
Vol. 42 No. 3 IPSJ Journal Mar. 2001

IPSJ 40th Anniversary Award Paper

Software Project Simulator for Effective Process Improvement

Shinji Kusumoto,† Osamu Mizuno,† Tohru Kikuno,†

Yuji Hirayama,†† Yasunari Takagi†† and Keishi Sakamoto†††

In this paper, we propose a new model for describing software processes and an estimation
method for the quality, cost and delivery date of a software project. The model was developed
based on the experience and the data from the software development process at OMRON
Corporation. The model consists of a Project model and a Process model. The Project model
focuses on three key components: activity, product and developer of the project. Process
model includes a set of Activity models, each of which specifies design, coding, review, test,
and debug activities respectively using GSPN (Generalized Stochastic Petri-Net). The new
model can take the influence of human factors into account by introducing the concept of
“workload.” Next, we develop a simulator which supports description of the process and
executes the process described by the Activity model. As the result of its execution, we get
the estimated values for the quality, cost and delivery date of the target process. Then, we
apply the simulator to real software processes at OMRON Corporation and compare these
estimated values with actual data. The experimental results show the applicability of the
proposed simulator to improve real software process.

1. Introduction

Software quality is a major problem facing
software engineering. It is very important to
establish effective procedures, methods, nota-
tions, tools, and practices for promoting soft-
ware quality. Moreover, quality affects produc-
tivity, since products with higher quality re-
quire less rework and maintenance. It is gen-
erally said that in order to improve productiv-
ity and quality of software products, the soft-
ware development process has to be improved.
That is, to consistently improve products, the
process used for developing them should be un-
derstood, defined, measured, and progressively
improved 18).
There are numerous studies and reports re-

garding the improvement of software devel-
opment processes 4),9),12). The importance of
the following two key activities is commonly
stressed for the improvement of software devel-
opment processes: (1) to understand and ana-
lyze the current status of the software develop-
ment process, and (2) to construct and execute
the improvement plan of the process based on
the analysis results.
We have described an actual experience of

software process improvement 22). In order to
improve the software process, we have proposed

† Graduate School of Engineering Science, Osaka
University

†† OMRON Corporation
††† SPI consultant

a process improvement procedure which de-
scribes the current process using Petri-net and
estimates the benefits gained by the improve-
ment. In the procedure, the current software
process is described accurately and in detail,
and then a feasible action plan is presented
to developers. Also, benefit estimation is per-
formed to evaluate the impacts of an action
plan before the action plan is actually imple-
mented. In Ref. 22), we applied the proposed
procedures to a practical project. We estimated
that by applying the action plan to the next
project, 10% of the total effort/KLOC would
be reduced at test phases. Then, actually, the
estimated effort reduction had been attained.
Then, our research objective shifted to execute
the process improvement, especially benefit es-
timation, systematically from the viewpoint of
quality, cost and delivery date.
This paper proposes a new model based on

Generalized Stochastic Petri-net (GSPN) 7) for
software projects. The model consists of a
Project model and a Process model. The
Project model focuses on three key components:
activity, product and developer of the project.
The Process model includes a set of Activity
models, each of which specifies design, coding,
review, test, and debug activities respectively
using GSPN. The model can take the influence
of human factors into account by introducing
the concept of “workload.” The workload of an
activity is defined as total time needed for a
developer with the average capability to com-

396

Vol. 42 No. 3 Software Project Simulator 397

plete the activity. The workload can reflect the
necessity of communication and performance of
CASE tools, and thus the simulator can eval-
uate the dynamic aspect of the project. Addi-
tionally, so-called parallel executions of several
activities (for example, design and coding) can
be easily specified in the Process model to re-
flect the reality of the software project.
Next, in order to support description of the

process and execute the process described by an
Activity model, we develop a software project
simulator. The kernel part of the simulator is
developed using C language and the display and
the editor are developed using Tcl/Tk. As the
results of simulation, we get the estimated val-
ues for the quality, cost and delivery date of
the target process. Then, we conduct empiri-
cal evaluation. In the experiment, we apply the
simulator to real software projects at OMRON
Corporation and compare the estimated val-
ues with actual data. The experimental results
show that the estimated values are quite close
to the actual value. As the result, we can show
the applicability of the proposed simulator to
improve real software project in the future.
The rest of this paper is organized as follows:

Section 2 reviews the related works and our past
experience. Next, Section 3 proposes the new
project model. Section 4 describes the project
simulator based on the proposed model. Then,
Section 5 applies the simulator to the several
software projects in OMRON Corporation and
evaluates the usefulness of the proposed model.
Section 6 discusses the applicability of the pro-
posed method and future research works. Fi-
nally, Section 7 concludes this paper.

2. Preliminaries

2.1 Past Experience at OMRON Cor-
poration

OMRON Corporation consists of several
headquarters. One of them is the Electronic
Fund Transfer Systems H.Q. (shortly called
EFTS). The EFTS consists of several divisions
including the Development Division and several
business divisions. The SEPG (Software En-
gineering Process Group) is one of the groups
within the Development Division. The SEPG
was established in 1992 to improve the software
development process of the development de-
partments, each of which belongs to each busi-
ness division. Moreover, the SEPG has been
cooperating with several universities for process
improvement.

In Ref. 22), we reported an actual experience
of software process improvement at OMRON
Corporation. For effective technology transfer,
the SEPG had set three principal goals as fol-
lows: (1) motivate developers to improve on
their process, (2) describe and define current
software process correctly and in detail, (3)
present a feasible action plan for developers to
follow. To attain these goals, the SEPG pro-
posed a process improvement procedure by de-
scribing the current process and estimating the
benefits gained by the improvement.
The project to be improved was one of a se-

ries of embedded software developments. “Se-
ries” implies that there exist multiple projects
where similar products are successively devel-
oped. Conventionally, these projects continue
for at least three years. When the process im-
provement started, two projects had already
been finished. Next project would start after
four months.
Firstly, the SEPG held a series of interviews

with developers and depicted a flow map in the
form of a Petri net 19) which describes the cur-
rent software process. Secondly, the group con-
structed an action plan from the in-depth anal-
ysis of the current flow map, and estimated the
benefits obtained if this plan were to be rigor-
ously followed. As a result, both the action plan
and the benefit estimation were agreed by the
developers as a feasible action plan. Further-
more, by applying the action plan to a prac-
tical project, it was confirmed that, compared
to a similar project, approximately 10% of the
total effort/KLOC was reduced at test phases.
Then, we could suggest that the principal goals
and the proposed procedure are effective to re-
duce the development effort at OMRON Cor-
poration.
Then, our research objective shifted to de-

velop an adequate process description language
for a real project and then to execute the pro-
cess improvement, especially benefit estima-
tion, systematically from the viewpoint of qual-
ity, cost and delivery date.

2.2 Related Works
Several methods have already been proposed

to model and evaluate the software develop-
ment process. Kellner has proposed the eval-
uation method of software processes described
by the modeling tool STATEMATE 13). This
method has demonstrated how process models
could be applied for software project manage-
ment. Next, Lee and Murata have proposed

398 IPSJ Journal Mar. 2001

a β-distributed stochastic Petri-net model for
software project management 14). This model
is an integrated model of program evaluation
and review technique (PERT) and Petri-net,
and suitable to deal with the uncertainty and
concurrency problems of large software project
management. FUNSOFT Nets and SPADE are
also the model based on Petri-net 2),3) and are
more oriented to process enactment than to
process analysis and simulation. They mainly
focus on the evaluation of the time constraints
of the process.
Furthermore, Tvedt and Collofello have eval-

uated the effectiveness of process improvement
on software inspections by using the system dy-
namics model 24). This method makes it possi-
ble to predict the impact of process improve-
ments through the cause-effect relationships on
software development.
These methods are based on evaluation from

the viewpoints of only the cost and delivery
date. Thus they cannot totally evaluate the
important factors of software project: quality,
cost and delivery date.
Raffo has extended Kellner’s method in or-

der to evaluate the quality of software, and
applied it to Kellner’s Software Process exam-
ple 20). This method, however, has not been
applied to real software development processes.

3. Proposed Model

3.1 Overview
It is necessary to evaluate the software pro-

cesses from the viewpoints of quality, cost and
delivery date. At first, following the policy in
Ref. 22), we decide to develop the model based
on Petri-net. Among many kinds of Petri-
net model, we select the Generalized Stochastic
Petri-net (GSPN) 7).
Fundamental activities in the software devel-

opment processes in Ref. 22) can be described
by introducing the probability of the injection
and removal of a fault as the firing rate of the
transitions in order to evaluate the number of
residual faults in the products.
Then, the concept of “workload” is consid-

ered in order to describe the fluctuations of the
development period and product size. The in-
terpretations of workload will be given in the
next subsection.
There also exist several dynamic factors,

which affect the behaviors of the developers, in
the software development as follows:
(1) Communication overheads 5),

(2) Difference of experience 15),21),
(3) Confusion by incompleteness 6),
(4) Stress by delivery date 8).
In the practical development, since these fac-

tors change the development period dynami-
cally, it is very difficult to estimate the devel-
opment period precisely. So, three attributes:
developers’ experience level, completion rate of
products and deadline for activities, are incor-
porated to take the dynamic influence of hu-
man factors into account. Especially, “com-
pletion rate” of products makes it possible for
developers to start concurrently the successive
(and thus the next) activity based on incom-
plete documents developed by current activity.
The degree of incompleteness is controlled by
completion rate. All these attributes will be
taken into a Project model later.

3.2 Key Concept “Workload”
Generally speaking, effort is used to measure

the amount of the activity. But, the effort
doesn’t become clear until the activity is over,
and thus the effort is not suitable to determine
the amount of uncompleted activity. Addition-
ally, the effort includes not only the amount
of work needed for purely execution of the ac-
tivity, but also the amount of communication
among the developers. For example, let us con-
sider an activity of 10 person-days. Even if this
activity is performed by a developer in 10 days,
it could not be performed by 10 developers in
a day. One of the main reason is that time to
communicate among the developers increases as
the number of the developers increases.
Here, we define the term “workload” of an

activity as total time needed for a developer
who has the average capability to complete
the activity. The similar concept to workload
has been presented in Ref. 1). Our “workload”
could be considered as an actual instance of the
concept in Ref. 1). Additionally, an efficiency of
the activity under such a condition is quantified
as 1. The value of efficiency depends on the en-
vironment, such as the number of the develop-
ers, the necessity of communication and perfor-
mance of CASE tools. Then, the development
time is calculated as the result of dividing the
workload by the efficiency of the activity.

[Example 1] Consider the following two cases
of an activity whose workload is 20 hours.
Case 1: Two developers, with the standard
capability execute the activity and ten per-
cent of the total development time is spent

Vol. 42 No. 3 Software Project Simulator 399

for communication.
For this case, if each developer takes part

in the activity for 10 hours, then the at-
tained workload becomes 18 (= 10 × 2 ×
0.9).

Case 2: Four developers, with the standard
capability, execute the activity and twenty
percent of the total development time is
spent for communication.

For this case, if each developer takes
part in the activity for 5 hours, then the at-
tained workload becomes 16 (= 5×4×0.8).

If we get the workload of an activity, then we
can estimate the development time appropri-
ate for specific several activity conditions de-
pendent on a given environment.
In the proposed model, the workload is as-

signed to each activity depending on the input
products for the activity. That is, for example,
workload of design activity (Wdesign) is defined
as the following formula:

Wdesign = sdesign × Kdesign.
Here, sdesign denotes the size of input prod-

uct of design activity and Kdesign denotes the
workload parameter for design activity. Before
simulation, workload parameter must be given
to each activity of the target project.
Consuming of the workload assigned to an

activity corresponds to the progress of the ac-
tivity in the development. Growth of product
can be modeled by changing values of the size
or the number of faults in the output product.

3.3 Structure of New Model
The proposed model consists of a Project

model and a Process model. Figure 1 shows
the structure of the proposed model.
The Project model includes three key com-

ponents: activities, products and developers.
Some attributes are attached to each of them,
as shown in Fig. 2.
The Process model includes a set of Activity

models which include specifications of design,
coding, review, test, debug activities, and so
on.

3.4 Project Model
The Project model focuses on three key com-

ponents: activities, products and developers,
and attaches several attributes to each of them
(See Fig. 2).
An activity has eight kinds of attributes,

which are type, entry/exit conditions, in-
put/output products, workforce, deadline and
workload. (1) Type shows which the activity
corresponds to and describes currently one of

update attribute
values of Ai, Pi, Mi

deliver
firing rates of

transitions

design

coding

test

review debug

Project Model

Process Model

activities

products

developers

{Ai}

 {Pi}

{Mi}

Fig. 1 Structure of the proposed model.

Attributes of activity Ai
type
entry condition
exit condition
input products
output products
workforce
deadline
workload

Attributes of product Pi
size
number of faults
completion rate

Attribute of developer Mi

experience level

Fig. 2 Project template.

design, coding, review, test and debug. (2)
Entry condition and (3) exit condition specify
conditions for beginning and ending the activ-
ity, respectively. (4) Input products describe
the products given to the activity as the input
products and the degree of contribution of each
input products to determine workload of the ac-
tivity. (5) Output products describe the output
products that are developed in the activity and
the weight assigned to each product. The varia-
tion of the product size and that of the number
of faults are distributed to the products accord-
ing to weights. Thus, the sum of each weight
must be one. (6) Workforce specifies tuples of
the developers who engage in the activity and
the ratio of time in which each developer can en-
gage in the activity to his or her business hours.
(7) Deadline represents the appointed date for
the completion of the activity, which is fixed on

400 IPSJ Journal Mar. 2001

the development plan. (8) Workload represents
a tuple of the workload assigned to the activity
and consumed amount of it.
Next, a product has three kinds of attributes,

which are size, the number of faults and comple-
tion rate. (1) Size represents the product size in
document pages or the lines of source code. (2)
Number of faults counts faults in the product.
(3) Completion rate represents the ratio of the
consumed workload to the assigned workload.
Then, a developer has an attributes expe-

rience level which is determined according to
his/her length of service. We classify develop-
ers’ experience levels into the following three
levels: novice, standard and expert levels. They
are quantified as discrete values 1, 2 and 3, re-
spectively.

[Example 2] Figure 3 shows an example of
the Project model description. This project is
composed of three activities (A1, A2, A3), six
products and three developers. Now, let us
explain the description of activity A1. Type
shows that the activity A1 is a design activ-
ity. Entry c. (the condition for starting the ac-
tivity) represents that only if A1 has not been
started, it can be started at any time. Exit c.
(the condition for ending the activity) repre-
sents that if all of the workload assigned to A1

are consumed, its execution ends. Input p. and
output p. show input and output products of
the activity, respectively. Input p. (= (P0, 7.0))
represents that the product P0 is given to A1

as an input product, and the workload equiv-
alent to seven times as much as the size of
the product P0 is assigned to A1. Output p.
(= (P1, 0.3), (P2, 0.5), (P3, 0.2)) represents that
A1 develops three products P1, P2 and P3, and
the increase or decrease of the size and faults is
distributed to P1, P2 and P3 in a three-five-two
ratio, respectively. Workforce represents that
the developer M1 engages in A1 at the full rate
of his/her business hours. Deadline (the ap-
pointed date for the completion of the activity)
represents that the deadline of A1 is specified
to be 20 days after the beginning of the project.
The description of product P0 shows that the

size of P0 is 8 pages, no fault exists in it and
development of P0 is fully completed in terms
of excluding omissions from the description.
The descriptions of developers M1, M2 and

M3 show that their experience levels are 3 (ex-
pert), 2 (standard) and 1 (novice), respectively.
Note that workloads of activities A1, · · · , A3

A1
type
entry condition
exit condition
input products
output products
workforce
deadline

FD
(A1, non-executed)
(A1, consumed)
(P0, 7.0)
(P1, 0.3), (P2, 0.5), (P3, 0.2)
(M1, 1.0)
20

A2
type
entry condition
exit condition
input products
output products
workforce
deadline

PG
(A1, done)
(A2, consumed)
(P1, 1.2)
(P4, 1.0)
(M2, 1.0), (M3, 1.0)
35

A3
type
entry condition
exit condition
input products
output products
workforce
deadline

PG
(A1, done)
(A3, consumed)
(P2, 1.1)
(P5, 1.0)
(M1, 1.0)
35

P0
size
number of faults
completion rate

8
0
1.0

M1
experience level 3

M3
experience level 1

M2
experience level 2

Fig. 3 Example of project description.

and attributes of all products except for the ini-
tial input product P0 are determined during the
execution of the model. Thus, they are not yet
specified in Fig. 3.

Parallel execution of several activities can be
easily defined by utilizing both attributes en-
try condition of activity and completion rate of
product. With respect to example of the paral-
lel execution, please refer to Ref. 10).

3.5 Activity Model
An activity model is prepared for each type

of activities such as design, coding, review, test,
debug and so on. The descriptions of the Activ-
ity models are given using an extended GSPN.
Figure 4 shows an example of the description
of the design activity. In the extended GSPN,
a token has three attributes: product size s,

Vol. 42 No. 3 Software Project Simulator 401

t1 t2 t3

w=w+1-
f=f+1 (p)in

s=s+1
transition

execution
 function

r
th wrr

t1

t2

P1 P2

rcm

t3

Fig. 4 Activity model.

number of faults f and consumed workload w.
These attributes are used to represent the cur-
rent status of development that varies over the
execution of each Activity model.
Transitions used here are timed transitions.

The firing delay of each transition is exponen-
tially distributed and the average firing delay of
a transition is specified by a firing rate assigned
to it. In Fig. 4, the firing rate rcm of transition
t1 means that the average firing delay of tran-
sition t1 is 1/rcm.
In addition, each transition has a function

(called execution function) to be evaluated on
its firing. The execution of the function updates
the attribute values of the token. Intuitively
speaking, each transition corresponds to the de-
velopers’ behavior such as thinking, writing and
communicating or an event which occurs dur-
ing execution of activity. Places correspond to
waiting states for occurrences of behaviors or
events.

[Example 3] Figure 4 shows a description
of the design activity. Here, we consider
three kinds of developers’ behaviors in the de-
sign activity: communicating among develop-
ers, thinking for problem solution and writing
for putting down the solution in documents.
Transitions t1, t2 and t3 in Fig. 4 correspond to
communicating, thinking and writing and are
given the firing rates rcm, rth and rwr, respec-
tively.

The firing rates of the transitions are formu-
lated by the following ten functions fcm, fth,
fwr, fpr, frd, fdt, fmd, fps, flc and fin. These
functions should be concretely specified based
on the property of the target project.
In the following, M is the number of the de-

velopers who engage in the activity, L is devel-
oper’s experience level, ΣL is the sum of each

developer’s experience, S is the total size of the
input products, R is the completion rate of the
input products, F is the number of faults of the
input products, D is the number of the days
from the current date to the deadline of the
activity. Kcm, Kth, Kwr and Kin are parame-
ters given to each activity and concerned with
communicating, thinking, writing and fault in-
jection rate, respectively☆.
(1) Communicating rate rcm

rcm = fcm(M,ΣL, R)
(2) Thinking rate rth

rth = fth(M,ΣL)
(3) Writing rate rwr

rwr = fwr(M,ΣL)
(4) Preparing rate rpr

rpr = fpr(M,ΣL, S)
(5) Reading rate rrd

rrd = frd(M,ΣL)
(6) Fault detecting rate rdt

rdt = fdt(M,ΣL, S, F)
(7) Fault modifying rate rmd

rmd = fmd(M,ΣL)
(8) Testcase passing rate rps

rps = fps(M)
(9) Fault localizing rate rlc

rlc = flc(M,ΣL, S, F)
These make it possible to dynamically de-

termine the frequency of communications or
the difficulty in thinking and writing according
to the number of developers, experience levels
of developers and/or completion rates of input
products.
Moreover, the increase of product size s at

every firing of writing transition t3 and the con-
sumption of workload at every firing of thinking
transition t2 are described by the corresponding
execution functions. At each firing of the tran-
sition, the values of token’s attributes can be
changed by evaluating its execution function.
The activity model handles fault injections

in the design activity as the stochastic events
whose occurrences depend on the fault injection
rate pin. In general, pin is formulated by the
following function:
(10) Fault injection rate pin

pin = fin(M,ΣL, D, R)
By using this function, it is possible to take

account of dynamic influence on the fault injec-
tion rate caused by the stress from deadline of

☆ The functions fcm, fth, fwr and fin should be con-
cretely given based on the characteristics of the
project to be applied.

402 IPSJ Journal Mar. 2001

the activity or developers’ experience levels.
Though the functions (1)–(3) are used in

Fig. 4, the rests (4)–(9) are not included in
Fig. 4. Figure 4 shows an example of design and
coding activities and thus the improvement of
model should be conducted through case stud-
ies. Besides we also modeled other activities
(review, test and debug), in which the func-
tions (4)–(9) are used. The detail of the activity
models is shown in Ref. 11).

[Example 4] In the design Activity model de-
picted in Fig. 4, for example, transitions t1 and
t2 which represent communicating and thinking
behavior, respectively, are enabled to fire when
a token exists in the place P1. If the commu-
nicating transition t1 fires, it has no effect on
the attributes values, and the token returns to
the place P1 and only time elapses by the firing
delay. On the other hand, if the transition t2
fires by evaluating its execution function, then
consumed workload w is increased by one, and
the token moves to the place P2. When the to-
ken exists in the place P2, only the transition
t3 which represents writing behavior is enabled.
If the transition t3 fires, then product size s is
increased by one, and the number of faults f
could be increased according to the fault injec-
tion rate pin. After the firing of t3, the token
moves back to the place P1.

3.6 Simulation by Model
The development process specified by the

model is carried out by repeating the interac-
tion between the Project model and the Activ-
ity models at specified intervals. Each interac-
tion cycle consists of the following three steps:
Step 1. Based on values of attributes of activ-

ities, products and developers, the Project
model computes the firing rates of transi-
tions of the Activity models.

Step 2. The Project model delivers the firing
rates to the corresponding activity model,
and then the Process model executes the
process described by GSPN.

Step 3. The Process model returns the exe-
cution results to the Project model. Then,
the Project model updates relevant at-
tributes of activities and products based on
the returned values.

4. Simulation Environment

In order to quantitatively evaluate software
processes described by the proposed model,
a simulation environment which executes the

Project manager

User Interface Unit

Simulation
DB

Project
DB

Project
Description

Data flow

Control flow

Simulation
results

Description of
Activity model

Editor

Project Control Unit Activity Simulator

Petri-net
DB

Project
Description

Display Unit

Simulation
results

Fig. 5 System architecture.

process automatically is indispensable. We
have designed and implemented a simulator
which supports description of the target pro-
cess, executes the process described by the ac-
tivity model and analyses the simulation results
statistically. In this Section, we explain the
overview of the simulator. The experimental
evaluation of the simulator will be described in
Section 5.

4.1 System Architecture
Figure 5 shows the system architecture of

the simulator. The system consists of five func-
tional units: project control unit, activity sim-
ulator, user interface unit, display unit and ed-
itor. In Fig. 5, solid lines represent data flows
and dotted lines represent control flows, respec-
tively.
The followings are the function of each unit.
(1) Project control unit: Project control unit
decides which Activity model is to be simu-
lated by activity simulator according to the
project description. It defines the relation-
ship among activities, products and devel-
opers of the Project model, and sets the
values of attributes of each activity, prod-
uct and developer. Next, it delivers the
name of the Activity model and the val-
ues of parameters to the activity simulator.
When it receives the results of simulation,
it updates the values of attributes.

(2) Activity simulator: Activity simulator
simulates activities specified by the Activ-
ity model using data such as name of the
Activity model and parameters given from

Vol. 42 No. 3 Software Project Simulator 403

project control unit. At first, it gets an
Activity model with the same name from
Petri-net database. Next, it simulates ac-
tivities specified by the model using given
parameter values. The results of simula-
tion are returned to project control unit at
regular intervals and are stored in the sim-
ulation database.

(3) User interface unit: User interface unit
manages exchanges of data or commands
between user and system (editor, project
control part and display part).

(4) Display unit: Display unit displays the
data received from the activity simulator.
It can also provide the data about the pre-
vious simulation results stored in the sim-
ulation database. The data include graph-
ical information and statistical analysis of
the simulation results.

(5) Editor: Editor supports to create the
project description which is an input of
project control unit. By using this editor,
we can describe a project and set up all
parameters needed in the proposed model.
The output of editor is stored in the project
database.

Since high speed computation is necessary for
the project control unit and activity simulator,
we implemented them using C language. On
the other hand, the display unit and the edi-
tor, for which user-friendliness is strongly de-
sirable, are implemented using Tcl/Tk. The
program size becomes about 3500 lines (C lan-
guage: 1000 lines, Tcl/Tk: 2500 lines).

4.2 Behavior of Simulator
Simulations proceeds at the intervals of unit

time☆. At first, project control unit determines
activities to be executed, based on the current
status of the progress and entry/exit conditions
of each activities. Next, for each executable
activity, project control unit delivers the pa-
rameters to activity simulator and directs it to
execute activities for a day. Then, activity sim-
ulator executes all of the activities, which are
directed to execute by project control unit, us-
ing given parameters and extended GSPN. The
execution of an activity is expressed by the con-
sumption of its workload. When an activity
consumes all of assigned workload, the activity
is regarded to be completed.
The execution of simulation is able to be sus-

pended or restarted at any time. Moreover,

☆ Currently, one unit time is a day (8 hours).

Fig. 6 Example of simulation.

at every unit time of simulation, intermediate
simulation results can be stored in the simu-
lation database. The intermediate simulation
results are stored in the same format of the
original project description. Thus, it is pos-
sible to restart the simulation using the inter-
mediate simulation results as the input. Also it
is possible to change the values of parameters
(attributes of project) at any time of the simu-
lation. For example, we can modify the number
of developers at any time of the simulation and
simulate it immediately.

Figure 6 shows the execution example of
simulation which is in progress. In the main
window, we can see the progress of the simula-
tion. We can also get various information from
the window such as control flow between activ-
ities, consumed/assigned workload of each ac-
tivity, assigned developers on a activity, size of
product, the number of residual faults in prod-
uct and so on. These information supports to
investigate the progress of simulation in vari-
ous ways. In Fig. 6, another window graphically
shows the change of residual faults.

5. Empirical Evaluation

In order to evaluate the usefulness of the pro-
posed method, we conduct an empirical evalua-
tion. In the experiment, we apply the simulator
to three similar software development projects
PR1, PR2 and PR3 in OMRON Corporation.

5.1 Assumptions
Here, we formulate each firing rate and fault

injection rate in the design and coding Activ-
ity models on the following assumptions (H1)–
(H3). In the following formulas, M is the num-

404 IPSJ Journal Mar. 2001

ber of the developers engaged in the activity,
ΣL is the sum of each developer’s experience
level, R is the completion rate of the input
products, D is the number of the days from
the current date to the deadline of the activity.
Kcm, Kth, Kwr andKin are parameters given to
each activity and concerned with communicat-
ing, thinking, writing and fault injection rate,
respectively.
(H1) Communicating rate rcm is proportional
to the squared number of developers and in-
versely proportional to the developers’ ex-
perience levels and completion rates of the
input products.

rcm = Kcm × M2

ΣL × R
The validity of (H1) comes from the fol-
lowings: (1) The number of communication
paths among M developers is M(M −1)/2,
and a novice developer needs more com-
munications because of his/her immature
knowledge, and (2) Incomplete input prod-
ucts induce frequent inquiries about the
omission of the description 6).

(H2) Thinking rate rth and writing rate rwr

are proportional to the average developer’s
experience and the number of developers.
This assumption is based on the assertion
that the individual capability of the devel-
oper is strongly related to the productivity
of software 15),21).

rth = Kth × ΣL

M
× M = Kth × ΣL

rwr = Kwr × ΣL

M
× M = Kwr × ΣL

(H3) Fault injection rate pin is proportional
to number of developers and inversely pro-
portional to the average experience level of
the developers, completion rate of the in-
put products and the number of the days
from the current date to the deadline of the
activity.

pin = Kin × M

ΣL × R × D
× M

The validity of (H3) comes from the fol-
lowings: (1) The individual capabilities of
developers are also related to the quality of
software 15),21), (2) Incompleteness of prod-
ucts prevents developers from performing
their work correctly, and (3) The analysis
in Ref. 8) shows that mental stress by dead-
lines is the largest cause of generated faults.

As spaces are limited, we omit the description
of the Project model, formulas of firing rates,
and parameters used by other activity models.

5.2 Characteristics of Target Projects
The main characteristics of the projects are

summarized as follows:
(1) Development effort is 170–330 person-
days per project.

(2) The size of the system is about 15K steps.
(3) Project members are almost unchanged
through all projects.

(4) Each project uses a standard waterfall
model.

5.2.1 Outline of the Experiment
In order to execute the process specified by

the process description, it is necessary to deter-
mine the values of parameters for every activ-
ity based on the collected data of projects PR1

and PR2. Now, however, we cannot obtain all
of the necessary data, and thus we must initiate
the simulation of the development process using
virtual data for some parameters. For example,
with respect to the parameters Kcm, Kth, Kwr

and Kin of the design activity, we assign the
suitable values at first and, then, changed the
values so that the simulated results of the de-
sign activity at PR1 and PR2 become the same
as the actual data of it. Also, we calculated
the value of some parameters deterministically
using actual input data. For example, with re-
spect to the parameter Input product rate of
each activity, we can calculate it using the ac-
tual data of effort and product size of PR1 and
PR2. Then, we get a common project descrip-
tion for those similar projects PR1 and PR2.
Then, we describe the project PR3 by adding

some attributes, that is peculiar to PR3 (e.g.,
the number of developers), to the common
project description. Successively, we simulate
it on the simulator and get the estimated value
of PR3 with respect to the development dura-
tion, development effort and residual faults. In
the case study, we repeated the simulation one
hundred times and calculated the average val-
ues of the development duration, development
effort and residual faults of PR3.
Finally, we compare these estimated values of

PR3 with the actual values of PR3.
5.2.2 Simulation Results
Table 1 shows both the estimated and the

actual values of project PR3. In Table 1, es-
timated values of development duration, devel-
opment effort and the number of residual faults
are 242 (days), 312 (person-days) and 15, re-

Vol. 42 No. 3 Software Project Simulator 405

Table 1 Analysis result of simulation.

Development Development Residual
duration effort faults

Simulation 242 312 15
(St. dev.) (6.54) (12.08) (4.21)

Actual value 248 329 26

spectively. On the other hand, actual values of
them are 248 (days), 329 (person-days) and 26,
respectively.
For the development duration and develop-

ment effort, the estimated values are quite close
to the actual values. On the other hand, for the
number of residual faults, the difference (= 11)
is about three times as large as the standard
deviation (= 4.21).
Here, we investigate the reason why the er-

ror occurs in estimating the residual faults. As
the results of examining the data of PR1, PR2

and PR3, it is found that for projects PR1 and
PR2, the average number of developers allo-
cated to the test and debug activities was 10.5.
On the other hand, for project PR3, the aver-
age number of developers in the activities was
20. We consider that this developer allocation
plan induces the error in estimating the resid-
ual faults. Though we discussed the bad influ-
ence of communication overhead in the earlier
sections, the good influence of increasing the
number of developers appeared in the simula-
tion results remarkably. We expect that the
accuracy of the estimation can be improved by
revising the equation of the fault injection rate.
It is one of the important future research works.

6. Discussions/Future Works

6.1 Parameter Setting of the Proposed
Model

Before simulating the target project, we must
customize the simulator by tuning up the val-
ues of parameters so that each activity in the
project can simulate actual situation. But, it
is generally very hard to determine parame-
ters, since these are tightly related each other.
Therefore, in this paper we used heuristic val-
ues in Section 5. It is necessary to develop the
systematic method or algorithms to determine
the parameters. We consider that the values
of parameters can be determined by stepwise
method. In Ref. 16), we empirically found cer-
tain relationships between the parameters. We
then chose several projects for the parameter
determination, and determined the values of pa-

rameters for each project so that the results of
simulation became the same as the actual re-
sults. We are going to generalize the stepwise
method to efficiently determine the parameters
of the proposed model.

6.2 Application to Other Projects
In the actual process improvement activity,

usually several action plans are appeared as
candidates. In such case, it is necessary to iden-
tify the most appropriate plan for the current
software development. In such situation, by us-
ing our simulator, we can choose the most ap-
propriate one. In Ref. 17), we used the proposed
simulator to compare two strategies of project
planning in software development process. One
is to construct the initial project plan at the
beginning of project, and execute whole project
under the initial project plan. The other is to
construct the initial project plan at the begin-
ning of project and execute the project under
it until the end of design phase, then, construct
the revised plan based on the data from design
phase and execute the rest of the project base
on the revised plan. Clearly, the latter strategy
is more appropriate than the former. However,
it needs a great deal of effort to collect the data
from the design phase and revise the plan. So,
the managers generally don’t want to adopt the
latter strategy. If it is necessary for the man-
agers to adopt the latter strategy, we must show
the effect of it. From the results of project sim-
ulation, we have confirmed the effectiveness of
the latter strategy. We are going to use our sim-
ulator in actual software process improvement
activities in OMRON Corporation.

6.3 Tailoring the Proposed Model to
Other Software Organizations

Currently, the proposed model has been
built for the software development process in
OMRON Corporation. Based on the data and
experience from OMRON Corporation, we de-
termined the details of the model (For example,
the several attributes of the project template in
Fig. 2 and the description of the activity model
in Fig. 4). In order to apply the model to the
software development processes in other organi-
zations, we have to tailor the model. For exam-
ple, we prepared five kinds of the activity mod-
els (design, coding, review, testing, debug). If
necessary, we should reconstruct them and add
other kinds of the activity models. Also, in the
activity models, the firing delay of each tran-
sition is exponentially distributed. It may be
appropriate to modify the distribution to nor-

406 IPSJ Journal Mar. 2001

mal distribution and so on.

7. Conclusion

We have proposed a new model for software
project which can evaluate the software process
from the viewpoints of the quality, cost and de-
velopment period. In the new model, by in-
troducing the concept of workload and the at-
tribute of completion rate, it is possible to eval-
uate the dynamic aspect of software project.
Next, we have developed an integrated sim-

ulator to support the estimation of software
project based on the proposed model. Finally,
we have applied the simulator to real software
projects and compare the estimated values with
actual data. The experimental results show the
applicability of the proposed simulator to man-
age real software project.
Up to the present, numerous studies in soft-

ware engineering develop new methods, tools,
or techniques to improve some aspect of soft-
ware development or maintenance. However, it
has been very difficult to introduce them to the
actual software development. One of the reason
is that relatively little evidence has been gath-
ered on which of these new developments are
effective23). We consider that the collaboration
research between industry and academia in soft-
ware engineering may be one solution to above
problem and our results show a good suggestion
to efficiently introduce the software engineering
technique to the actual software organization.
We would like to continue the collaboration re-
search to develop a framework for effective tech-
nology transfer.

References

1) Abdel-Hamid, T.K.: The dynamics of software
project staffing: A system dynamics based sim-
ulation approach, IEEE Trans. Softw. Eng.,
Vol.15, No.2, pp.109–119 (1989).

2) Armenise, P., Bandinelli, S., Ghezzi, C. and
Morzenti, A.: Software processes representa-
tion languages: Survey and assessment, Proc.
4th Conf. Software Engineering and Knowledge
Eng., pp.455–462 (1992).

3) Bandinelli, S.C., Fuggetta, A. and Ghezzi,
C.: Software process model evolution in the
SPADE Environment, IEEE Trans.Softw.Eng.,
Vol.19, No.12, pp.1128–1144 (1993).

4) Basili, V.R. and Rombach, H.D.: The TAME
project: Towards improvement-oriented soft-
ware environment, IEEE Trans. Softw. Eng.,
Vol.14, No.6, pp.758–773 (1988).

5) Brooks, Jr., F.P.: The Mythical Man-Month,

Addison-Wesley (1975).
6) Curtis, B., Krasner, H. and Iscoe, N.: A field
study of the software design process for large
systems, Comm.ACM, Vol.31, No.11, pp.1268–
1287 (1988).

7) Furusawa, K., Hirayama, Y., Kusumoto, S.
and Kikuno, T.: Modeling and quantitative
evaluation of software process based on a Gen-
eralized Stochastic Petri-net (in Japanese),
Proc. 15th Software Reliability Symposium,
pp.99–104 (1994).

8) Furuyama, T., Arai, Y. and Iio, K.: Fault gen-
eration model and mental stress effect analy-
sis, Journal of Systems and Software, Vol.26,
pp.31–42 (1994).

9) Genuchten, M.V.: Why is software late? An
empirical study of reason for delay in software
development, Trans. IEEE Softw. Eng., Vol.17,
No.8, pp.582–590 (1991).

10) Hirayama, Y., Mizuno, O., Kusumoto, S.
and Kikuno, T.: Hierarchical project manage-
ment model for quantitative evaluation of soft-
ware process, Proc. International Symposium
on Software Engineering for the Next Genera-
tion, pp.40–49 (1996).

11) Hirayama, Y.: Quantitative evaluation of soft-
ware process based on hierarchical project
management model, Master Dissertation, Os-
aka University (1996).

12) Johnson, A.: Software process improvement
experience in the DP/MIS function, Proc.
ICSE16, pp.323–329 (1993).

13) Kellner, M.I.: Software process modeling sup-
port for management planning and control,
Proc. 1st International Conference on Software
Process, pp.8–28 (1993).

14) Lee, G. and Murata, T.: A β-distributed
stochastic Petri net model for software project
time/cost management, Journal of Systems
and Software, Vol.26, No.2, pp.149–165 (1994).

15) Matsumoto, K., Kusumoto, S., Kikuno, T.
and Torii, K.: An experimental evaluation of
team performance in program development
based on model – Extension of programmer
performance model, Journal of Information
Processing, Vol.15, No.3, pp.466–473 (1992).

16) Mizuno, O., Kusumoto, S. and Kikuno, T.:
Customization of software project simulator for
improving estimation accuracy, Proc. 9th In-
ternational Symposium on Software Reliability
Engineering, Vol.2, pp.47–48 (1998).

17) Mizuno, O., Kusumoto, S., Kikuno, T.,
Takagi, Y. and Sakamoto, K.: Experimental
evaluation of two-phase project control for soft-
ware development process, IEICE Trans. Fun-
damentals of Electronics, Communications and
Computer Sciences, Vol.E81-A, No.4, pp.605–

Vol. 42 No. 3 Software Project Simulator 407

614 (1998).
18) Paulk, M.C., Humphrey, W.S. and Pandelios,

G.J.: Software process assessments: Issues and
lessons learned, Proc. ISQE92, pp.4B41–4B58
(1992).

19) Peterson, J.L.: Petri Net Theory and the Mod-
eling of Systems, Prentice-Hall (1981).

20) Raffo, D.M.: Evaluating the impact of pro-
cess improvements quantitatively using process
modeling, Proc.CASCON93, Vol.1, pp.290–313
(1993).

21) Sackman, H., Erickson, W.J. and Grant, E.E.:
Exploratory experimental studies comparing
online and offline programming performance,
Comm. ACM, Vol.11, No.1, pp.3–11 (1968).

22) Tanaka, T., Sakamoto, K., Kusumoto, S.,
Matsumoto, K. and Kikuno, T.: Improvement
of software process by process description and
benefit estimation, Proc. 17th International
Conference on Software Engineering, pp.123–
132 (1995).

23) Tichy, W.F., Harbermann, N. and Prechelt,
L.: Future directions in software engineering,
ACM SIGSOFT, Software Engineering Notes,
Vol.18, No.1, pp.35–48 (1993).

24) Tvedt, J.D. and Collofello, J.S.: Evaluating
the effectiveness of process improvements on
software development cycle time via system dy-
namics modeling, Proc. COMPSAC95, pp.318–
325 (1995).

(Received June 30, 2000)
(Accepted September 27, 2000)

Shinji Kusumoto was born
in 1965. He received the B.E.,
M.E. and D.E. degrees in infor-
mation and computer sciences
from Osaka University in 1988,
1990 and 1993, respectively. He
is currently Associate Professor

in the Department of Informatics and Mathe-
matical Sciences, Graduate School of Engineer-
ing Science, Osaka University. His research in-
terests are software metrics, software quality as-
surance technique. He is a member of the IEEE,
IEICE, JFPUG and IPSJ.

Osamu Mizuno was born in
1973. He received B.E. and M.E.
degrees in information and com-
puter sciences from Osaka Uni-
versity in 1996 and 1998, respec-
tively. He has been working for
Osaka University since 1999. He

is currently a Research associate in the De-
partment of Informatics and Mathematical Sci-
ence at Osaka University. His research interests
include the software process and the software
quality assurance technique. He is a member of
the IEEE.

Tohru Kikuno was born in
1947. He received M.S. and
Ph.D. degrees from Osaka Uni-
versity in 1972 and 1975, respec-
tively. He joined Hiroshima Uni-
versity from 1975 to 1987. Since
1990, he has been a Professor

in the Department of Informatics and Mathe-
matical Science at Osaka University. His re-
search interests include the quantitative eval-
uation of software development processes and
the analysis and design of fault-tolerant sys-
tems. He served as a program co-chair of the 1st
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’98)
and of the 5th International Conference on
Real-Time Computing Systems and Applica-
tions (RTCSA’98). He also served as a general
co-chair of the 2nd International Symposium on
Object-Oriented Real-Time Distributed Com-
puting (ISORC ’99). He is a member of the
IEEE, ACM, IEICE and IPSJ.

Yuji Hirayama was born in
1971. He received B.E. and M.E.
degrees in information and com-
puter sciences from Osaka Uni-
versity in 1994 and 1996, respec-
tively. He has been working for
OMRON Corporation.

Yasunari Takagi received
B.E. degree in information
and computer science, from
Nagoya Institute of Technology
in 1985. He has been working
for OMRON Corporation.

408 IPSJ Journal Mar. 2001

Keishi Sakamoto received
B.E. degree in electrical engi-
neering, from Kobe University in
1969 and D.E. degree in infor-
mation science, from Nara Insti-
tute of Science and Technology
in 2000. He had been working

for OMRON Corporation from 1969 to 2000.
Currently, he is a Software Process Improve-
ment (SPI) Consultant.

