
修 士 論 文

題 目 ソースコードにおけるトークン出現傾向の

不具合予測への応用に関する研究

主任指導教員 水野　修　准教授

京都工芸繊維大学大学院 工芸科学研究科

情報工学専攻

学生番号　 10622031

氏　　名　 平田　幸直

平成 24年 2月 10日提出





様式 2号
学位論文の要旨（和文）

平成 24年 2月 10日

京都工芸繊維大学大学院
工芸科学研究科長　殿

工芸科学研究科 情報工学専攻

平成 22年入学

学生番号 10622031

氏　　名 平田　幸直 ○印

（主任指導教員 水野　修 ○印 ）

本学学位規則第 4条に基づき、下記のとおり学位論文内容の要旨を提出いたします。

1.　論文題目

ソースコードにおけるトークン出現傾向の不具合予測への応用に関する研究

2.　論文内容の要旨（400字程度）

ソフトウェアの開発において不具合は品質とコストに悪影響を与える．そのため，不

具合を予測するためのさまざまな手法が提案されている．現在，行われている研究の

ほとんどはプロジェクトの過去の情報を用いるため，新規開発のプロジェクトに対して

は利用することができない．この問題に対して，他のプロジェクトの情報を利用する

ことにより過去の情報がなくても予測が可能なプロジェクト横断型予測がある．本研

究ではモジュール内のトークンを利用して不具合を予測する Fault-prone フィルタリン

グを用いてプロジェクト横断型予測と従来のプロジェクト内部型予測を 28バージョン

(8プロジェクト)のデータに対して行う．これらの予測実験を通して，Fault-proneフィ

ルタリングにおいて，予測モデルは多変数ベルヌーイモデルが適していることを確認

した．また，モジュール内の全てのトークンを利用する場合が最も性能が良く，コード

のみを利用した場合は適合率が良くなることを確認した．そして，プロジェクト横断

型予測が可能であり，プロジェクト内部型予測よりも再現率が高くなることを示した．
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Abstract

In the software development, defects affect quality and cost in an adverse

way. Therefore, various studies have been proposed defect prediction techniques.

Most of current defect prediction approaches use past project data for building

prediction models. That is, these approaches are difficult to apply new development

projects without past data. In this study, we focus on the cross project prediction

that can predict faults of target projects by using other projects. We use 28 versions

of 8 projects to conduct experiments of the cross project prediction and intra-

project prediction using the fault-prone filtering technique. Fault-prone filtering is

a method that predicts faults using tokens from source code modules. Additionally,

we try to find an appropriate prediction model in the fault-prone filtering, since

there are several ways to calculate probabilities. From the results of experiments,

first, we conclude that the multi-variate Bernoulli model is appropriate to the

fault-prone filtering. Second, we show that using tokens extracted from all parts of

modules is the best way to predict faults and using tokens extracted from code part

of modules shows better precision. We also show that the results of the cross project

predictions have better recall than the results of the intra-project predictions.
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1. Introduction

In software development defects affect quality and cost in an adverse way. Therefore,

various studies have been proposed the defect prediction techniques. Most of current

studies that predict defects use past project data for building a prediction model. These

prediction models can capture characteristics of projects. However, if there is no data

about past projects, it is difficult to use these approaches. That is, these approaches are

difficult to apply new development projects. There are studies [1–5] for solving such a

problem. These studies have been aimed to predict defects in a project using other project

data. We call such types of prediction using other project as the cross project prediction.

The predictive ability of the cross project prediction depends on characteristics between

training project and target project (i.e. similar characteristics lead good result). For this

reason, the study [6] has been conducted to perform clustering on software projects in

order to identify groups of software projects with similar characteristic.

These studies often use basic software metrics like the line of code (LOC), cyclomatic

complexity, CK object oriented metrics [7] and Code Churn [8]. However, we use a method

called fault-prone filtering based on text filtering for predicting defects in this study. This

approach uses tokens extracted from modules as a metric for prediction. We can extract

these tokens from kind of part in modules (e.g. code and comment). In addition, there

are no steady way of selecting filter. Therefore, this approach needs to select a kind of

tokens and a filter that we use to predict as well as other approaches select metrics and

learning algorithms. In addition, the ability of our approach depend on tokens contained

in modules. Hence, if we conduct fault-prone filtering in cross project prediction situation,

it is a legitimate question whether we can predict faults.

We conduct experiments using 28 versions (8 projects) and investigate related to fol-

lowing issues:

• Which classification model is appropriate to fault-prone filtering?

There are the multi-variate Bernoulli model and the multinomial model in naive

Bayes classifier. In general, the multinomial model shows better results in document

classification context. However, it is not known know that which model shows better
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results in fault-prone filtering.

• Which class of tokens show good prediction?

We can extract classes of tokens from different part of modules. We guess these

different class of tokens show different prediction trends.

• Can we conduct the cross project prediction using fault-prone filtering?

Tokens are most important in the fault-prone filtering. Our approach needs tokens

that are contained in both training and target projects to conduct cross project

prediction.

Main findings of this study is summarized as follow:

• The multi-variate Bernoulli model is better than the multinomial model in fault-

prone filtering.

• Using all tokens extracted from modules is the best way to predict faults from the

viewpoint of F1 value. If we need better precision, we can use tokens extracted from

code and end-of-line comment. In addition, we show that we can predict faults using

structures of lines.

• Intra-project prediction show better precision than cross project prediction. In

contrast, recall is better in cross project prediction.

The remainder of this paper is structured as follows: In Section 2, we describe fault-

prone filtering. In Section 3, we explain target projects and evaluation measures. In

Section 4, we describe experiments and show results of predictions related to the intra-

project prediction. In Section 5, we describe experiments and show results of predictions

related to the cross project prediction. In Section 6, we describe related works. In Section

7, we discuss threats to validity. Conclusions are given in Section 8.
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2. Fault-Prone Filtering

2.1 Basic Idea

The basic idea of fault-prone filtering [9] is inspired by the spam mail filtering. In the

spam e-mail filtering, the spam filter first trains both spam and ham e-mail messages from

the training data set. Then, an incoming e-mail is classified into either ham or spam by

the spam filter.

This framework is based on the fact that spam e-mail usually includes particular pat-

terns of words or sentences. From the viewpoint of source code, a similar situation usually

occurs in faulty software modules. That is, similar faults may occur in similar contexts.

We thus guessed that faulty software modules have similar patterns of words or sentences

as spam e-mail messages have. To obtain such features, we adopted the spam filter in

fault-prone module prediction.

Intuitively speaking, we try to introduce a new metric as a fault-prone predictor. The

metric is “frequency of particular words”. In detail, we do not treat a single word, but

use combinations of words for the prediction. Thus, the frequency of a certain length of

words is the only metric used in our approach.

We then try to apply a spam filter to identify fault-prone modules. We named this

approach as “fault-prone filtering”. That is, a learner first trains both faulty and non-

faulty modules. Then, a new module can be classified into either fault-prone or not-fault-

prone using a classifier.

2.2 Extraction of Tokens

We conduct experiments using the fault-prone filtering in this study. In these experi-

ments, we use tokens extracted from specific parts of modules (e.g. code and comment).

We explain the specific parts of modules and how to extract tokens from each part in this

section.
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2.2.1 Definition of Comment Lines

In order to investigate the ability of fault-prone prediction, we distinguish the contents

of source code modules into two classes. Code lines describe a list of operations that

developers would like to realize on computers. Comment lines include descriptions of

code lines, usage of methods or modules. Code lines are written in a specific programming

language, but comment lines are written in a free form.

Original implementation of fault-prone filtering did not distinguish the comment lines

and code lines. The source code module is passed into text filter without any modification.

However, since code lines and comment lines have different roles in source code modules,

we need to consider such difference in the fault-prone filtering.

For example, comments are usually placed near the difficult codes. Therefore, learning

the contents of comment lines may be useful to identify the bug-related part in modules.

Actually, previous research [10] shows that the prediction using tokens in comments is

better than the prediction of tokens in code.

In this study, we treat a java class file as a software module.Developers can write

comments anywhere in the module. Those comments are classified into three types by

the written form in Java [11]. First, there is a comment starting with “//”. This type

of comment is called the End-Of-Line Comments (EOL). EOL is treated as a comment

from “//” to the end of line. Second, a comment that starts with “/*” and ends with

“*/” is either the Block comment or the Single-Line comment or the Trailing comment

(BLK). BLK treats the enclosed part as a comment. Therefore, it can comment out the

part of line, or multiple lines. Finally, a comment used for the tool that is called javadoc

is Documentation comment (DOC). DOC is a comment that starts with “/**” and ends

with “*/”. This comment is used to explain classes and methods. Comments mentioned

above are summarized in Table 2.1. In this research, as shown in Table 2.1, comment is

defined as a combination of three different comment types.
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Table 2.1 Definition of Comments

Comment Type Definition

COM //, /* */, /** */

EOL //

BLK /* */

DOC /** */
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2.2.2 Structure of Line

Copied and pasted source code, which is called “code clone”, affects to software quality.

There are several studies [12, 13] that detect faults using code clone. We consider that

these studies use structure of code clone to detect faulty code. Therefore, we guess that

structure of code affect to faults. Code clones are parts of structure in module. In contrast,

we use all of structure in modules to predict faults because we guess that all structures

in a module affect to the trend of faults of the module.

Next, we explain how to extract structure from modules. In order to extract structure,

we apply following steps to modules.

Step 1 Remove all types of comments, ‘{’ and ‘}’.

Step 2 Replace identifiers include numbers, strings with double quotes and character with

single quotes into I, S and C, separately.

Step 3 Remove all white spaces and tabs.

Applying by these steps, we get structure of modules. In this study, we use each lines as

tokens for fault-prone filtering. We define a class that consist of these tokens as TCLINE.

2.2.3 Tokenization

In this study, we define 8 kinds of token class extracted from the source code: TCALL,

TCCODE, TCEOL, TCCODE+EOL, TCCOM , TCBLK , TCDOC and TCLINE. Here, TCCODE

token class includes tokens extracted from code except comments in modules. TCALL

token class includes TCCODE and TCCOM token classes. That is, TCALL token class uses

all part of a module. In similar way, TCCODE+EOL token class includes TCCODE and

TCEOL token classes. The reason that we use this combination is TCEOL shows that

better prediction result in previous study [14].

We conduct to tokenize above all token classes in same way except TCLINE token class

(tokenization of TCLINE class already explained in section 2.2.2). We tokenize contents

into identifiers, numbers, escape sequence, keywords, operators in Java language.In this

study, we admit that identifiers include dots. Therefore, System.out.println is a token
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(not three tokens). In addition, we treat double quote as separator. Therefore, "Hello

world" separated into Hello, world. However, character include escape sequence with

single quote as a token (e.g. ’c’ is a token).

2.3 Naive Bayes Classifier

The naive Bayes classifier is a traditional document classifier [15, 16]. In the naive

Bayes, we can calculate P (d|c) (the generation probability of document d in class c) under

assumption of words are independent of each other words in a document. In general, this

assumption is not correct, however, the naive Bayes classifier can classify documents well.

Hence, this classifier is still often used.

2.3.1 Generative Models

There are two popular models, the multi-variate Bernoulli model and the multinomial

model, in the naive Bayes classifier. Here, we explain the models and application to

fault-prone filtering.

(1) Multi-variate Bernoulli Model

In the multi-variate Bernoulli model, a document is represented by a vector that shows

each tokens occur or not in the document. That is, it is important that tokens exist or

not in the document. Therefore, if a token does not exist in a document, we use the data

about “the token does not exist”. However, we use only binary data about tokens, hence,

we lose the number of occurrence of a token in this model.

Next, we explain the application of the multi-variate Bernoulli model to fault-prone

filtering. The application using the naive Bayes classifier consist of following two algo-

rithms. (1) In training algorithm, we calculate the probability using tokens and modules

extracted from training modules. (2) In classification algorithm, we use the probability

to classify target modules.

Training Algorithm
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In order to explain this algorithm, we define some symbols about modules. Mtrain and

Mtarget are sets of training and target modules, respectively. C = {faulty, nonfaulty}

is a set of class labels. All modules belong to either faulty or nonfaulty. c denotes

a module includes faults or not and c ∈ C. If a module includes one or more faults,

c = faulty; otherwise, c = nonfaulty.

First, we count following numbers using Mtrain.

• Nt,c: The number of modules that contain token t in class c.

• Nc: The number of modules in class c.

These numbers are counted as follow. We classify all modules in Mtrain based on its class

c and count the number of modules in each class to obtain Nc. Then, we tokenize and

count the number of modules containing token t for each class.

Next, We calculate the probability of a module containing token t in class c and the

probability of a module in class c using Nt,c and Nc. We denote these probability pt,c and

pc, respectively and define them as follows:

pt,c =
Nt,c + 1

Nc + 2
(2.1)

pc =
Nc + 1∑

c∈C

Nc + |C|
(2.2)

Classification Algorithm

In classification algorithm, we tokenize mtarget ∈ Mtarget and calculate Equation (2.3)

using tokens extracted from mtarget for each class. Pc in this equation means the proba-

bility of mtarget belonging to class c.

Pc = pc ×
∏

t∈mtarget

pt,c ×
∏

t6∈mtarget

(1 − pt,c) (2.3)

Next, we calculate Equation (2.4). If P > 0.9, mtarget is classified faulty.Otherwise, the

module is classified nonfaulty.

P =
Pfaulty

Pfaulty + Pnonfaulty

(2.4)

We repeat this classification algorithm for all modules in Mtarget.
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(2) Multinomial Model

In the multinomial model, a document is represented by a combination of occurrence of

tokens in the document. Unlike in the case of the the multi-variate Bernoulli model, This

model utilize the number of occurrences of tokens. However, tokens that are not exist in

a target document do not used in this model. In general, the multinomial model is better

than the multi-variate Bernoulli model in document classification [16].

Training Algorithm

First, we count nt,c defined as follow and Nc for all modules in Mtrain. Here, Nc is same

in the multi-variate Bernoulli model.

• nt,c: The number of token t in class c.

The way of counting is almost same in the multi-variate Bernoulli model. The difference

is that we count the number of occurrence of token t for each class c in the multinomial

model.

By using nt,c and Nc, we calculate the probability of occurrence of token t in class c

and pc. Here, T denote a set of tokens in training modules.

pt,c =
nt,c + 1∑

t́∈T

nt́,c + |T |
(2.5)

pc =
Nc + 1∑

c∈C

Nc + |C|
(2.6)

Classification Algorithm

We tokenize and calculate Equation (2.7) to obtain the trends of module for each target

module mtarget ∈ Mtarget. Here, nt,target denotes the number of occurrence of token t in

the module mtarget. In this Equation (2.7), we use the data about how many and which

token exist in module mtarget.

Pc = pc ×
∏

t∈mtarget

p
nt,target

t,c (2.7)

Next, we calculate the probability to be faulty about the mtarget by Equation (2.4).

As is the case with the multi-variate Bernoulli model, if P > 0.9, mtarget is classified

faulty.Otherwise, the module is classified nonfaulty.
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3. Target Projects and Evaluation Measures

3.1 Target Projects

In this study, we use 8 projects, Apache Ant, Eclipse, jEdit, Apache Lucene, Apache

POI, Apache Velocity, Apache Xalan and Apache Xerces, for our experiments. In order to

do our experiments, we need to collect faulty information of modules in each projects. We

adopt faulty data in PROMISE [17] repository. There are about one hundred data about

faults. In our approach, we need information about modules and modules themselves.

Therefore, we use data that contain modules name in order to satisfy our requirement.

Consequently, we select 8 projects described above. Seven of 8 projects data except

Eclipse are donated by Jureczko [6, 18] and Eclipse are donated by Zimmermann [19].

These datasets contain the number of faults for each modules. However, our approach

determines existence or non-existence about faults. Therefore, we define a faulty module

as a module that contain one or more faults and if a module does not contain any faults,

we define the module as a non-faulty module. We show the number of faulty modules and

non-faulty modules for each versions in Table 3.1. As shown in the Table 3.1, we use some

versions for each projects. The number of modules in this table is fewer than the number

of modules in the dataset because we only use data about modules that contained in each

release versions. This happen, if the datasets include data about modules that was made

between releases.

Next, we explain each project in brief.

• Ant1 is a build tool for Java Language.

• Eclipse2 is well known IDE (Integrated Development Environment).

• jEdit3 is a text editor for programmers.

• Lucene4 is a text search engine library.

• POI5 is a library for reading and writing Microsoft Office files.

1http://ant.apache.org/
2http://eclipse.org/
3http://jedit.org/
4http://lucene.apache.org/
5http://poi.apache.org/
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Table 3.1 Target Versions

project faulty non-faulty ratio of faulty project faulty non-faulty ratio of faulty

Ant1.4 40 137 22.6 % POI1.5 141 94 60.0 %

Ant1.5 32 260 11.0 % POI2.0 37 272 12.0 %

Ant1.6 92 258 26.3 % POI2.5 247 132 65.2 %

Ant1.7 166 575 22.4 % POI3.0 281 157 64.2 %

Eclipse2.0 975 5754 14.5 % Velocity1.4 147 48 75.4 %

Eclipse2.1 854 7034 10.8 % Velocity1.5 142 72 66.4 %

Eclipse3.0 1568 9025 14.8 % Velocity1.6 78 151 34.1 %

jEdit3.2 90 170 34.6 % Xalan2.4 110 566 16.3 %

jEdit4.0 75 218 25.6 % Xalan2.5 387 375 50.8 %

jEdit4.1 79 221 26.3 % Xalan2.6 411 464 47.0 %

jEdit4.2 48 307 13.5 % Xerces1.2 71 368 16.2 %

jEdit4.3 11 476 2.3 % Xerces1.3 69 383 15.3 %

Lucene2.0 91 95 48.9 % Xerces1.4 210 118 64.0 %

Lucene2.2 143 91 61.1 %

Lucene2.4 203 127 61.5 %
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• Velocity6is a templating engine that provide a simple template language to reference

objects defined in Java code.

• Xalan 7 is an XSLT processor for transforming XML documents into other XML

document types.

• Xerces8 is a processor for parsing, validating, serializing and manipulating XML.

3.2 Evaluation Measures

Table 3.2 shows a classification result matrix. True negative (TN) shows the number of

modules that are classified as non-fault-prone, and are actually non-faulty. False positive

(FP) shows the number of modules that are classified as fault-prone, but are actually

non-faulty. On the contrary, false negative (FN) shows the number of modules that are

classified as non-fault-prone, but are actually faulty. Finally, true positive (TP) shows

the number of modules that are classified as fault-prone which are actually faulty.

In order to evaluate the results, we prepare three measures: recall, precision, and

accuracy. Recall is the ratio of modules correctly classified as fault-prone to the number

of entire faulty modules. Recall is defined as by Equation (3.1).

Recall =
TP

TP + FN
(3.1)

Precision is the ratio of modules correctly classified as fault-prone to the number of

entire modules classified fault-prone. Precision is defined as by Equation (3.2).

Precision =
TP

TP + FP
(3.2)

Accuracy is the ratio of correctly classified modules to the entire modules. Accuracy is

defined as by Equation (3.3).

Accuracy =
TP + TN

TN + TP + FP + FN
(3.3)

6http://velocity.apache.org/
7http://xml.apache.org/xalan-j/
8http://xerces.apache.org/xerces-j/
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Table 3.2 Classification Result Matrix

Classified

non-fault-prone fault-prone

Actual non-faulty True negative (TN) False positive (FP)

faulty False negative (FN) True positive (TP)
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Since recall and precision are in the trade-off, F1-measure is used to combine recall and

precision. F1-measure is defined as by Equation (3.4).

F1 =
2 × Recall × Precision

Recall + Precision
(3.4)

In this definition, recall and precision are evenly weighed.

In addition, we introduce an evaluation measure related to precision. Precision defined

by Equation (3.2) is affected by ratio of faulty modules (see Table 3.1). For example, if

ratio of faulty modules of the target version is high, precision also tends to be high in

general. In order to make a new evaluation measure that eliminate the effect of ratio of

faulty modules, first, we define the ratio of faulty using TN, TP, FP, FN as follow:

Fr =
TP + FN

TN + TP + FP + FN
(3.5)

Next, we define a new evaluation measure by Equation (3.6) using Precision and Fr. This

measure reduces the impact of ratio of faulty modules.

PFr = Precision − Fr (3.6)
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4. Intra-Project Prediction

In this section, we conduct experiments related to intra-project prediction using fault-

prone filtering. Intra-project prediction is a prediction that selects versions from same

project as training and target data. That is, we predict newer version using previous

version of same project. If we have one version except target versions, we can adopt this

approach. Hence, when it is compared to the prediction that uses a part of target project

as training data, intra-project prediction can be applied early in the development.

4.1 Ex. 1: Comparing Multi-variate Bernoulli Model and Multinomial

Model

As already mentioned in subsection 2.3, there are two famous models, the multi-variate

Bernoulli model and the multinomial model, for document classification in the naive

Bayes. In general, it is said that the multinomial model shows better results in document

classification [16]. However, we don’t know that which model is better in fault prediction

context. In ex. 1, we conduct comparative experiments using these two models in order

to investigate which model is suitable for fault-prone filtering.

4.1.1 Experiment Method

We conduct comparative experiments using the multi-variate Bernoulli model and the

multinomial model. When we apply fault-prone filtering to predict faults, we need to

determine three things. 1) how to select training and target data, 2) kind of token

classes we use, 3) kind of filters we use. All experiments in this section are intra-project

prediction. Therefore, we decide training and target data from same project. In addition,

we use only one version as a training data because this condition is very simple and likely

to happen from a practical point of view.

First of all, we describe how to select training and target data. We use newer version as

target data and older version as training data in the same project. we make combinations

of new and old versions for 8 target projects. We show all combinations as an example
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in Ant project. Here, we represent training and target versions using a pair like (train-

ing, target). There are 6 combinations like (Ant1.4, Ant1.5), (Ant1.4, Ant1.6), (Ant1.4,

Ant1.7), (Ant1.5, Ant1.6), (Ant1.5, Ant1.7), (Ant1.6, Ant1.7) in Ant project. Next, we

use TCALL token class extracted from modules. That is, we use all code lines and all com-

ment lines in modules. Finally, we conduct experiments using the multi-variate Bernoulli

model and the multinomial model in above condition.

4.1.2 Results and Discussions

Figure 4.1 shows the result of ex. 1. From Figure 4.1, we find that F1 value is almost

the same in both models. However, recall and precision have different trends. The multi-

variate Bernoulli model shows better precision than the multinomial model. In contrast,

the multinomial model shows better recall than the multi-variate Bernoulli model. There-

fore, we guess that there are no significant difference in prediction ability between both

models from the viewpoint of F1 values. However, from the viewpoint of precision and

recall, when the multi-variate Bernoulli model predicts a module as fault prone, the mod-

ule seems more likely to include actual faults, and the multinomial model can find more

faults. These trends could be due to the major difference between two models, that is,

how to use the number of occurrence of each tokens in module. The probability of each

token (pt,c) is implicit in fault prone filtering because features of modules are also implicit.

When we use the multinomial model for prediction, the result is significantly affected by

tokens that occur frequently in module. Therefore, if the probability of tokens of frequent

occurrence is wrong, the result will be wrong. In particular, faulty modules tend to be

large than non-faulty modules. This might cause unfair bias to frequent tokens.

We guess that it is a situation-dependent issue to decide which model is better. Pre-

diction results using the multi-variate Bernoulli model show higher precision and lower

recall than prediction results using the multinomial model. These results means that the

multi-variate Bernoulli model tends to predict modules as non-fault-prone and the multi-

nomial model tends to predict modules as fault-prone. That is, if we use the multinomial

model, we obtain more fault-prone modules. As the fault-prone modules increase, it will

be difficult to allocate the resource for tests. It is said that the result of high recall and
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Figure 4.1 Comparison of Prediction Result of Multi-variate Bernoulli

Model and Multinomial Model
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low precision is also useful in some studies [20, 21]. However, we think that developers

prefer to be better precision in a practical situation. Therefore, we use the multi-variate

Bernoulli model in all experiments in the successive sections.

4.2 Ex. 2: Effect of Each Content Extracted from Modules in Fault

Prone Filtering

We can divide contents of modules into some kinds of parts like code lines and comment

lines. In previous studies [10,14,22], we conduct fault-prone filtering using some kinds of

contents in modules and find that different kinds of contents show different kind of results.

However, we use only one or two projects as target project in these studies. Therefore,

we conduct fault-prone filtering using more projects and more contents of modules to

investigate the trends of results in this experiment.

4.2.1 Experiment Method

In ex. 2, we conduct experiments using tokens extracted from different parts of mod-

ule. Specifically, we use TCCODE, TCCOM , TCEOL, TCBLK , TCDOC , TCCODE+EOL and

TCLINE for predicting faults about modules. That is, we used all tokens extracted from

module in ex. 1, however, if we use TCCODE to conduct experiments in ex. 2, we extract

code from modules in training and target versions. Ex. 2 largely similar to ex. 1 except

what token classes we use. In short, we use same combination of training and target

versions in ex. 1, and select the multi-variate Bernoulli model from the results of ex. 1.

4.2.2 Results and Discussions

Figure 4.2 shows statistical summary of recall and precision using different kinds of to-

ken classes. The result in Figure 4.2 shows that TCALL, TCCODE, TCEOL, TCCODE+EOL

and TCLINE are better in view point of precision and TCCOM , TCBLK and TCDOC are

better in view point of recall. However, F1 value of TCCOM , TCBLK and TCDOC are

low. Therefore, we should select TCALL, TCCODE, TCEOL, TCCODE+EOL and TCLINE to

predict faults, if we use fault-prone filtering. Table 4.1 shows average PFr in each experi-

18



ALL CODE EOL
CODE

+
EOL

LINE COM BLK DOC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accuracy

●

●

●

ALL CODE EOL
CODE

+
EOL

LINE COM BLK DOC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

●
●
●
●

ALL CODE EOL
CODE

+
EOL

LINE COM BLK DOC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision
ALL CODE EOL

CODE
+

EOL
LINE COM BLK DOC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1

Figure 4.2 Results Using Different Kinds of Tokens

Table 4.1 Average PFr Values in Intra-Project Prediction

TCALL TCCODE TCEOL TCCODE+EOL TCLINE TCCOM TCBLK TCDOC

average PFr 0.231 0.268 0.237 0.264 0.256 0.168 0.072 0.150
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ments. This table also shows that we should use TCALL, TCCODE, TCEOL, TCCODE+EOL

and TCLINE.

The results using each content extracted from module have trends (see Figure 4.2).

From this figure, we find that if we combine token classes, the result by combining token

classes inherit characteristics from each token class. For example, if we use TCCOM token

class, the result inherit trends of TCEOL, TCBLK and TCDOC . Next, we consider the

reasons of these trends. To begin with, we can classify these trends into three groups. The

first group is the better precision group. TCCODE, TCEOL, TCCODE+EOL and TCLINE

belong to this group. The second group is the better recall group. TCBLK and TCDOC

belong to this group. The third group is average precision and recall group. This group is

yielded by combining token classes of the first and the second group. We guess that the

results of better precision group are not out of the way because these token classes do not

have specific feature against token classes of better recall group. The better recall group

has relativity small size of tokens and includes fixed tokens. Here, fixed tokens means

that are included in most of modules. Examples of these tokens are header comments

and tags. If these tokens are made up of a majority of a target module, the result was

decided by these tokens. By considering from Equation (2.1), when ratio of faulty of

training modules is low and fixed tokens are few in target module, the target module will

be classified as fault-prone. In contrast, ratio of faulty of training modules is high, target

modules will be classified non-fault-prone. From Table 3.1, there are many versions that

ratio of faulty is low in our dataset. Therefore, token classes in better recall group show

high recall.

4.3 Ex. 3: Combination of Older Versions

We use one version as training data to conduct fault-prone filtering in ex. 1 and ex. 2

because this is the easiest condition in intra-project prediction. However, if we can use

two or more versions, what results do we obtain using these versions? In this experiment,

we investigate the effects of combination of older versions.
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4.3.1 Experiment Method

In ex. 3, we use some versions as training data for predicting one target version. We can

select some combination about training data. However, we combine all versions that were

developed before target version. In other words, we predict target version by combining

all older versions. For example, when we use Ant project, there are 2 combinations about

training and target version, that is, (Ant1.4+Ant1.5, Ant1.6), (Ant1.4+Ant1.5+Ant1.6,

Ant1.7). Here, we don’t conduct experiments that have only one training data (e.g.

(Ant1.4, Ant1.5)) because these experiments are already conducted in ex. 1 or ex. 2. We

make these combinations for each project and conduct experiments. Next, we describe

about tokens. From the result of ex. 2, we guess TCCODE+EOL shows better result. There-

fore, we use TCCODE+EOL in this experiment.

4.3.2 Results and Discussions

We show the result of ex. 2 and ex. 3 using TCCODE+EOL token class in Table 4.2. The

numbers that are written by bold font in this table means that the result is the best in

the target. From this table, we find that the results using some version as training version

show better recall in many cases than using one version as training data. In contrast,

precision is not better in the result by combination of older versions. Altogether, we can

say that combining some projects as training data don’t always improve prediction result.

According to Equation (2.1), higher ratio of faulty of training versions creates a strong

tendency for target modules to classify into faulty. We can see this trend in Table 3.1

and Table 4.2. Hence, if we combine versions with high ratio of faulty module and the

ones with low ratio of faulty modules, recall is averaged. Combining projects that ratio

of faulty is almost same, in most case, recall is improved. We guess that these results are

caused by extensive training data. If we use some versions for training data, classifier can

be trained about more faults.
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Table 4.2 Comparison of Results in ex. 2 and ex. 3

Training Target Accuracy Recall Precision F1

Ant1.4 0.766 0.250 0.639 0.359
Ant1.5 Ant1.6 0.780 0.239 0.759 0.364

Ant1.4+Ant1.5 0.786 0.348 0.681 0.460
Ant1.4 0.794 0.139 0.697 0.231
Ant1.5 Ant1.7 0.800 0.169 0.737 0.275
Ant1.6 0.823 0.380 0.692 0.490

Ant1.4+Ant1.5+Ant1.6 0.821 0.464 0.636 0.537
Eclipse2.0 0.853 0.318 0.508 0.391
Eclipse2.1 Eclipse3.0 0.853 0.247 0.507 0.332

Eclipse2.0+Eclipse2.1 0.845 0.374 0.470 0.416
jEdit3.2 0.820 0.532 0.712 0.609
jEdit4.0 jEdit4.1 0.840 0.456 0.878 0.600

jEdit3.2+jEdit4.0 0.840 0.570 0.763 0.652
jEdit3.2 0.839 0.562 0.429 0.486
jEdit4.0 jEdit4.2 0.876 0.562 0.540 0.551
jEdit4.1 0.873 0.542 0.531 0.536

jEdit3.2+jEdit4.0+jEdit4.1 0.845 0.750 0.456 0.567
jEdit3.2 0.852 0.545 0.082 0.143
jEdit4.0 0.887 0.455 0.093 0.154
jEdit4.1 jEdit4.3 0.887 0.364 0.077 0.127
jEdit4.2 0.936 0.364 0.143 0.205

jEdit3.2+jEdit4.0+jEdit4.1+jEdit4.2 0.789 0.545 0.058 0.104
Lucene2.0 0.564 0.365 0.831 0.507
Lucene2.2 Lucene2.4 0.591 0.498 0.754 0.599

Lucene2.0+Lucene2.2 0.567 0.389 0.806 0.525
POI1.5 0.847 0.826 0.932 0.876
POI2.0 POI2.5 0.369 0.049 0.750 0.091

POI1.5+POI2.0 0.420 0.142 0.814 0.241
POI1.5 0.662 0.651 0.785 0.712
POI2.0 POI3.0 0.395 0.068 0.864 0.125
POI2.5 0.651 0.683 0.750 0.715

POI1.5+POI2.0+POI2.5 0.546 0.331 0.894 0.483
Velocity1.4 0.328 0.910 0.326 0.480
Velocity1.5 Velocity1.6 0.629 0.872 0.476 0.615

Velocity1.4+Velocity1.5 0.376 0.949 0.347 0.509
Xalan2.4 0.642 0.299 0.831 0.440
Xalan2.5 Xalan2.6 0.663 0.482 0.707 0.573

Xalan2.4+Xalan2.5 0.667 0.409 0.778 0.536
Xerces1.2 0.412 0.081 1.000 0.150
Xerces1.3 Xerces1.4 0.399 0.067 0.933 0.124

Xerces1.2+Xerces1.3 0.412 0.090 0.905 0.165
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5. Cross Project Prediction

In this section, we conduct the cross project predictions using fault-prone filtering. In

cross project prediction, we use one or more projects as training data to predict other

projects. We need at least one version of target project in intra-project prediction. Hence,

we can only apply intra-project prediction after the second version. However, we need no

older versions of target project in cross project prediction. Therefore, if we have only one

version of target project, we can apply the project to the cross project prediction.

5.1 Ex. 4: Prediction Using Single Project

We consider that cross project prediction is more difficult task than intra-project pre-

diction. In this experiment, we conduct simple condition cross project prediction, that is,

using single project as training data, in order to investigate whether fault-prone filtering

work in cross project prediction.

5.1.1 Experiment Method

In ex. 4, we conduct the cross project prediction using single project as training data. In

particular, we use all of versions as training data in a project, and predict using the other

projects. For example, when we use Ant project as training data, other projects, Eclipse,

jEdit, Lucene, POI, Velocity, Xalan and Xerces, are target data. That is, training and

target tuples are (All of Ant versions, Eclipse2.0), . . . , (All of Ant versions, Eclipse3.0),

(All of Ant versions, jEdit3.2), . . . , (All of Ant versions, Xerces1.6). In this experiment,

we use TCALL token class extracted from modules.

5.1.2 Results and Discussions

We show the results of prediction in Table 5.1. In this table, if the value of PFr 0 or

fewer, that is, if the values of precision are worse than the value of prediction by random

prediction, we write ‘×’. ‘-’ means that we do not conduct the combination of prediction

because training and target data are same in these combinations. We find that most
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Table 5.1 Combinations of Trainings and Targets that Predict well

target \ training Ant Eclipse jEdit Lucene POI Velocity Xalan Xerces
Ant1.4 - × × × ×
Ant1.5 - × ×
Ant1.6 - ×
Ant1.7 - ×
Eclipse2.0 - ×
Eclipse2.1 - × ×
Eclipse3.0 - ×
jEdit3.2 - × ×
jEdit4.0 - ×
jEdit4.1 -
jEdit4.2 - ×
jEdit4.3 - ×
Lucene2.0 - ×
Lucene2.2 -
Lucene2.4 -
POI1.5 × - ×
POI2.0 - ×
POI2.5 × - ×
POI3.0 - ×
Velocity1.4 × - ×
Velocity1.5 -
Velocity1.6 -
Xalan2.4 × -
Xalan2.5 × -
Xalan2.6 × -
Xerces1.2 × × -
Xerces1.3 × × -
Xerces1.4 × × -
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projects work well as training data. However, some projects can’t use for predicting other

projects from this table. Therefore, if we use single project as training data, the result is

based on the project.

Table 5.2 shows the average values of results in each project. From this results, Eclipse

is the best project for predicting other projects. We guess that this results are caused the

number of modules in Eclipse project. Eclipse is more than ten times larger than other

projects in the viewpoint of the number of modules. We guess that Eclipse can adjust

and predict various projects because of enough number of modules.

5.2 Ex. 5: Prediction Using All Other Project

In this experiment, we investigate three things in cross project prediction. 1) do the

results of prediction using all projects show better than the results using single project,

2) trends of results using some kinds of token classes, 3) comparison of the results of

intra-project prediction and cross project prediction.

5.2.1 Experiment Method

In this experiment, we predict a target project using all other training projects. That

is, when we select a version as target data, we use all versions for training except versions

that belong to target project. For example, when we use Ant as target project, training

and target tuples are (All versions except Ant’s, Ant1.4), (All versions except Ant’s,

Ant1.5), (All versions except Ant’s, Ant1.6), (All versions except Ant’s, Ant1.7). We

predict all versions based on above rule. In addition, we conduct theses prediction using

TCALL, TCCODE, TCCOM , TCEOL, TCBLK , TCDOC , TCCODE+EOL and TCLINE token

classe classes.

5.2.2 Results and Discussions

Table 5.3 shows the comparison of the results using single project (Eclipse) and all

projects except target project (this experiment). From this table, we find that the results

are improved in the values of recall and F1. Therefore, we concluded that combining all
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Table 5.2 Average Results Using Single Project in Cross Project

Predicition

Accuracy Recall Precision F1

Ant 0.651 0.323 0.598 0.356

Eclipse 0.621 0.529 0.555 0.447

jEdit 0.636 0.201 0.647 0.258

Lucene 0.628 0.233 0.425 0.231

POI 0.683 0.399 0.404 0.307

Velocity 0.619 0.090 0.242 0.055

Xalan 0.671 0.251 0.596 0.305

Xerces 0.636 0.307 0.615 0.285

Table 5.3 Average Results Using Single Project and All Projects

Accuracy Recall Precision F1

Eclipse 0.621 0.529 0.555 0.447

All Projects 0.625 0.595 0.504 0.471
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projects improve the results.

We show the result of experiment in Figure 5.1. From this figure, we find that trends

of recall and precision in each token class are the same in intra-project prediction. From

the viewpoint of F1 value, TCALL, TCCOM , TCBLK and TCDOC show better results in

cross project prediction. However, as shown in Table 5.4 TCCOM , TCBLK and TCDOC

show low average PFr. Therefore, We guess that predictions using TCCOM , TCBLK and

TCDOC are impractical. By comparing TCALL, TCCODE, TCEOL, TCCODE+EOL and

TCLINE, obviously, TCALL shows better F1 value than TCCODE, TCEOL, TCCODE+EOL

and TCLINE in cross project prediction. As a result, using TCALL token class is the best

way of prediction in the cross project prediction. However, if we need better precision,

we can use TCCODE, TCCODE+EOL or TCLINE.

Table 5.5 shows comparison of intra-project and cross project prediction results. Results

of intra-project prediction show better precision than results of cross project prediction.

In contrast, the results of cross project prediction show better recall. Such trend is also

shown in the reference [2].

Table 5.6 shows the number of kinds of tokens extracted from TCALL. The row of “All

Projects” in this table related to the cross project prediction. Therefore, tokens are used

for predicting faults in two or more projects. Other rows like “Ant Project” are related

to the intra-project prediction. Therefore, tokens are used for predicting faults in two

or more versions. From this table, we find that kinds of tokens are used in the cross

project prediction is low (see row of “ALL Projects”). However, we can predict faults by

these tokens (see Figure 5.1 and Table 5.5). Therefore, we can consider that tokens used

in several projects are important for predicting faults. In other words, these common

tokens between several projects characterize either faulty and non-faulty modules beyond

projects. From this result, tokens (structures) extracted from TCALL, TCCODE, TCEOL,

TCCODE+EOL and TCLINE are potentially related to generic fault-proneness.
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Figure 5.1 Comparison of Results Using Different Tokens in Cross

Project Prediction

Table 5.4 Average PFr Values in Cross Project Prediction

TCALL TCCODE TCEOL TCCODE+EOL TCLINE TCCOM TCBLK TCDOC

average PFr 0.152 0.216 0.168 0.205 0.204 0.078 0.048 0.072
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Table 5.5 Comparison of Intra and Cross Project Predictions

Training Target Accuracy Recall Precision F1

Ant1.4 Ant1.5 0.877 0.438 0.438 0.438
All projects except Ant 0.414 0.906 0.147 0.253

Ant1.4 0.760 0.239 0.611 0.344
Ant1.5 Ant1.6 0.774 0.228 0.724 0.347

All projects except Ant 0.571 0.957 0.376 0.540
Ant1.4 0.779 0.277 0.511 0.359
Ant1.5 Ant1.7 0.799 0.410 0.571 0.477
Ant1.6 0.781 0.602 0.510 0.552

All projects except Ant 0.667 0.777 0.381 0.511
Eclipse2.0 Eclipse2.1 0.857 0.362 0.345 0.353

All projects except Eclipse 0.829 0.411 0.293 0.342
Eclipse2.0 0.853 0.356 0.503 0.417
Eclipse2.1 Eclipse3.0 0.853 0.269 0.504 0.351

All projects except Eclipse 0.826 0.411 0.411 0.411
jEdit3.2 jEdit4.0 0.788 0.640 0.578 0.608

All projects except jEdit 0.751 0.627 0.511 0.563
jEdit3.2 0.793 0.671 0.596 0.631
jEdit4.0 jEdit4.1 0.853 0.506 0.889 0.645

All projects except jEdit 0.750 0.684 0.519 0.590
jEdit3.2 0.806 0.750 0.387 0.511
jEdit4.0 jEdit4.2 0.856 0.542 0.473 0.505
jEdit4.1 0.870 0.542 0.520 0.531

All projects except jEdit 0.707 0.812 0.291 0.429
jEdit3.2 0.768 0.545 0.053 0.096
jEdit4.0 0.873 0.455 0.082 0.139
jEdit4.1 jEdit4.3 0.883 0.364 0.074 0.123
jEdit4.2 0.932 0.364 0.133 0.195

All projects except jEdit 0.620 0.636 0.037 0.070
Lucene2.0 Lucene2.2 0.590 0.420 0.822 0.556

All projects except Lucene 0.607 0.462 0.815 0.589
Lucene2.0 0.582 0.379 0.865 0.527
Lucene2.1 Lucene2.4 0.600 0.483 0.784 0.598

All projects except Lucene 0.630 0.478 0.858 0.614
POI1.5 POI2.0 0.424 0.514 0.106 0.176

All projects except POI 0.469 0.784 0.157 0.261
POI1.5 0.567 0.336 1.000 0.503
POI2.0 POI2.5 0.375 0.069 0.708 0.125

All projects except POI 0.472 0.283 0.753 0.412
POI1.5 0.521 0.263 0.961 0.413
POI2.0 POI3.0 0.404 0.096 0.794 0.171
POI2.5 0.644 0.665 0.751 0.706

All projects except POI 0.559 0.391 0.833 0.533
Velocity1.4 Velocity1.5 0.636 0.930 0.660 0.772

All projects except Velocity 0.542 0.401 0.814 0.538
Velocity1.4 0.362 0.949 0.343 0.503
Velocity1.5 Velocity1.6 0.620 0.872 0.469 0.610

All projects except Velocity 0.686 0.500 0.542 0.520
Xalan2.4 Xalan2.5 0.537 0.194 0.647 0.298

All projects except Xalan 0.612 0.749 0.593 0.662
Xalan2.4 0.667 0.365 0.833 0.508
Xalan2.5 Xalan2.6 0.591 0.139 0.934 0.242

All projects except Xalan 0.728 0.752 0.694 0.722
Xerces1.2 Xerces1.3 0.819 0.290 0.377 0.328

All projects except Xerces 0.712 0.826 0.326 0.467
Xerces1.2 0.351 0.076 0.457 0.131
Xerces1.3 Xerces1.4 0.405 0.076 0.941 0.141

All projects except Xerces 0.488 0.324 0.723 0.447
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Table 5.6 Kinds of Tokens Extracted from TCALL

extracted from in one proejct in two or more projects sum used in prediction

All Projects 401,903 28,227 430,130 6.6 %

extracted from in one version in two or more versions sum used in prediction

Ant Project 14,447 18,796 33,243 56.5 %

Eclipse Project 114,922 201,746 316,668 63.7 %

jEdit Project 9,229 24,796 34,025 72.9 %

Lucene Project 5,385 9,688 15,073 64.3 %

POI Project 2,778 17,287 20,065 86.2 %

Velocity Project 2,517 8,777 11,294 77.7 %

Xalan Project 10,430 34,282 44,712 76.7 %

Xerces Project 2,040 19,110 211,50 90.4 %
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5.3 Ex. 6: Prediction Using All Other Project and Older Versions

We find that the results of intra-project prediction show better precision and the results

of cross project prediction show better recall. Therefore, in this experiment, we investigate

whether the results are improved by combining intra-project prediction and cross project

prediction.

5.3.1 Experiment Method

In this experiment, we predict a target project using all other training projects and

older versions. In brief, we combine ex. 3 with ex. 5. Therefore, when we predict a target

version, we use all versions in other project and its older versions. For example, if we

use Ant1.7 as target version, training versions are all versions of projects except Ant and

Ant1.4+Ant1.5+Ant1.6. We use TCALL token class, because TCALL token class show the

best F1 value in ex. 5.

5.3.2 Results and Discussions

We show the comparison of ex. 5 and ex. 6 in Figure 5.2. We can see that results are

almost the same from this figure. Therefore, we conclude that using older versions do not

improve results in cross project prediction.

Table 5.7 shows comparison of ex. 3, ex. 5, and ex. 6. “ex. 3+ex. 5” in the table means

that we combine training data written after “ex. 3” and “ex. 5”. That is, the lines of

“ex. 3+ex. 5” show the results of this experiment. In order to compare the result using

same type of tokens, we re-conduct ex. 3 using TCALL token class. We can say that

this experiment is combination of intra-project and cross project prediction. Precision is

better in order of ex. 3, ex. 6 and ex. 5. Recall is better in order of ex. 5 ,ex. 6 and ex. 3.

Therefore, if we need better precision, we should conduct intra-project prediction and we

need better recall, we should conduct cross project prediction.
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Figure 5.2 Comparison of ex. 5 and ex. 6
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Table 5.7 Comparison of ex. 3, ex. 5 and ex. 6

Training Target Accuracy Recall Precision F1

ex. 3: Ant1.4+Ant1.5 0.791 0.402 0.673 0.503
ex. 5: All projects except Ant Ant1.6 0.571 0.957 0.376 0.540
ex. 6: ex. 3+ex. 5 0.703 0.880 0.466 0.609
ex. 3: Ant1.4+Ant1.5+Ant1.6 0.725 0.693 0.429 0.530
ex. 5: All projects except Ant Ant1.7 0.667 0.777 0.381 0.511
ex. 6: ex. 3+ex. 5 0.715 0.729 0.422 0.534
ex. 3: Eclipse2.0+Eclipse2.1 0.841 0.381 0.457 0.416
ex. 5: All projects except Eclipse Eclipse3.0 0.826 0.411 0.411 0.411
ex. 6: ex. 3+ex. 5 0.852 0.304 0.502 0.379
ex. 3: jEdit3.2+jEdit4.0 0.813 0.684 0.635 0.659
ex. 5: All projects except jEdit jEdit4.1 0.750 0.684 0.519 0.590
ex. 6: ex. 3+ex. 5 0.770 0.747 0.546 0.631
ex. 3: jEdit3.2+jEdit4.0+jEdit4.1 0.814 0.792 0.404 0.535
ex. 5: All projects except jEdit jEdit4.2 0.707 0.812 0.291 0.429
ex. 6: ex. 3+ex. 5 0.735 0.854 0.320 0.466
ex. 3: jEdit3.2+jEdit4.0+jEdit4.1+jEdit4.2 0.764 0.545 0.052 0.094
ex. 5: All projects except jEdit jEdit4.3 0.620 0.636 0.037 0.070
ex. 6: ex. 3+ex. 5 0.663 0.636 0.042 0.079
ex. 3: Lucene2.0+Lucene2.2 0.591 0.433 0.815 0.566
ex. 5: All projects except Lucene Lucene2.4 0.630 0.478 0.858 0.614
ex. 6: ex. 3+ex. 5 0.648 0.537 0.832 0.653
ex. 3: POI1.5+POI2.0 0.372 0.049 0.800 0.092
ex. 5: All projects except POI POI2.5 0.472 0.283 0.753 0.412
ex. 6: ex. 3+ex. 5 0.462 0.255 0.759 0.382
ex. 3: POI1.5+POI2.0+POI2.5 0.616 0.936 0.637 0.758
ex. 5: All projects except POI POI3.0 0.559 0.391 0.833 0.533
ex. 6: ex. 3+ex. 5 0.610 0.470 0.857 0.607
ex. 3: Velocity1.4+Velocity1.5 0.437 0.936 0.371 0.531
ex. 5: All projects except Velocity Velocity1.6 0.686 0.500 0.542 0.520
ex. 6: ex. 3+ex. 5 0.646 0.641 0.485 0.552
ex. 3: Xalan2.4+Xalan2.5 0.649 0.275 0.926 0.424
ex. 5: All projects except Xalan Xalan2.6 0.728 0.752 0.694 0.722
ex. 6: ex. 3+ex. 5 0.758 0.745 0.741 0.743
ex. 3: Xerces1.2+Xerces1.3 0.409 0.095 0.833 0.171
ex. 5: All projects except Xerces Xerces1.4 0.488 0.324 0.723 0.447
ex. 6: ex. 3+ex. 5 0.463 0.233 0.766 0.358
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6. Related Works

In this section, we describe related works that conducted cross project prediction.

Turhan et al. [2] conducted cross-company and within-company defect predictions using

10 project data from 8 different companies. They showed that cross-company predictions

increase probability of detection (pd) and decrease probability of false (pf). In order to

improve pf value, they proposed an approach that selects training data using k-nearest

neighbor. However, the results of within-company is better than the results of cross-

company with k-nearest neighbor. Therefore, they concluded that if there are no within-

company data, we can use cross-company prediction with k-nearest neighbor and start

to collect within-company data. After a few hundred examples are available, it can be

switched to use within-company data to predict faults.

Zimmermann et al. [1] conducted 622 cross project prediction and showed that only

21 prediction (3.4%) satisfy their criteria (accuracy, recall and precision are greater than

0.75). They investigate relation between factors for predicting and the results and con-

clude that projects in the same domain do not work to build accurate prediction models.

He et al. [5] showed that the results of cross project prediction using suitable training

data are better than the results of intra-project prediction. They proposed an approach

that selects training data properly. They showed that their approach can find proper

training dataset for 24 of 34 versions.

Watanabe et al. [3] conducted inter project prediction using same domain (text editor)

but different languages (Java and C++) projects. They proposed an approach called

metrics compensation that normalizes metrics between different datasets based on average

value of each metric. They showed that the results of inter project prediction are improved

by their approach. In study [4], Watanabe et al. conducted experiments that use several

projects as training data and several machine learning algorithms to predict faults. They

showed that the results of majority vote of some machine learning algorithm is better

than the results of each machine learning algorithm.
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7. Threats to Validity

In this research, we use 8 projects, Ant, Eclipse, jEdit, Lucene, POI, Velocity, Xalan

and Xerces, including 28 versions. We guess that the number of projects and versions

is sufficiently large. However, all of these projects are open source software. Therefore,

if we use projects that were developed by company, results might show other trends. In

addition, 7 of 8 projects that we select to use in this research are developed by Apache

community. We can think such conditions are most project developed by one company.

Hence, these projects might similar in some way. We have possibility that these affinity

affect to our results.

We use the data of faulty modules in PROMISE database. These data that we use are

not collected by developer. These are collected by third person using tool. Therefore,

These data about faults are not perfectly correct because there has not yet been any

complete way to extract bug information from bug tracking system and version control

system. Accordingly, our results include a certain level of error.
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8. Conclusions

In this research, first of all, we conduct comparison of experiment using the multi-

variate Bernoulli model and the multinomial model. From the result, we conclude that

the multi-variate Bernoulli model is better model in fault-prone filtering. From the results

of intra-project prediction and cross project prediction using some kinds of tokens. TCALL,

TCCODE, TCEOL, TCCODE+EOL and TCLINE can use in fault-prone filtering. Especially,

TCALL show the best result in cross project prediction. From the results of prediction

using TCLINE, we can say that structures of modules related to faulty. From the results

of cross prediction, we guess that there are tokens and structures that are related to

fault-proneness potentially.
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