
An Implementation of Electronic Shopping Cart on the Web System
using Component-Object Technology

Satoru UEHARAyz

y NTT Data Corporation, Japan
s-uehara@ics.es.osaka-u.ac.jp

Osamu MIZUNOz, Tohru KIKUNOz

z Graduate School of Engineering Science,
Osaka University, Japan

fo-mizuno, kikunog@ics.es.osaka-u.ac.jp

Abstract

We propose a new mechanism for implementing the elec-
tronic shopping cart system (shortly, the shopping cart sys-
tem) on the World Wide Web system (the Web system). The
electronic shopping cart system is one of typical client-
server systems, and it includes essential tasks to be imple-
mented in the typical Web based client-server system. The
most important task is to maintain context data between suc-
cessive user sessions.

Although several methods, which can be applied to im-
plement the electronic shopping cart on the Web system,
have been proposed, any of them can not attain the task
of maintaining context data sufficiently. In this paper we
analyze the task and point out the following three difficul-
ties (d1) reliability, (d2) safety, and (d3) session manage-
ment. We then propose a new mechanism (called the Con-
text Data Storing (CDS) mechanism) to solve all of (d1), (d2)
and (d3). In the proposed CDS mechanism, the context data
for the session management is stored in the main memory
of the client computer. As a result, the CDS mechanism can
achieve both high reliability and high safety as well as the
management capability of user sessions.

Next, we use component object technology to implement
the CDS mechanism. Then, we compared the performance
of the electronic shopping cart system using the proposed
CDS mechanism with the one using the previous methods.
The result showed that our proposed mechanism has solved
all difficulties (d1), (d2) and (d3) and has attained efficient
communications between clients and Web servers.

1 Introduction

Recently, the World Wide Web (the Web) is becoming the
mainstream of the base system on which client-server sys-
tems are developed. One of the main reasons for the wide-
spreading use of the Web is the advantage in the mainte-
nance cost of the software. Actually, the software developed
by the conventional application builder (such as Microsoft
Visual Basic) is large in size,and the cost needed for dis-
tributing a new version (obtained by version up of original

one or modification of bugs) to the client customers is also
high. However, for the Web system, all programs are on
the Web server and the clients have the Web browsers only.
Thus every client can use the newest application software,
and the cost of distribution becomes almost zero. As a re-
sult, the Web-based client-server system is widely adopted
in not only the Internet application but also the intra-net ap-
plications.

In the development of the Web-based client-server sys-
tem, there are several problems that did not occur in the con-
ventional client-server systems. The problems should be an-
alyzed to find an effective way for solving them. Then, this
paper takes an electronic shopping cart system as a typical
example of the client-server system to be developed on the
Web. Though the electronic shopping cart system consists
of quite simple functions, it contains essential problems for
the construction of client-server systems on the Web. A data
sharing among several user sessions is one of such problems.

The HTTP protocol is most commonly used for the con-
struction. It is known that the HTTP protocol is ‘session-
less’, and thus the connection between a client and a server
is disconnected for each communication. When a Web
browser accesses a Web server and then successively ac-
cesses the server again, the information of the previous ac-
cess never be maintained. Thus, the shared data among user-
sessions must be maintained by any other methods. Here-
after, we call such shared data as “context data.” We also
call the management of several user sessions by keeping the
context data as “session management.”

In order to realize the session management and imple-
ment the shopping cart system, we will propose a new con-
text data storing (CDS) mechanism using the component ob-
ject technology. Though several methods have been pro-
posed to realize the session management, they are not suffi-
cient from the viewpoint of reliability and safety of the shop-
ping cart system. In the proposed CDS mechanism, the con-
text data for the session management is stored in the main
memory of the client computer. Furthermore, it executes
updating of the context data without using any user’s up-
dating activities. As a result, the proposed CDS mechanism
can realize the session management with high reliability and
safety.



We then compared the performance of the electronic
shopping cart system using the proposed CDS mechanism
with the one using the previous method. The result showed
that our proposed mechanism has solved all difficulties and
has attained efficient communications between clients and
Web servers.

2 Electronic Shopping Cart on the Web

In this section, we define the electronic shopping cart sys-
tem on the Web (shortly, the Web shopping cart system).
The Web shopping cart system can be considered a typi-
cal client-server application, since it includes many essen-
tial features that are possessed by most client-server appli-
cations.

The Web shopping cart system consists of the follow-
ing entities: customers, shopping carts and items for sale.
The customers can do any of the following four actions: (1)
browse the item list, (2) select items and put them in their
cart, (3) remove items from their cart and return them, (4)
send their cart to the accounting server.

Thus the basic behavior of the Web shopping cart system
is summarized as follows:

In the Web shopping cart system, there exist several shop-
ping sites on the Web. Actually, the shopping site consists
of many Web pages that are linked each other. For each item
in the shopping site, its price is assigned. Then a customer
can use an electronic shopping cart to hold all the items that
the customer has selected to buy.

For the shopping, the customers are allowed to take the
following three behaviors: (1) browse freely listed items for
sale on the Web, (2) put such item in their carts that cus-
tomers decided to buy, (3) return freely items from the carts,
if customers change their mind,

Finally, at the time when customers decide to stop buying
any other items and buy all items in their cart, they send the
cart to the shopping server and pay an account.

When we implement the Web shopping cart system, we
face several difficult problems. Since the HTTP protocol is
‘session-less,’ it is difficult to maintain the contents in a cart
among successive user sessions. For example, during the
shopping, the customer browses items in the shopping site.
When the customer goes from one Web page to another, the
content of the cart must be maintained. However, the HTTP
protocol cannot maintain it even if the customer is in the
same shopping site.

There exist other important issues to be considered in the
Web shopping cart system. The first is the reliability prob-
lem. If the Web server crushes during shopping, the content
in the cart may disappear. The contents in the cart should be
maintained until the crushed server recovers. The second is
the security problem. Since the content in the cart may in-
clude secret information, it is preferred that the contents are
not viewed by other users. Furthermore, in order to prevent
illegal action by the customer, we had better establish a rule
that the content (for example, the price of each item) never
be changed by the customer.

So far, several methods[3] have already been proposed
and implemented on the Web browser. However, those
methods can only solve a part of above problems (For more
detail, we will explain it in Section 3). In order to solve all
these problems, we propose a new mechanism.

3 Implementation by Previous Method

3.1 Previous methods

There are several methods that seem to be useful for man-
aging the context data. The most simple method is just us-
ing a parametrical document. The next is generally called
HTTP cookie[3, 7]. The “HTTP cookie” usually represents
the “client-side cookie”, which stores the context data on the
client computer. On the other hand, there is a different type
of cookie called the “server-side cookie,” which stores the
context data on the Web server.

3.1.1 Parametrical document

In this method, the context data is described as arguments
for a program that generates the dynamic HTML document.
Thus it is clearly easy for this method to realize the session
management in the Web shopping cart system. Additionally,
this method can be used in any platform that can access the
Web, since it is completely independent from both the Web
servers and the Web browsers.

However, since the context data can be seen in the source
of an HTML file, the contents of the shopping cart are easily
accessed and thus changed by the users. Thus there may
exist serious problem with respect to safety.

3.1.2 Client-side cookie

The client-side cookie is most widely used to manage the
context data on the Web. In this method, the text files called
“cookie files” are stored on the client computer, and the con-
text data are kept in the cookie files. Once a cookie file is
generated in the client computer, the Web server can read
and write it.

In order to apply this method, the Web browser should
have the functions for the cookies within it1. Since we can
specify arbitrary the period of storing the cookie files, the
cookie files are designed to be stored at the time when the
Web browser finishes its execution. Using this property, the
Web application can be constructed to resume the situation
in the previous visit.

However, in the client-side cookie also, there exists seri-
ous problem of low safety. Since the cookie files are stored
as a plain text file, the contents of a shopping cart are easily
modified by the users.

1In these days, most of the Web browsers have such functions.



3.1.3 Server-side cookie

The server-side cookie method is similar to the client-side
cookie method. The difference is that the server-side cookie
stores the context data on the main memory of the Web
server rather than the client computer. On the client com-
puter, just a small cookie file is generated to contain the ses-
sion’s ID only.

In order to use this method, both the Web bowser and the
Web server must have the cookie functions. In this method,
the context data is stored on the Web server, and thus the
users cannot refer the context data. Therefore, the server-
side cookie has high security of the context data.

3.2 Difficulties of previous methods

We show an implementation of the Web shopping cart
system using the client-side cookie method in Figure 1. Fig-
ure 1 represents an activity flow, which selects item1, item2
and item3 one by one and put them in the cart, and finally
pays an account. Using the client-side cookie, the cookie
file is generated by the Web server’s program to store the
context data for each item. Thus, the communications be-
tween the client and the Web server occur frequently. At
time ti (i =1, 2 and 3), item list is browsed, and item i is
selected and put in the cart. Finally, at time t4, the cart is
sent to the accounting server. Please note for each selection
of new item, a communication is done between server and
the client computer via the Web. If we use other methods
such as parametrical document and server-side cookie, then
the similar situation as shown in Figure 1 happens between
server and client.

Server

Client

Web

t1

Web Browser

Item1

Server

Client

Web

Web Browser

Item1

Server

Client

Web

Web Browser

Item1

Server

Client

Web

Web Browser

t2 t3 t4

Item2 Item2
Item3

Pay an
Account

Figure 1. Implementation using client-side
cookie

Furthermore, there still exist several other problems.
First, consider the server-side cookie method. If the Web
server crushes or is down, then all the context data on the
server disappear suddenly. In order to avoid such a situation,

several Web servers should be introduced. Thus, this method
cannot solve the reliability problem of the Web shopping
cart system.

Next, consider parametrical document. Then, the context
data is shown in the HTML document on the client com-
puter without any encryption. Thus users can easily access
the context data. Finally, consider the client-side cookie
method. In this method, the context data is stored in plain
text files without any encryption on the client computer. If
users know the place of the cookie file, then they can refer,
modify, or copy the cookie file. Therefore, these methods
cannot solve the safety problem.

4 Context Data Storing Mechanism

We propose a new mechanism for implementing the Web
shopping cart system. First, we introduce a document-view
architecture. Then, based on this new architecture, we de-
fine a new mechanism, called “Context Data Storing (CDS)
mechanism,” to solve those problems mentioned in Section
3.

4.1 Architecture

We introduce a document-view architecture, where the
data management part (document) and the graphical user in-
terface part (view) are constructed separately as shown in
Figure 2. Then the main functions for the Web shopping
cart system can be constructed effectively by assigning the
context data and the Web browser to the document and the
view, respectively.

Name1: Satoru
Name2: Uehara

Document

Name: Satoru

View 1 View 2

Full Name:
Satoru Uehara

Refer/Modify Refer/Modify

Figure 2. Document-view architecture

Furthermore, users can refer the document in their own
ways by defining the views. Thus the usability of an appli-
cation software is also improved.

Figure 3 shows updating of data in a view. If several
views exist in the same system, updating of data from one
view must be informed to all other related views. As shown
in Figure 3, suppose the data named “Name” on the View-1
is modified. Then the corresponding data “Name1” on the
document must be updated and its change must be informed
to the View-2.

In order to implement the document-view architec-
ture, we used two kind of communications, based on the



Name1: Osamu
Name2: Uehara

Document

Name: Satoru

Name: Osamu

View 1 View 2

Full Name:
Satoru Uehara

Osamu Uehara

(1) Modify

(2) Update

(3) Notification
of update

Figure 3. Updating of data in a view

CDS
Component

KEY1 VALUE1
KEY2 VALUE2
KEY3 VALUE3

Web Browser

Call for
method

Event
notification

CDS Server

Value1
Value2

Event
notification

Call for
method

Script

Figure 4. Logical organization of CDS mecha-
nism

COM[10] (which is the component object technology by
Microsoft): (1) call for method, and (2) event notification.
Figure 4 shows a logical organization of the CDS mecha-
nism, which consists of CDS component and CDS server.

a) CDS component

The CDS component is a software embedded in the
Web browser. It works for an interface between the
CDS server and the Web browser. Actually, it receives
the call for a method from the Web browser, and sends
the notification of an event to the Web browser.

The event handling is performed as follows: 1) When
the data in the CDS server is updated, the CDS server
sends a notification of the event (that is, updating of
the data) to the CDS component. 2) On receiving it,
the CDS component successively sends the notification
to the Web browser. 3) The Web browser updates the

corresponding data according to the notified event.

In the proposed implementation, we realize the CDS
component as the dynamic link library (DLL).

b) CDS server

The CDS server is a software that manages the context
data. It receives the call from the CDS component for
a method to access the data, and sends the notification
of the event to CDS components.

It is implemented as a different executable process from
the Web browser. Thus, even if a Web browser crushes
down, the CDS server still works alive and can keep the
context data. Additionally, in the proposed implemen-
tation, we store the context data on the main memory
of the client computer. As a result, the contents of the
context data are hardly accessed by the users (by any
illegal method).

The CDS component and CDS server are downloaded
into a client computer via the Internet. The signatures in the
component should be certificated by a trusted organization.

The details of the implementation of the CDS mechanism
is shown in Appendix.

4.2 Basic behavior of CDS mechanism

In order to execute the CDS mechanism, the invocation
command of the CDS component must be described in a
HTML document. Then the CDS component is loaded into
the Web browser’s process. At the same time, the CDS
server is also invoked in a different process (from the Web
browser’s process) and it starts managing the context data.

(a)

Client Computer

CDS Server

Web Browser

ID: xxx

ID: xxx

NAME: yy

Name: yy

Set values

CDS
Component

(b)

Client Computer

CDS Server

Web Browser

ID: xxx

ID: xxx

NAME: yy

Name: yy

Get values

CDS
Component

Session
transition

Figure 5. Maintenance during successive ses-
sions

Here, we explain the basic behavior of the CDS mecha-
nism using Figure 5. This is an example to maintain a user’s
ID and a user’s name during successive sessions. First, as-
sume that user inputs ID and name. Then, the CDS compo-
nent and the CDS server are invoked at the same time. The
CDS component calls the method to create the keys, such



as “ID” and “NAME”, and to set the value for each key (for
example, ID=xxx and Name=yyy as shown in Figure 5(a)).
Next, assume that the current session transits to the next ses-
sion (as shown in Figure 5(b)). Just after the transition, the
context data such as “ID” and “Name” are not maintained on
the Web browser. Then, the CDS component automatically
calls the method of the CDS server to get these context data.

As explained in the previous example, updating event of
the context data is notified to the Web browser automatically
by the CDS mechanism. On the other hand, in the conven-
tional Web systems, the data in a view must be updated by a
user’s action such as clicking “reload” button. The proposed
mechanism can handle such events, and thus can update the
view without employing any user’s action.

4.3 Lifetime management

Since the CDS mechanism uses the main memory of the
client computer, the lifetime management is important. That
is, the CDS component should be on the main memory dur-
ing the time when the HTML document is displayed on the
screen, and thus it should be unloaded as soon as the user
session finishes. To do so, we must insert an appropriate
<OBJECT> tag into the HTML document.

For example, the <OBJECT> tag is specified as follows:

<OBJECT ID="objCDS"
CLASSID=
"CLSID:D85F06A4-53A8-11D3-ABFE-

00A0C9A3C303"
CODEBASE="CDSComponent.cab\#version=1,0,0,1">

</OBJECT>

Here, for the corresponding CDS component, ID, CLAS-
SID and CODEBASE denote the ID to be referred from the
scripting language, the unique ID in the client computer, and
place and version of the program, respectively. To unload
the CDS component, we just remove the <OBJECT> tag
from the HTML document.

On the other hand, the CDS server is loaded while the
CDS component is on the main memory. Only when all of
the CDS components in the client computer are unloaded,
the CDS server also unloaded. Thus for a lifetime manage-
ment in the proposed implementation, we used the reference
counter based on the COM[10], which indicates the num-
ber of references by other objects. If the value of reference
counter becomes 0, then the component object is unloaded
automatically.

5 New Implementation of Shopping Cart

5.1 Implementation using CDS mechanism

Next, Figure 6 shows an implementation of the Web
shopping cart system using the proposed CDS mechanism.
Consider the same shopping cart example as the activity
flow in subsection 3.2. At the time ti (i =1, 2 and 3), item

list is browsed and item i is selected and put in the cart. Fi-
nally, at time t4, the cart is sent to the accounting server. In
this implementation, the contents of the cart are stored in the
main memory by the CDS server process. Since the context
data can be accessed from the Web browser using the script-
ing language, the number of accesses to the Web server from
the client decreases, as shown in Figure 6.

Now we explain how CDS mechanism works in the im-
plementation. At time t1, the CDS server is loaded to the
main memory and is executed as a different process from
the Web browser. Then the CDS server downloads the item
list from the Web server. At times t2 and t3, the client ac-
cesses to the context data via the CDS component. Please
note that these accesses need not any more communications
with the Web server. At time t4, the cart holding all selected
items are sent to the Web server to pay account.For this ac-
tion, the client needs a communication with the Web server
via the Web.

Client
CDS Server

Server

Web

t1

Web Browser

Item1

Server Server Server

t2 t3 t4

Item1

Web Web Web

Client
CDS Server

Web Browser

Item1

Item1

Client
CDS Server

Web Browser

Item1

Item1

Client
CDS Server

Web Browser

Pay an
Account

Item2

Item2

Item2

Item2

Item3

Item2

Item1
Item2
Item3

Figure 6. Implementation using CDS mecha-
nism

5.2 Advantages of the CDS mechanism

The example (shown in Figure 6) shows the CDS mecha-
nism can attain the reliability and safety of the Web shop-
ping cart system. Furthermore, the CDS mechanism can
mitigate the communication overhead between the client
computer and the Web server. As mentioned before, the Web
shopping cart system is considered to be a typical client-
server application, we can expect that the proposed CDS
mechanism is useful for developing the client-server sys-
tems on the Web.

6 Conclusion

In this paper, we defined the Web shopping cart system
as a typical client-server application on the Web. We then
clarified several problems on the implementation of the Web



shopping cart system, which are peculiar to the Web. In
order to solve the problems, we proposed a new mecha-
nism that can manage user sessions with high reliability and
safety. Then we compared the Web shopping cart system
implemented using the proposed mechanism with the one
developed by the conventional methods. The result shows
that our mechanism can successfully implement the Web
shopping cart system.

Future research includes quantitative analyses for the ad-
vantage of the CDS mechanism by applying it to much more
practical developments.

Acknowledgment

Authors would like to thank Mr. Chikara Nakano for his
cooperation

References

[1] Apache Software Foundation, Apache HTTP Server
Project, http://www.apache.org/httpd.html.

[2] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk
and T. Berners-Lee, “Hypertext Transfer Protocol -
HTTP/1.1,” RFC 2068, Network Working Group,
1997.

[3] D. Kristol and L. Montuli, “HTTP State Management
Mechanism,” RFC 2109, Network Working Group,
1997.

[4] Microsoft, Internet information services features,
http://www.microsoft.com/windows2000/guide/
server/features/web.asp

[5] Microsoft, Active Template Library (ATL) Refer-
ence, http://msdn.microsoft.com/library/devprods/
vs6/visualc/vcmfc/atl.htm

[6] Netscape Inc., Netscape Enterprise Server, http://
www.netscape.com

[7] Netscape Inc., HTTP Cookies, http://home.netscape.
com/newsref/std/cookie spec.html

[8] H. Raggett, A. Le Hors and I. Jacobs, “HTML 4.0
Specification,” W3C Working Draft, 1997.

[9] D. Robinson, The WWW Common Gateway Interface
Version 1.1, Internet draft, 1995.

[10] D. Rogerson, Inside COM, Microsoft Press.

[11] N. Yeager, R. McGrath, Web Server Technology, The
advanced guide for World Wide Web Information
Providers, Morgan Kaufmann, 1996.

Appendix A

Implementation of the CDS mechanism

In this appendix, we will describe the implementation of
the CDS mechanism.

The CDS mechanism runs on client computers, and it is
handled by a script language on the Internet Explorer. Such
scripts are described by server-side programs. The develop-
ers can develop server-side programs with various languages
— ASP, JSP, PHP, Java and so on.

There are the following 7 major functions to be ma-
nipulated by the server-side programs: a) InitializeServer
method, b) Remove method, c) RemoveAll method, d) Item
property, e) Count property, f) Name property and g) On-
DataChanged event. By applying the methods a), b) and c),
the context data is newly created or removed. The content
of the context data can be obtained by the properties d), e)
and f). Finally, updating of the context data is notified by
the event g).

a) InitializeServer method

An InitializeServer method initializes the CDS
server. Its specification is described by the IDL (Inter-
face Definition Language)[10] as follows:

[id(0), helpstring("Initialize")]
HRESULT InitializeServer

([in] BSTR bstrID);

This method takes a string type as an argument. In the
CDS server, the context data is stored in the form of a
table having unique keys and their values. We call such
table as “context data container.”

The context data container is prepared for each invo-
cation of the method with different argument. That is,
an argument for the InitializeServer method is
an identifier of the context data container. If the Ini-
tializeServer is invoked with an existing iden-
tifier, it points to the existing context data container.
This feature makes it possible to share a context data
container among several Web browsers.

Figure 7 shows an application of this method to share
a context data container. In this example, the Web
browsers 1 and 1’ share a context data container with
the identifier “Browser1.” The Web browsers 2 and 2’
also share another context data container with the iden-
tifier “Browser2.”

b) Remove method

This method removes the context data that is no longer
used. It takes a string type as an argument, which rep-
resents the key of the context data. The specification of
the method is described as follows:

[id(2), helpstring("Remove item")]
HRESULT Remove([in] VARI-
ANT varName);



CDS
Component

CDS
Component

Web Browser2 Web Browser2’

InitializeServer
(“Browser2”)

ID ID0001
Name Tom

CDS Server

ID ID0002
Name Bob

Browser1

Browser2

CDS
Component

Web Browser1

CDS
Component

Web Browser1’

InitializeServer
(“Browser1”)

InitializeServer
(“Browser1”)

InitializeServer
(“Browser2”)

Figure 7. InitializeServer method

For example, in order to remove the context data with
the key “Name,” the following script is described:

<SCRIPT LANGUAGE="VBScript">
objCDS.Remove("Name")

</SCRIPT>

c) RemoveAll method

This method removes all context data in a context data
container. Its specification is described as follows:

[id(3), helpstring("Remove all")]
HRESULT RemoveAll();

The following script can remove all data:

<SCRIPT LANGUAGE="VBScript">
objCDS.RemoveAll

</SCRIPT>

d) Item property

This property is for setting or getting the context data
stored in the CDS server.

[propget, id(1), help-
string("Get item")]
HRESULT Item
([in] VARIANT varName,
[out, retval] VARIANT *pvarVal);

[propput, id(1), help-
string("Set item")]
HRESULT Item
([in] VARIANT varName, [in] VARI-

ANT newVal);

The former specification is for getting the data, and the
latter is for setting it. For example, two context data
“ID” and “Name” are stored in the CDS server by the
following script:

<SCRIPT LANGUAGE="VBScript">
objCDS.Item("ID") = "ID0001"
objCDS.Item("Name") = "Tom"

</SCRIPT>

On the other hand, to get the values of the context data
from the CDS server, the following script must be writ-
ten:

<SCRIPT LANGUAGE="VBScript">
strID = objCDS.Item("ID")
steName = objCDS.Item("Name")

</SCRIPT>

CDS
Component

CDS
Component

Web Browser

Set values
Item(“ID”) = “ID0001”
Item(“Name”) = “Tom”

ID ID0001
Name Tom

CDS Server

Get values
Item(“ID”)
Item(“Name”)

Session transition

Figure 8. Item property

Figure 8 shows an application of Item property. In this
example, two context data “ID” and “Name” are stored
into the CDS server using Item property. Next, af-
ter the session transition, the context data are obtained
using Item property.

e) Count property

This property stores the number of context data. Its
specification is described as follows:

[propget, id(4), help-
string("Count of data")]
HRESULT Count([out, ret-
val] long *plVal);

The following script can acquire the number of context
data in a context data container:

<SCRIPT LANGUAGE="VBScript">
Dim nCount
nCount = objCDS.Count

</SCRIPT>

f) Name property

This property gets the name of context data by the in-
dex. Its specification is described as follows:



[propget, id(5), help-
string("Name of data")]
HRESULT Name([in] long lIndex,
[out, retval] BSTR *pbstrVal);

The following script can acquire the name of context
data:

<SCRIPT LANGUAGE="VBScript">
Dim strName
strName = objCDS.Name(1)

</SCRIPT>

g) OnDataChanged event

This event occurs when the context data in the CDS
server is changed. Its specification is described as fol-
lows:

[id(6), helpstring("OnDataChanged event")]
HRESULT OnDataChanged();

When the context data is changed, OnDataChanged
event is notified from the CDS component to the CDS
server. This event is only notified to CDS components
that initialized the context container in which the con-
text data was changed.

Figure 9 shows an application of OnDataChanged
event. When the context data in the container
“browser1” is changed, OnDataChanged event is
notified to the CDS components in the Web browsers
1, 1’ and 1”.

CDS
Component

CDS
Component

Web Browser2 Web Browser2’’

ID ID0001
Name Tom CDS Server

ID ID0002
Name Bob

Browser1

Browser2

CDS
Component

Web Browser1

CDS
Component

Web Browser1’

Update of context data

CDS
Component

Web Browser1’’

Notification of
OnDataChanged event

CDS
Component

Web Browser2’

Figure 9. OnDataChanged event

In order to use the OnDataChanged event, the fol-
lowing script must be described in an HTML docu-
ment:

<SCRIPT LANGUAGE="VBScript">
Sub objCDS_OnDataChanged()

’ Describe the updating rou-
tine here
End Sub
</SCRIPT>


