
Generating Test Items for Checking Illegal Behaviors in Software Testing

Masayuki HIRAYAMAyz, Jiro OKAYASUy,
Tetsuya YAMAMOTOy

y Research and Development Center,
Toshiba Corporation, Japan

masayuki.hirayama@toshiba.co.jp

Osamu MIZUNOz, Tohru KIKUNOz

z Graduate School of Engineering Science,
Osaka University, Japan

fo-mizuno, kikuno g@ics.es.osaka-u.ac.jp

Abstract

Even for electrical appliances, testing for illegal behaviors
becomes difficult since the software system in an electrical
appliance has already become large in size. Actually, the
conventional method cannot generate sufficient test items
for illegal behaviors. But testing illegal behaviors becomes
more and more important, since the failure of electrical ap-
pliances would cause fatal effects on our daily life. We
therefore propose a new method for generating appropriate
test items to check illegal behaviors, which consists of the
following steps: (1) Describe software behavior using use
case notation, (2) Analyze illegal behavior by the deviation
analysis technique, (3) Construct a software fault tree using
the above information, and (4) Generate test items from the
software fault tree.

This paper also reports the experimental applications to
actual development of an electrical appliance. The evalua-
tion results identified that all necessary test items for illegal
behaviors are included in the resultant test items.

1 Introduction

In this paper, we try to develop a practical approach to at-
tain the reliability of software. We consider that the practical
approach must have the following properties: (1) it is easy to
understand the approach, (2) it is easy to apply the approach
to the target software, and (3) the cost or effort needed is
reasonable. In that sense, the software testing[3, 5, 8, 11]
is a well known practical approach to assure the quality of
target software. Truly speaking, we cannot find any other
useful methods than software testing from the viewpoints of
practical software development.

However, the recent software development regards that
even the cost in the software testing should be reduced. So
the automatic or systematic generation of the test items for
the software systems were expected to mitigate the devel-
opment cost. For the automatic generation of test items,
several approaches (such as a method based on the formal
specification[7], a method by the source code analysis[12],
and so on) have been proposed. However, the method based
on the formal approach was too complex to apply to the ac-
tual development field, and the method based on the source
code analysis was only applied to toy examples. So, we have

to devise a method that is applicable to the practical software
developments.

On the other hand, the quality of the resultant software
after software testing is greatly influenced by the amounts
and kinds of test items[5]. According to purposes of software
testing, we can classify test items into two: (1) the one related
to legal behaviors of target software and (2) the one related to
illegal behaviors of target software. The test items in the first
type are extensively checked in an ordinary software testing.
But in order to assure high reliability of the software system,
the violations of the second type, that is illegal behaviors,
should be avoided, and so exhaustive enumeration of test
items are tried.

Recently, it is remarkably observed that so many computer
systems or software systems are introduced into our social or
daily life[2], and then, most of electrical appliances have em-
bedded software in them. If software faults are remained in
an electrical appliance and the electrical appliance suddenly
don’t work correctly, then the scope of its effect or damage
may become enormously large. Therefore even for electrical
appliances, ensuring the reliability of software becomes an
essential requirement[9].

Now we briefly summarize the development of electrical
appliances. While software embedded in an electrical appli-
ance is relatively small in size, the formal method based on
finite state machine is used effectively in the development[2].
All legal behaviors written in the functional specification are
formally defined by the finite state machine, and the corre-
sponding test items are generated using transition sequences
on the finite state machine. On the contrary, test items for
illegal behaviors are successfully derived and checked care-
fully by experienced developers.

Since the customers’ demands for electrical appliances
have increased rapidly, the size of software has already be-
come large. Thus the formal approach doesn’t work effec-
tively in the development of the recent products. The formal
method then can be applied only to the core part of the sys-
tem. Thus test items only for legal behaviors are generated by
the formal method. We have not yet have good solutions to
generate test items for illegal behaviors. Additionally, since
the consumers’ demand generally changes within a short
period, the development must be completed timely. The
timeliness makes the difficult situations concerning illegal
behaviors more serious.

In this paper, we propose a new method for generating
test items to check illegal behaviors in the development of

electrical appliances. We then conducted an experiment that
applies the proposed method to actual development of an
electrical appliance in a certain company. The evaluation
results show that (1) the sets of test items generated by two
engineers are almost the same, and (2) the set of test items
constructed by the proposed method covers the set of test
items that were used conventionally at the project.

2 Method for Generating Test Items

2.1 Outline of proposed method

The proposed method consists of five steps, and the func-
tion of each step is defined as follows:

Step-1 (System behavior understanding): We describe the
software block-diagram and hardware block-diagram.
By doing this, we can understand an outline of the
functional behavior of the target software system.

Step-2 (Use case analysis): We describe typical behavior of
the target software using activity chart and clarify im-
portant reliability factors by applying use case analysis.
Use case description and analysis are borrowed from
the object-oriented developing methodology (UML).

Step-3 (Deviation analysis): According to guide words, we
extract unusual situations in the use case description
and find such operations that deviate from the basic
behavior and cause abnormalities.

Step-4 (Software fault tree construction): We analyze the
situations that bring undesirable illegal behaviors by
referring to analysis results and use case description.
We then successively consider the internal processing
of software, and finally construct a kind of fault tree.

Step-5 (Test item generation): By extracting the factor on
the leaf of the software fault tree, we generate test items
that check this factor.

In this study, the size of target systems for this method is
assumed to be not so large. Thus we can obtain the activity
charts and the fault trees with small effort. We will explain
ourmethod using the refrigerator control softwareas a typical
target system (to be described in subsection 3.2).

2.2 Use case analysis

At first, we describe typical behaviors of target system in
free format using natural language. We then, based on a free
format description, construct an extended activity chart[1].
The following extension was done for the original activity
charts defined by UML, in order to facilitate the reliability
requirement analysis.

(1) The activities are represented by rectangles. The con-
tents of an activity is defined by natural language.

Check condition
for defrosting

Check condition
for defrosting

Defrost the
freezing room
Defrost the

freezing room
Defrost the

refrigerating room
Defrost the

refrigerating room

<Defrosting | Failure>

Check elapsed time of
freezing room
Check elapsed time of
freezing room

Count elapsed time of
freezing room
Count elapsed time of
freezing room

<Checking | Failure>

<F-Timer | Expire (5.0h)>

In initial behavior
<Defrosting history | Exist>

(a) Top Layer

(b) 2nd Layer

<Defrosting
| Failure>

<Checking
| Failure>

<R-Timer
| Expire (5.0h)>

Check history of
R/F defrosting

Check history of
R/F defrosting

Check elapsed time of
refrigerating room
Check elapsed time of
refrigerating room

<Checking
| Failure>

<Defrosting history
| Not exist>

Defrost the refrigerating room
Defrost the freezing room

<Checking | Failure>

Figure 1. Use case description (defroster)

(2) The transition between activities is represented by two
kinds of arrows:�! and —–�. An arrow�! shows a
usual or legal behavior, but the other arrow —–� shows
an unusual or illegal behavior.

(3) For each transition, the corresponding condition is de-
fined and is attached as a label with the form “<activity
| condition>”.

Figure 1 shows an example of a use case description. The
example partially describes a defrosting operation of refrig-
erator control software. In this example, basic activities such
as “Check condition for defrosting”, “Defrost refrigerating
room” and so on, are executed successively. Moreover, the
trigger for execution of an activity is declared in the form
of “<Defrosting history | Not exist>”, “<F-Timer | Expire
(5.0h)>” and so on.

Next a deviation analysis is performed for the use case
description using guide words, and several unusual behaviors
or operations are found as deviations from legal situation[4,
6]. Any deviation thus can be extracted to be a key factor for
software failures. Here, guide words are prepared for failure
of software, hardware and environment.

2.3 Construction of software fault tree

A software fault tree is constructed for software failure
which is related to the extracted software deviation[2, 9, 10].
The fatal failure for target software is taken as a root of the
software fault tree. In the construction of fault tree, each
node is expanded into its son nodes based on the use case
analysis. The software fault tree is divided into the two parts:

(1) Software Function Failure This part focuses on func-
tional failures, which causes the failure specified at the
root of the software fault tree. In order to obtain cause
and result relations, we trace functional behavior flow
in the use case description, and extract illegal behaviors
at function level. Based on this analysis, we decom-
pose a functional failureF into such functional failures
F 0

1; F
0

2; � � � that eachF 0

i
can be a cause ofF .

Timer speed was
too slow.

Timer speed was
too fast.

Timer data is
incorrect.

Timer data is
lost.

F-room timer is
not activated.

The history
record does not
exist.

The history
record is
incorrect.

Checking the
history record is
not activated.

Refrigerator
cannot defrost

Failure in checking
elapsed time of F-
room

Failure in checking
history of R/F
defrosting

Failure in defrosting
refrigerating room

Failure in defrosting
the freezing room

Failure in checking
condition for defrosting

Failure in
checking elapsed
time of R-room

Timer is not
set as 5
hours.

Software function failure
Software error

Figure 2. Software fault tree (defroster)

(2) Software Error This part successively expands the soft-
ware function failure into software errors in the imple-
ment of the target system. The analysis result by use
case deviation and the detailed structure of software
are reflected in this expansion. As a result, we get the
software errors, which may be included in implemented
software module, at the leaves of the fault trees.

Figure 2 shows an example of software fault tree for the fatal
failure: refrigerator cannot defrost.

2.4 Generation of software test items

Test items are generated according to the software fault
tree. For any software error specified in the leaf of the
software fault tree, we list up the corresponding test items
that check the errors[2, 9, 10]. The enumerated test items
thus constitute the most fundamental test items. Then if
necessary, test items are generated for the interior node in
the software fault tree. Finally, some of related test items,
which are usually generated for a certain subtree, are grouped
into one condition.

3 Experimental Application

3.1 Design of experiment

The new method for generating software test items based
on the use case description was applied to a refrigerator
control software. The following shows the characteristic of
the experiment.

(1) Test engineersEA andEB: Two persons,EA andEB,
joined the experiment and generated test items for sam-
ple target refrigerator control software. They are con-
sidered to have almost the same skill level. Addition-
ally, they have little experience of developing refrig-
erator software. But they have developed some other
systems and thus already generated test items for them.

(2) Outline of the experiment: The purpose of the target
system is to implement the defroster function in the
refrigerator control software. Before generating test
items, engineers were explained about the details of the
proposed method. They were presented a specification
described in natural language. They then generated test
items by using the proposed method.

(3) Evaluation of the result: In order to evaluate the ex-
perimental results, all documents are reserved and the
working time is recorded. Moreover, the comments
with respect to difficulty and easiness of the proposed
method are freely written on the memorandum.

3.2 Target system

The experimental target was the control software embed-
ded in the refrigerator. The control software monitors various
sensor data and performs real-time control of hardware on
the 8-bit microcomputer. In the experiment, the specifica-
tion for the defroster function in the refrigerator control was
given to the engineers.

The refrigerator has two cooling rooms: a freezing room
and a refrigerating room. The defrosting function is con-
structed by two basic activating operations for the defrosting
heater and defrosting fan, and is controlled based on the
states of two rooms, elapsed time of defrosting, and rooms’
conditions. During defrosting, both the defrosting heater
and fan must operate at suitable time intervals to prevent the
rooms of the refrigerator from reaching too high temperature.

3.3 Resultant documents

Here we show how test items are generated using some
examples. We assume that a use case description for the
defrosting function of the refrigerator shown in Figure 1 is
given. We then construct actually a software fault tree shown
in Figure 2, and generate test items shown in Figure 3 from
the software fault tree. These documents are actually de-
scribed by the engineerEA in the experiment.

At Step-1, the engineersEA andEB read carefully the
given functional specification to understand the functions
of the defroster unit. They then described software block
diagrams for the defroster.

At Step-2, the use case description for the defroster func-
tion is described based on the software block diagrams and
the functional specification. First, the top-level layer of the
use case description(shown in Figure 1(a)) is described by
tracing the block diagrams roughly. The engineers then de-
scribed a detailed description. For example, the activity
“Check condition for defrosting” in Figure 1(a) is extended
into the detailed description shown in Figure 1(b) using the
functional specification.

At Step-3, the illegal behaviors of the defroster are ex-
tracted by tracing the activity chart shown in Figure 1. The
guide words support to extract the detail of an illegal behav-
ior. For example, consider the activity “Check history of R/F
defrosting.” The guide words for the “history” are “not ex-
ist” and “be incorrect,” and the guide word for “check” is “be

Condition Test Items

A2 Checking
history of R/F
defrosting

A2.1 Does defrosting history exist?

A1.1 Is history checking activated?

A3
Initial defrosting
after switch on

A3.1 Is F-room timer activated?

A3.2 Does F-room timer count?

A3.3 Does F-room timer count correctly?

A3.6 Is F or R-defroster activated, so far as timer count is
larger than 5 hours?

A3.4 Is F-room timer set for5 hours?

A3.5 Is neither F- nor R-defroster activated, so far as F- and
R-room timer < 5 hours?

......

A8
Defrosting timer >
6 hours

A8.1 Is the remaining time correct?

A8.2 Is the timer set by half of the remaining time?

......

A2.2 Is defrosting history correct?

A1 Switch on
defrosting

......

A9 Check for
residual ice

Figure 3. Generated test items

not activated.” Note that the prepared guide words are not
necessarily complete, thus new guide words are appended
by engineers incrementally if necessary. These guide words
are extensively used in Step-4.

At Step-4, by tracing the activity chart in Figure 1, the soft-
ware fault tree shown in Figure 2 is constructed as follows:
First, the root node is determined. Since the most crucial
failure for the defroster is that the frost cannot be removed,
the failure “Refrigerator cannot defrost” is adopted as the
root. According to the top layer description, three failures
“Failure in checking condition for defrosting,” “Failure in
defrosting freezing room” and “Failure in defrosting refrig-
erating room” are chosen as the next level nodes. Then, for
the “Failure in checking condition for defrosting,” the fail-
ures “Failure in checking history of R/F defrosting,” “Failure
in checking elapsed time of F-room” and so on are derived as
the next level nodes. Then, using the result of Step-3, each
node is expanded to some nodes successively.

Finally, the expansion reaches a situation that the ex-
panded node corresponds to the fundamental or undividable
error. At this time, the expansion will stop and software fault
tee is completed. In this case, the subtree with the root “Fail-
ure in checking history of R/F defrosting” has three leaves
as shown in Figure 2. These leaves correspond to activities
“The history record does not exist,” “Checking the defroster
history is not activated” and “The history record is incorrect,”
respectively.

At Step-5, test items are derived from the leaves and in-
terior nodes of the software fault tree. From the leaves with
light gray in Figure 2, the test items A1.1 to A3.4 shown in
Figure 3 are generated.

As a result, the engineerEA generated 55 test items (which
are grouped into A1, A2,� � �, A9), and the engineerEB
generated 40 test items (which are grouped into B1, B2,� � �,
B10). On the contrary, the conventional method generated 8
test items (which are grouped into C1, C2, C3 and C4).

4 Experimental Evaluation

4.1 Comparison betweenEA andEB

Here we analyze the coverage of test items between both
engineersEA andEB. As mentioned before, the engineer
EA generated 55 test items and the engineerEB generated
40 test items. Thus there exist at least a big difference in the
total number of test items. After the investigations on the
test items, it is found that they focused on the different part
of the specification each other.

Thus, it is not a good way to compare all the items. We
therefore take the same functions and compare the test items
for the selected functions between them. Then, 35 test items
and 21 test items are chosen from the engineersEA andEB,
respectively.

Let us show some examples. Figure 4 shows the cor-
respondence between test items byEA andEB. Consider
the test items for checking the initial defrosting condition.
Although there are some differences in expression between
engineersEA andEB, similar test items, such as A3.11 and
B6.2.1, and A3.13 and B6.1.1, were extracted. Next con-
sider the test items for the defrosting timer in freezing room.
Then both A3.2 and A4.2 are semantically the same as item
B2.2.1, and both A3.3 and A4.3 are semantically the same
as B2.3.2. These can be considered as typical test items for
illegal functions.

By analyzing the correspondence of test items, 17 out of
35 test items byEA correspond to 11 out of 21 test items
by EB as shown in Table 1. Almost half of test items
are identified as the same ones. Then, looking details of
the rest of test items, these are mostly identified as closely
related testing items, that should be performed beforehand.
Thus we can say that the interpretation of the free format
description (see subsection 2.2) is performed successfully
and the proposed method can generate almost the same test
items by any engineers.

Table 1. Comparison between EA and EB
EngineerEA EngineerEB

Test items generated
byEA orEB exclusively 18 10
Test items generated
byEA andEB 17 11

4.2 Comparison with conventional method

4.2.1 Granularity of test items

As mentioned before, the engineerEA generated 55 test
items. However, only 8 test items were conventionally used
in the development. The correspondence between them is
shown in Figure 5.

For example, consider the test item “C1: Initial behavior”
in the conventional check item. Then the related test items
generated byEA include not only A3.11 and A3.12 for de-
frosting behavior but also A3.2, A3.3, A3.7 and A3.8 for the
timer behavior as shown in Figure 5. The test items A3.2,
A3.3, A3.7 and A3.8 should be considered pre-conditions for

Category Test Items

B2 F-room timer
counting

B2.2.1Is timer count written correctly?

B2.3.2Are illegal data checked?

B6
Branch by timer
counting

Mid-category

B2.2Write error

B2.3 Illegal data

B6.1Timer < 5 hours

B6.2Timer >= 5 hours

B6.4Timer >= 8.5 hours

B6.1.1Is R- or F-room defroster inactivated?

B6.2.1Is R- or F-room defroster activated?

B6.4.1Is R- or F-room defroster activated?

Test items
by EB

A2 Checking history of R/F defrosting

A3 Initial defrosting after switch on.

A3.2 Does F-room timer count?

A3.3 Does F-room timer count correctly?

A5.5 Is F-defrosting activated, so far as defrosting
counter is “F-defrost”?

A3.11 Is F-defroster activated, so far as F-room timer
count >5 hours?

A5 During regular defrosting, R/F
timer > 8.5 hours.

A2.2 Is defrosting history record correct?

A4 Regular defrosting.

A3.7 Dos R-room timer count?

A3.8 Does R-room timer count correctly?

A3.12 Is R-defroster activated, so far as R-room timer
count > 5 hours?

A3.13 Is defroster activated, so far as both F- and R-
room timer < 5hours?

A4.2 Does F-room timer count?

A4.3 Does F-room timer count correctly?

A4.7 Does R-room timer count?

A4.8 Does R-room timer count correctly?

A4.4 Is F-room timer set for 8.5 hours?

A4.9 Is R-room timer set for 8.5 hours?

A5.6 Is R-defrosting activated, so far as defrosting
counter is “R-defrost”?

A7 During regular defrosting and R-
defroster is activated

A7.9 Does the counter accurately count 3 times
successively?

B5 Branch by
history record B5.1.1Is 8.5 hours defrosting activated, so far as record exists?B5.1Record exists

B3 R-room
timer counting

B3.2.1Is timer count written correctly?

B3.3.2Are illegal data checked?

B3.2Write error

B3.3 Illegal data

B4 History
recording

B4.3.1Are illegal data read?

B4.3.2Are illegal data checked?
B4.3 Illegal data

B8 Check for
residual ice B8.8.1Does the sensor continue to read, so far as the counter < 3?B8.8Branch by counter

Test items
by EA

not

Figure 4. Correspondence between EA and EB

checking the C1 test item. The conventional test items list
up only essential items that summarize several detailed test
items, and thus know-how or information for checking test
items are invisible(by this abstraction). On the other hand, it
can be said that test items by the proposed method are more
concretely extracted, and that all necessary items are explic-
itly enumerated. It is almost the same for the conventional
test item C2.

4.2.2 Checking illegal behaviors

In this paper, we define conditions which deal with transi-
tions with —–� in the use case description as test items for
illegal behaviors. On the other hand, conditions for�! are
called test items for legal behaviors. For example, consider
test item C1.1 “Is R/F-defroster activated, so far as F-room
timer or R-room timer > 5.0 hours?” in the conventional
test items. Then engineerEA generated test item A3.13 “Is
defroster not activated, so far as both F- and R-room timer
< 5 hours?” as well as A3.11 “Is F-defroster activated, so
far as F-room timer counts > 5.0 hours?” and A3.12 “Is
R-defroster activated, so far as R-room timer counts > 5.0
hours?”. Generally, conventional method gave test items for
legal functions only. The test engineers have enough know-
how and heuristics, and thus they can manage successfully
testing illegal behaviors based on their experience. But the
proposed method can generate test items for illegal behav-
iors such as A3.13. Table 2 shows the analysis result of total
number of test items for legal and illegal behaviors.

Table 2. Test items for behaviors
Conventional EngineerEA EngineerEB

Test items for
legal behaviors 5 9 5
Test items for

illegal behaviors 0 4 4

4.2.3 Advantage of proposed method

In the conventional development, there exist two software
defectsD1(checking error of sensor data) andD2(data error
in setting timer), which test engineers couldn’t find by the
system test. The details ofD1 andD2 are shown in Table
3. The defectsD1 andD2 were detected by the final quality
assurance test phase, and thus were considered to be serious
or hard to detect.

Fortunately, the test items generated by engineerEA con-
tain test items A7.5 and A7.6 for the defectD1 and test items
A8.4 and A9.4 for the defectD2. It is thus expected that
test items generated by the proposed method will help test
engineers to detect such defectsD1 andD2.

5 Conclusion

This paper has proposed a new method for generating
test items to check illegal behaviors. The following were
concluded from an experimental application of the proposed
method to the refrigerator control software.

(1) With relatively a little additional effort, we can generate
test items suitable to check behaviors (especially, illegal
behaviors) of the target system.

Table 3. Analysis of defects
Detected defects Conventional Test items generated byEA
D1: R/F-defrosting sensor No test items A7.5 Does R-defrosting sensor exist?
is not checked A7.6 Is R-defrosting sensor correct?
D2: Timer was not set by half No test items A8.4 Is freezing timer set for 8 hours?
at freezing mode. A9.4 Is timer set by half, so far as freezing timer > 6 hours?

Condition Test Items

A3 Initial defrosting after switch on.

A5.5 Is F-defrosting activated, so far as defrosting
counter is “F-defrost”?

A3.11 Is F-defroster activated, so far as F-room timer
counts >5 hours?

A5 During regular defrosting &
R/F timer < 8.5 hours.

......

A3.12 Is R-defroster activated, so far as R-room timer
counts > 5 hours?

A5.2 Does counter data exist?

A5.3 Is counter set correctly?

......

A5.1 Is defrosting counter checked?

A5.6 Is R-defrosting activated so far as defrosting
counter is “R-defrost”?

......

Item Test Items

C1 Initial behavior
C1.1 Is R/F-defroster activated, so far as F-room timer

or R-cooling timer > 5.0 hours?

C2 Regular defrosting

C2.1 Is defroster activated at 8.5 hours interval?

C2.2So far as F-room is freezing and R-defrosting
sensor < 3C, will both F- and R-room be defrosted on
the next timing?

C2.3So far as freezing is enforced for 6 hours, is the
remaining defrosting time set by half?

C3 Timer counting

C3.1 Is defrosting timer set by 5 hours± 9 minutes?

C3.2 Is defrosting timer set by 8.5 hours± 15 min.?

C3.3 Is enforced freezing timer set by 6 hours± 11
minutes?

C4 Behavior of timer C4.1 Is timer inactivated at the time compressor stops.

A7 Regular defrosting &
R-defroster’s activation.

A7.10Will both F- and R-room be defrosted on the next
timing, so far as F-room is freezing and R-defrosting
sensor < 3 degrees centigrade?

......

A9 Enforced freezing timer > 6.0 hrs. A9.4 Is timer set by half of the remaining time?

Test items
by E A

Conventional
Test items

A3.2 Does F-room timer count?

A3.3 Does F-room timer count correctly?

A3.7 Does R-room timer count?

A3.8 Does R-room timer count correctly?

Figure 5. Comparison with conventional test
items

(2) The proposed method generates test items in more de-
tailed descriptions, which seem to reflect and thus cor-
respond to the implementation of the target software.

(3) The proposed method generates systematically all nec-
essary test items without omission(if a given specifica-
tion is well written and complete).

As future research works, we are now extending our ap-
proach so that it can be applied to larger software systems.
We are also planning to assign priorities to test items and
choose appropriate set of test items according to the given
restrictions on the cost or resources.

Acknowledgment

The authors would like to thank Mr. Takuya Kishimoto,
Home Appliances Company of TOSHIBA Corp., for provid-
ing our case study examples. Thanks also Mr. Kazuyoshi
Tamura and other researchers of System Engineering Labo-
ratory, TOSHIBA Corp. for their helpful suggestions.

References

[1] H. -E. Eriksson and M. Penker,UML toolkit, John-Wiley
& sons, 1997.

[2] T. Fukaya, M. Hirayama and Y. Mihara, “Software specifi-
cation verification using FTA,” Proc. of FTCS-24, pp.131–
133, 1994.

[3] Y. Kim and C. R. Carlson, “Scenario based integration
testing for object-oriented software development,” Proc. of
8th ATS, pp.283–288, 1999.

[4] N. G. Leveson,Safeware: System safety and computers,
Addison-Wesley, 1995.

[5] B. Marick, The craft of software testing: subsystem testing
including object-based and object-oriented testing, Pren-
tice Hall, 1995.

[6] J. D. Reese, et al., “Software deviation analysis,” Proc.
of 19th International Conference on Software Engineer-
ing(ICSE’97), pp.250–260, 1997.

[7] M. A. Sanchez, “Integrating testing with a formal devel-
opment process,” Proc. of 9th International Symposium on
Software Reliability Engineering, Fast abstract and Indus-
trial Practices, pp.205–213, 1998.

[8] K. -C. Tai and H. K. Su, “Theory of fault-based predicate
testing for computer programs,” IEEE Trans. on Software
Engineering, vol.22, no.8, pp.552–562, 1996.

[9] K. Tamura, J. Okayasu and M. Hirayama, “A software test-
ing method based on hazard analysis and planning,” Proc.
of ISSRE’98, pp.103–110, 1998.

[10] T. Tsuchiya, H. Terada, E. M. Kim and T. Kikuno, “Devia-
tion of safety requirements for safety analysis of object-
oriented design specification,” Proc. of COMPSAC’97,
pp.252–255, 1997.

[11] Z. Xinjun and Y. Tashiro, “An approach to automated pro-
gram testing and debugging,” Proc. of Fourth Asia-Pacific
Software Engineering Conference(APSEC’99), pp.582–
589, 1999.

[12] H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “Automatic
test generation using checkpoint encoding and antirandom
testing,” Proc. of 8th International Symposium on Software
Reliability Engineering(ISSRE’97), pp.84–95, 1997.

