prone, but are actually faulty. Final-
ly, true positive shows the number of modules that are classi-
fied as fault-prone which are actually faulty.

In order to evaluate the results, we prepare two measures:
recall and precision. Recall is the ratio of modules correctly
classified as fault-prone to the number of entire faulty modu-
les Recall is defined as tp/(tp + f n). Precision is the ratio of
modules correctly classified as fault-prone to the number of
entire modules classified fault-prone. Precision is defined as
tp/(tp+ f p). Accuracy is the ratio of correctly classified mod-
ules to the entire modules. Accuracy is defined as (tp +
tn)/(tn + tp + f p + f n). Since recall and precision are in the
trade-off, F1-measure is used to combine recall and precision
[10]. F1-measure is defined as (2×recall×precision)/(recall+
precision). In this definition, recall and precision are evenly
weighed.

From the viewpoint of the quality assurance, it is recom-
mended to achieve higher recall, since the coverage of actual
faults is of importance. On the other hand, from the view-
point of the project management, it is recommended to focus
on the precision, since the cost of the software unit test is
deeply related to the number of modules to be tested. In this
study, we mainly focus on the recall from the viewpoint of
the quality assurance.

4.6. Result of Experiments. Tables 4 and 5 show the result of
experiment using the original approach without PMD and
the approach with PMD, respectively. Table 6 summarizes the
evaluation measures for these experiments.

From Table 6, we can see that the approach with PMD has
almost the same capability to predict fault-prone modules
as the approach without PMD. For example, F1 for the ap-
proach without PMD is 0.779, and for the approach with

Table 4: Result of prediction in Experiment 1 (without PMD).

Prediction

Nonfault-prone Fault-prone

Actual Nonfaulty 30,521 11,982

Faulty 2,360 25,281

Total 32,821 37,263

Table 5: Result of prediction in Experiment 2 (with PMD).

Prediction

Nonfault-prone Fault-prone

Actual Nonfaulty 22,982 19,521

Faulty 1,674 25,967

Total 24,656 45,488

Table 6: Evaluation measures of the results of experiments.

Precision Recall Accuracy F1

Experiment 1
(without PMD)

0.678 0.915 0.796 0.779

Experiment 2
(with PMD)

0.571 0.939 0.698 0.710

PMD is 0.710. The result shows that the original approach
without PMD is relatively better than the approach with
PMD in precision, accuracy, and F1 measures. The recall of
the approach with PMD is better than the approach without
PMD.

Figures 5 and 6 show the result of TOE history for the
approaches without and with PMD, respectively. From this
graph, we can see that evaluation measures first to decrease at
the beginning of TOE procedure, then increase and become
stable after learning and classification of 15,000 modules.

5. Discussions

At first, we discuss the advantage of the approach with PMD.
From Table 6, we can see that the result of Experiment 2 has
higher recall and lower precision than that of Experiment 1.
Generally speaking, the recall is an important measure for the
fault-prone module prediction because it implies how many
actual faults can be detected by the prediction. Therefore,
higher recall can be an advantage of the approach with PMD.
However, the difference of the recalls between two experi-
ments is rather small.

When we focus on the graphs of TOE histories shown in
Figures 5 and 6, the difference between two experiments can
be seen clearly. The transition of recall in Experiment 2 keeps
higher than that of Experiment 1 from an early stage of the
experiment. That is the recall of Experiment 2 reaches 0.90 at
10,000 modules learning. From this fact, we can say that the
approach with PMD is efficient especially at an early stage of
development. It can be considered as another advantage of
the approach with PMD.

We discuss the reasons of the result that the approach
with PMD does not shows a good evaluation measures at

6 Advances in Software Engineering

tFP : Threshold of probability to determine FP and NFP
s
p
i : Predicted fault status (FP or NFP) of Mi

for each Mi in list of modules sorted by di’s
prob = fpclassify(Mi)
if prob > tFP then s

p
i = FP

else s
p
i = NFP

endif
if sai /= s

p
i then fptrain(Mi, sai)

endif
endfor
fpclassify(M) :

if Experiment 1 then
Generate a set of tokens TM from source code M.
Calculate probability P(TFP | TM)

using corpuses TFP and TNFP.
Return P(TFP | TM).

if Experiment 2 then
Generate a set of tokens TW

from warning messages W
by applying PMD to the source code M.

Calculate probability P(TFP | TW)
using corpuses TFP and TNFP.

Return P(TFP | TW)
fptrain(M, sa) :

if Experiment 1 then
Generate a set of tokens TM from M.
Store tokens TM to the corpus Tsa.

if Experiment 2 then
Generate a set of tokens TW from W

by applying PMD to M.
Store tokens TW to the corpus Tsa.

Algorithm 1: Procedure of TOE experiment.

(Source) accuracy
(Source) precision

(Source) recall
(Source) F1

Training only errors (Eclipse BIRT, OSB, source)

Ev
al

u
at

io
n

 m
ea

su
re

s

Number of modules

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
70,00060,00050,00040,00030,00020,00010,0000

Figure 5: History of training on errors procedure in Experiment 1
(without PMD).

the end of the experiment. First, the selection of rule sets
used in PMD may affect the result of experiment. Although
we used 10 rule sets according to the past study, the selection

of rule sets should be considered more carefully. For future
research, we will investigate the effects of rule set selection
to the accuracy of fault-prone filtering. Second, we need to
apply this approach to more projects. We have conducted
experiments on Eclipse BIRT.

Here, we investigate the details of our prediction. Table 7
shows a part of the probabilities for each token in the corpus
for faulty modules. This table shows tokens with highest pro-
babilities. The probability P(Tx|TFP) shows the conditional
probability that a token Tx exists in the faulty corpus.
Although these probabilities do not mean immediately that
these tokens make a module fault-prone, we guess that the
investigation of these probabilities helps improving accuracy.

We can see that specific identifier such as “copyInstance”
and specific literals such as “994,” “654,” and “715” appear
frequently. It can be guessed that these literals denote line
number in a particular source code. These literals are effe-
ctive to predict the fault-proneness of the specific source code
modules, but it can be a noise for the most other modules.
In order to improve the overall accuracy of the classifier, eli-
minating literals that describe a specific source code should
be taken into account.

Finally, we answer the research questions here. We have
the following research questions in Section 2.4.

Advances in Software Engineering 7
Ev

al
u

at
io

n
 m

ea
su

re
s

Number of modules

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
70,00060,00050,00040,00030,00020,00010,0000

(PMD) accuracy
(PMD) precision
(PMD) recall
(PMD) F1

Training only errors (PMD with Eclipse BIRT, OSB)

Figure 6: History of training on errors procedure in Experiment 2
(with PMD).

Table 7: Probabilities for each token in the corpus for faulty
modules. The “�” denotes any words.

P (Tx | TFP) Tx

0.56229 line 654

0.56229 715 Local

0.56229 “copyInstance” has

0.56229 654 Local

0.56229 instanceof The

0.56229 method copyInstance ()

0.56229 255 Parameter

0.56229 method “copyInstance”

0.56229 489 Avoid

0.56229 line 715

0.56229 copyInstance () has

0.56229 line 994

0.56229 line 474

0.56229 994 The

0.56215 715 � variable

0.56215 blocks � “pageNumber”

0.56215 on � 994

0.56215 bb � instantiating

0.56215 on � 654

0.56215 The � “copyInstance”

0.56215 654 � variable

0.56215 994 � String

0.56215 The � copyInstance ()

0.56215 “copyInstance” � a

0.56215 on � 715

0.56215 on � 474

0.56215 300 � variables

0.56215 copyInstance () � an

RQ1: “can fault-prone modules be predicted by ap-
plying a text filter to the warning messages of a static
code analyzer?”

For this question, we can answer “yes” from the results
in Table 5 and Table 6. It is obvious that the approach with
PMD has prediction capability of the fault-prone modules at
a certain degree.

RQ2: “if RQ1 is true, is the performance of the fault-
prone filtering becomes better with the warning mes-
sages of a static code analyzer?”

For this question, we can say that the recall of the ap-
proach with PMD becomes higher and more stable during
the development than the approach without PMD as shown
in Table 6 and Figures 5 and 6. From the viewpoint of the
quality assurance, it is a preferred property. We then con-
clude that the proposed approach has better performance to
assure the software quality.

6. Conclusion

In this paper, we proposed an approach to predict fault-
prone modules using warning messages of PMD and a text
filtering technique. For the analysis, we stated two research
questions: “can fault-prone modules be predicted by apply-
ing a text filter to the warning messages of static code analyz-
er?” and “is the performance of the fault-prone filtering be-
comes better with the warning messages of a static code ana-
lyzer?” We tried to answer this question by conducting ex-
periments on the open source software. The results of experi-
ments show that the answer to the first question is “yes.” As
for the second question, we can find that the recall becomes
better than the original approach.

Future work includes investigating which parts of warn-
ing messages are really effective for fault-prone module
prediction. Selection of rule sets of PMD is an interesting
future research.

References

[1] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Systems with Applications, vol. 36,
no. 4, pp. 7346–7354, 2009.

[2] O. Mizuno and T. Kikuno, “Training on errors experiment to
detect fault-prone software modules by spam filter,” in Pro-
ceedings of the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 405–414, 2007.

[3] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in Proceedings of the 15th International
Symposium on Software Reliability Engineering, pp. 245–256,
IEEE Computer Society, Washington, DC, USA, 2004.

[4] T. Copeland, PMD—What does “PMD” mean?, http://pmd
.sourceforge.net/meaning.html .

[5] T. Copeland, PMD Applied, Centennial Books, Arexandria, Va,
USA, 2005.

[6] W. S. Yerazunis, CRM114—the Controllable Regex Mutilator,
http://crm114.sourceforge.net/.

8 Advances in Software Engineering

[7] S. Chhabra, W. S. Yerazunis, and C. Siefkes, “Spam filtering us-
ing a markov random field model with variable weighting
schemas,” in Proceedings of the 4th IEEE International Confer-
ence on Data Mining, (ICDM ’04), pp. 347–350, Riverside,
Calif, USA, November 2004.

[8] C. Siefkes, F. Assis, S. Chhabra, and W. S. Yerazunis, “Combin-
ing winnow and orthogonal sparse bigrams for incremental
spam filtering,” in Proceedings of the Conference on Machine
Learning/European Conference on Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD ’04), 2004.

[9] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes? (on Fridays),” in Proceedings of the 2nd Interna-
tional Workshop on Mining Software Repositories, pp. 24–28, St.
Louis, Mo, USA, May 2005.

[10] C. J. van Rijsbergen, Information Retrieval, Butterworth, Bos-
ton, Mass, USA, 2nd edition, 1979.

